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ABSTRACT
Feature selection is an important prerequisite for music clas-
sification which in turn is becoming more and more ubiqui-
tous since entering the digital music age. Automated classi-
fication into genres or even personal categories is currently
envisioned even for standard mobile devices. However, clas-
sifiers often fail to work well with all available features, and
simple greedy methods often fail to select good feature sets,
making feature selection for music classification a natural
field of application for evolutionary approaches in general,
and multi-objective evolutionary algorithms in particular.
In this work, we study the potential of applying such a multi-
objective evolutionary optimization algorithm for feature se-
lection with different objective sets. The result is promising,
thus calling for deeper investigations of this approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Selection
process, Retrieval models; H.5.1 [Multimedia Informa-
tion Systems]: Evaluation/methodology—multi-objective
evaluation

General Terms
Algorithms

Keywords
Multi-Objective Optimization of Data Mining, Feature Se-
lection, Music Information Retrieval

1. INTRODUCTION
Music classification is one of the major topics in the Mu-

sic Information Retrieval (MIR) [Ras and Wieczorkowska,
2010] research field. Its target is to create the categorization
models which label the given music data depending on the
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previously extracted and analyzed features. Several steps re-
quired for performing this process are depicted in Figure 1.

The starting point for any classification approach is the
calculation of the numerical characteristics of the given data.
Signal analysis transforms, extraction of spectral and time
domain characteristics [Peeters, 2004, Lartillot and Toivi-
ainen, 2007] or high-level harmony analysis [Müller and Ew-
ert, 2010] are examples of the methods involved in this step.
After gathering the raw features, different processing steps
are required: normalization, substitution of undefined val-
ues, time series analysis for feature consolidation etc. Some
of the algorithms reduce the data amount, e.g. in the course
of a principal component analysis. Other may even create
new dimensions, e.g. calculation of derivatives or moments
of feature series. The last and often most visible step is the
training and application of classification models. They can
be created either by supervised learning guided by the given
ground truth (labeled data), or by unsupervised algorithms,
e.g. clustering.

Previous works in music feature selection confirmed the
suggestion that too large features sets not only slow down
the classifiers, but also diminish the obtained quality ([Va-
tolkin et al., 2009, Bischl et al., 2010]). Pursuing two aims—
e.g. high quality and low feature set size—at the same time
naturally brings up the idea to apply a multi-objective opti-
mization algorithm. There are many other interesting objec-
tive tradeoffs depending on the actually chosen application
scenario. We therefore investigate the potential of multi-
objective feature selection in two different scenarios and also
aim at generalizing the findings of our experimental analysis
to rules-of-thumb which may be useful for other researchers.

We are firstly going to provide some background in music
feature selection, taking into account related approaches and
evaluation metrics. Next, we discuss different application
scenarios that may be worthwhile investigating from a multi-
objective perspective. This is followed by the setup of our
experimental study, and the discussion of results obtained
for both scenarios.

2. MUSIC FEATURE SELECTION
The number of available music descriptors - either ex-

tracted from the audio signal or e.g. based on the metadata
/ playlist analysis from the web - is very large and grow-
ing continuously. On the other side, the music categories to
learn may be very different even for the genres, from ‘classic
against pop’ to specific music styles (‘progressive symphonic

411



Figure 1: Algorithm Chain in Music Classification

death metal’) or user-specific personal categories like ‘per-
sonal favourites’, ‘car driving’ or numerous available Last.fm
tags. To enable high performance of the classification models
it becomes challenging to select the most important features
for the concrete classification task: e.g. the temporal and
rhythmic characteristics or the harmonic descriptors may
play a role or be completely meaningless depending on the
defined category. Another target is to reduce the number of
the noisy or highly correlated and thus redundant features.
Finally, the smaller feature sets lead to reduced storage and
processing time as well as an accelerated classification.

2.1 Related Approaches
For non-trivial classification tasks, feature selection by

means of evolutionary algorithms provides a valuable alter-
native to simple greedy methods as these fail or request a
large number of evaluations. Feature selection by genetic
algorithm for different classification tasks was applied in
[Raymer et al., 2000]. Some ideas concerning the design of
hybrid evolutionary feature selection methods are discussed
in [Zhu et al., 2010]. A general and detailed methodology of
feature selection techniques is introduced in [Guyon et al.,
2006]. However, these methods are still rarely applied in
music categorization, let alone investigated in detail. In
[Fujinaga, 1998], a genetic algorithm was applied as feature
selection technique for instrument identification. A hybrid
approach was investigated in [Vatolkin et al., 2009] and it
was stated that the classification with full feature sets led to
a significant decrease of decision tree performance. The best
found feature sets formed a compromise between very small,
not sufficient, and larger feature groups. In [Bischl et al.,
2010], further improvements have been suggested (asym-
metric mutation, success rule adaptation, greedy heuristics
etc.) and several algorithms have been compared. Another
approach incorporated the generation of very large feature
sets optimized for the different music categories by means of
genetic programming [Mierswa and Morik, 2005].

2.2 Evaluation Metrics
The performance of the applied feature selection method

must be thoroughly measured. Keeping in mind the special
case of music classification evaluation, we propose the fol-
lowing categorization of convenient metrics which are to be
optimized with a multi-objective approach.

Common quality-based metrics are calculated based
on the confusion matrix data. Often used measures are ac-
curacy, precision, recall, specificity and f-measure. Let TP
be the number of true positives (music songs which belong
to the category and classified as belonging to it), TN the
number of true negatives (songs not belonging to category
and classified as not belonging to it), FP - false positives
(songs not belonging to category but classified as belonging

to it) and FN - false negatives (songs belonging to cate-
gory but classified as not belonging to it). The following
formulas describe the measures which are optimized in our
experimental study:

recall =
TP

TP + FN
(1)

specificity =
TN

FP + TN
(2)

accuracy =
TP + TN

TP + FP + TN + FN
(3)

Especially the expectations on the balance between the
performance on positive and negative examples can differ
(see Sect. 3). If the given data is strongly unbalanced—
which can be the case for large music collections—metrics
from medicine applications can be valuable [Sokolova et al.,
2006].

Specific quality-based metrics are useful for applica-
tions that do not allow to measure performance directly or
where specific aspects of the task shall be examined, e.g.
song segmentation [Lukashevich, 2008] or audio synchroni-
sation [Fremerey et al., 2010] evaluation measures. For the
music genre and category classification the design of new
metrics can be also promising. Consider an automatic rec-
ommendation system that presents the sorted playlist to sev-
eral users at once (e.g. on the dancefloor). Here, the mea-
sured diversity of the songs in a given time interval becomes
very important, so that the most of the audience (which may
have different tastes) is satisfied.

Resource metrics consider algorithm hardware demands.
Dealing with runtime and storage requirements is unavoid-
able if music classification is employed in practice. However,
they are not easily measured. Even if the runtime is given
in some works, it is almost impossible to compare the re-
sults across different studies because of the broad variety of
available hardware. Even on the same machine, a metric
can provide different results depending on CPU load from
operating system activities. One possibility is to use profil-
ing software as used e.g. in [Seppänen et al., 2006] for the
calculation of CPU cycles during beat tracking.

Model complexity metrics measure the balance be-
tween the highly aligned and possibly overfitted complex
models against more simple classification models which are
better suited for general performance. One of the easiest
possibilities is to measure the rate of the selected features.
Let N be the number of all and m of selected features. Then:

feature rate fr =
m

N
(4)

The models built with a very large feature number tend
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to be overfitted and also may require larger efforts to ap-
ply them on uncategorized data. The comparison of the
metric on training and test sets can measure the general
performance of the model. Classifier-specific measures can
be defined: e.g. for SVM, a successful approach for the op-
timization of tradeoff between the maximization of the sep-
arating margin and the minimization of the training error
number was developed in [Mierswa, 2007].

User interaction metrics are useful if interaction with
users or their influence on the classification must be eval-
uated. Since only a small part of the music classification
studies deals with this metric group, the measures are often
(re-)defined for particular applications, making it hard to
compare the performance across multiple investigations. An
extensive list is of these metric is provided in [Liu and Hu,
2010]. If user interaction is considered, the classifier system
may ask the user for the rating of songs where the direct cat-
egorization is doubtful. This is e.g. useful for songs which
belong to clusters which are not contained in the training
examples. So the tradeoff between classification quality and
the number of user interactions can be measured.

3. MULTI-OBJECTIVE APPROACH
The above discussed metric groups with often contradic-

tory targets enable a multi-objective evaluation. The trade-
off between low computation time against high accuracy can
be considered, or the general performance of the classifica-
tion models can be positioned against the quality-based mea-
sures. Even if only the confusion matrix-based measures are
taken into account, they may be fairly uncorrelated as was
shown in [Vatolkin, 2010] for music classification tasks.

The balance between surprise effect and safety can dif-
fer between listeners. A classification model recommending
only user-preferred songs (with the highest true negative
rate) can be unacceptable for another listener who wants to
be surprised by slightly different music from time to time.
It can become boring if the algorithm with the highest ac-
curacy recommends too many songs from the same album
or artist — the similarity criterion can reach the ceiling of
its advantage for a human listener.

The impact of algorithm runtime and memory demands
differs from application to application: if the classification
must be run on mobile devices, the limited capacities and
processor power must be beared in mind [Blume et al., 2008].
Or consider again the automatic song structure identifica-
tion: this task can be done offline on a server farm run by a
music vendor or must be done in real time if applied to songs
played by less known bands or during a live performance.

Especially the human aspects can lead to further promis-
ing evaluation criteria: if a listener is willing to adjust the
models by interaction then an active learning scheme can
be applied [Huang et al., 2008]. For this case, less pow-
erful models with little training can be suitable. On the
other hand, rating music for a long time is tiring. A lis-
tener who wants an algorithm to learn a personal category
may decide between the lower number of training examples
and the higher accuracy based on a larger number of exam-
ples which must be provided to the classification software.
Since it requires more effort to find negative (and also not
similar!) examples during category learning, lower accuracy
results can be also accepted if one-class learning methods
are applied [Tax, 2001].

The real situation is even worse: if we run the empirical

studies and demonstrate that a certain method chain with
certain parameter settings is the first choice for some com-
bination of useful metrics, it will not help a certain user or
decision maker because her or his preferences may be very
different. This aspect is rarely mentioned in current research
on music classification and we hope that it will gain more
attention in future.

Application of multi-objective optimization to music clas-
sification seems to be fairly unexplored until present. If we
take a sight out of MIR but remain in the data mining area,
some publications are available. The multi-objective sce-
nario for the evaluation of feature selection in three different
data sets (physical, medicine and texture) is investigated in
[Reynolds et al., 2010]. Multi-objective tuning of classifiers
is applied in [Mugambi and Hunter, 2003] for decision trees
and in [Mierswa, 2007] for Support Vector Machines (SVM).
Strategies for avoiding model overfitting and complexity are
developed in [Radtke et al., 2009, Mierswa, 2007].

4. EXPERIMENTAL STUDY DESIGN

4.1 Classification Tasks
We selected 6 AllMusicGuide genres and categories (sorted

by increasing complexity): Classical, Pop, Rap, Heavy Metal,
Electronic and R&B. The complexity was measured by the
mean accuracy after a large number of classification trials
with randomly selected features. Each categorization task
was binary: e.g. classical music pieces against all other songs.

The classification models were built from the 20 or 10
music tracks which represented the corresponding category.
These comparatively small sets were motivated by the ap-
plication situation - the user does not want to adjust the
classification system for a long time, and, on the other side,
human listeners can capture very well the music style from
a small number of examples.

The trained models were optimized on a set of 120 music
tracks randomly chosen from 120 music albums1. Although
the performance progress against the evaluation number on
this optimization set can be clearly seen, the more important
criterion is the performance on the independent test set that
was not involved in the feature selection procedure. For the
test set we used also 120 songs from the same albums, but
disjoint from the ones used for training. The idea to use a
test set instead of the common known cross-validation eval-
uation is discussed in [Fiebrink and Fujinaga, 2006] in terms
of music classification; this work is motivated by general dis-
cussion of the overfitting danger from [Reunanen, 2003].

4.2 Algorithm Setup
We employed an initial 286-dimensional audio feature vec-

tor with temporal, spectral, phase domain and cepstral char-
acteristics. Some of these are low-level (e.g. zero-crossing
rate or spectral centroid), other correspond to the high-
level musical descriptors (tempo, chroma harmony statis-
tics, tonal centroid etc.). Most features are described in
detail in [Peeters, 2004, Müller and Ewert, 2010, Martin
and Nagathil, 2009] and the user manual of the MIR Tool-
box [Lartillot and Toiviainen, 2007] and have been extracted
with AMUSE framework [Vatolkin et al., 2010].

1http://ls11-www.cs.tu-dortmund.de/rudolph/
mi#music test database
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Figure 2: All solutions evaluated on the test set for
category Heavy Metal

After the initial extraction, we replaced undefined values
by the mean and selected only the time frames from the
middle between the onset events. Then mean and standard
deviation were calculated for each feature dimension over 4
second partitions with 1/2 overlap, so that the final feature
set cardinality was increased to 572.

Four classification methods were used for the model train-
ing: decision tree C4.5, Random Forest (RF), Naive Bayes
(NB) and SVM with linear kernel [Bishop, 2006]. Tuning of
the classifier parameters was not the target of our investiga-
tions; however it was important in our opinion to distinguish
between several classification methods. Some algorithms
such as decision trees have already integrated feature selec-
tion techniques, other (SVM) increase the dimensionality of
feature space. Therefore we expected different performance
characteristics during the feature selection process.

For the multi-objective feature selection we implemented
the S-Metric Selection Evolutionary Multiobjective Algo-
rithm (SMS-EMOA) [Beume et al., 2007]. The population
size was set to p = 30 individuals. The number of the evalua-
tions was limited to 5000 and we run r = 5 repeats for each
combination of category task, classification algorithm and
target metrics. These restrictions were made because of the
long optimization runs: training and evaluation of one clas-
sification model requires up to about 30 seconds depending
on classification method and feature number. Asymmetric
mutation [Jelasity et al., 2007] was applied with p01 = 0.1
and the mutation bit probability γ = 32/N , N = 572. The
initialization was done randomly.

The following two-objective cases have been considered:
• (a) Optimization of recall (1) and specificity (2)
• (b) Optimization of accuracy (3) and the rate of the

selected features (4)

5. DISCUSSION OF RESULTS

5.1 Overall Performance on the Test Set
Fig. 2 contains an example plot of all solutions generated

during all runs for one category. C4.5 runs are marked by
blue circles, RF by red squares, NB by green diamonds and
SVM by yellow triangles. The plot describes the structure of
the optimization problem. It can be seen, that the increasing
number of the selected features leads to an accuracy drop;
the best accuracies are achieved for feature rates below 5

Table 1: N(X ,Y), in percent (X : classifiers in rows;
Y: classifiers in columns)

Recall vs. Specificity

C4.5 RF NB SVM
C4.5 x 31.22 75.33 20.27
RF 1.07 x 8.95 0
NB 0 0.03 x 0.02
SVM 5.68 3.00 63.47 x

Accuracy vs. Feature Rate

C4.5 RF NB SVM
C4.5 x 19.61 55.3 49.71
RF 7.41 x 38.5 33.33
NB 0 0.01 x 8.15
SVM 0.12 29.47 0.45 x

percent. This underlines the statement that the classifica-
tion algorithms are overstrained by too much features.

For the further discussion of results we concentrate only
on the individuals of the last population after 5000 SMS-
EMOA evaluations. Because of the metric calculation on
the independent test set it can not be guaranteed, that these
solutions contain also all non-dominated solutions - but they
are presented to the decision maker after the optimization,
and they help to understand the generalization performance
of the SMS-EMOA-driven feature selection.

For the comparison of performance across the different
classifiers we can calculate the non-dominance relation be-
tween the solutions of two algorithms. Let xi be the i-th
solution of the last front of the classifier X and yj the j-th
of the classifier Y. Then we can calculate the mean percent
number of solutions generated by classifier Y which domi-
nate the mean solution of classifier X :

N(X ,Y) :=
1

p · r ·
p·r∑
i=1

 1

p · r ·
∑

j∈{1,...,p·r};xi≺ yi

1

 (5)

Table 1 lists the N(X ,Y)-relation of classifiers for cate-
gory Heavy Metal 2. It is interesting to see for recall and
specificity optimization runs, that no single SVM solution
dominates RF solutions of the last five fronts. The same
holds for C4.5 and NB. Due to the stochastic characteristics
of optimization runs one can not guarantee, that a certain
classifier will always outperform another one: e.g. 31.22% of
RF solutions dominate on average the mean C4.5 solution;
however some C4.5 solutions exist which dominate RF, even
if the correspoding N(X ,Y) = 1.07 is rather small.

If we average the N(X ,Y)-values over the rows of the

Table 1, we shall get N̂(X ) ∈ [0; 1], which measures approx-
imately, how often the solutions of the current classifier X
are dominated by the other classifier solutions (6), c = 4

is the number of classifiers. N̂(X ) = 0 means: it can be
expected, that the classifier solutions are not dominated by
any solutions of other classifiers.

N̂(Xi) :=
1

c− 1
·

∑
j∈{1,...,c}\i

N(Xi,Yj) (6)

2Further tables and figures: http://ls11-www.cs.tu-
dortmund.de/ media/rudolph/gecco2011supplementary.zip
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Table 2: N̂(X ), in %; n: music category number
Recall vs. Specificity

C4.5 RF NB SVM
Classical 12.88 7.63 24.95 6.69
Pop 22.83 1.1 2.43 3.76
Rap 24.81 6.23 5.99 1.51
Heavy Metal 42.28 3.34 0.02 24.05
Electronic 35.8 9.23 6.4 0.05
R&B 6.39 3.61 4.19 14.00
1
n
·
∑n

i=1 N̂(Xi) 24.17 5.19 7.33 8.34

Accuracy vs. Feature Rate

Classical 19.44 15.64 8.49 8.98
Pop 41.06 11.52 2.14 6.2
Rap 18.3 16.77 2.13 8.06
Heavy Metal 41.54 26.41 2.72 10.01
Electronic 32.05 20.85 1.96 3.95
R&B 47.83 28.4 0.11 19.34
1
n
·
∑n

i=1 N̂(Xi) 33.37 19.93 2.93 9.42

The results in table 2 summarize N̂(X ) for all categories.
Since no zero entries are existing and no clear winner can
be seen, we conclude that it makes sense to involve several
different classifiers during the feature selection process. An-
other observation is that the ‘best’ algorithms are not always
the same for the different optimization tasks for a certain
category. After the averaging of the results across all cate-
gories, NB, RF and SVM provide the best contribution to
the non-dominated solutions, followed by C4.5.

5.2 Best Fronts on the Test Set
Figs. 3 and 4 list only the non-dominated solutions from

the last populations over 5 repeats. For the optimization of
recall and specificity, it can be clearly distinguished between
the complexities of the different categories. However, it is
very difficult to name the best classification methods: e.g.
RF is required for the recall-high regions of the Pareto front
for the most simple category Classical as well as for the
rather complex R&B. The same region is dominated by NB
solutions for Pop and Electronic. The central regions of
the Pareto fronts contain often either NB solutions (as for
Heavy Metal and R&B) or SVM (Rap, Electronic, Pop).
C4.5 seems to be the worst algorithm and achieves rather
seldomly the best front. It can be also observed, that RF
solutions often outperform C4.5 concerning recall, whereas
some single C4.5 tree models are usually better than RF
concerning specificity except for Rap.

The classifier impact can differ depending on optimization
criterions: e.g. for Electronic and accuracy vs. feature rate
the largest part of the Pareto front is specified by NB solu-
tions; for recall vs. specificity it is dominated by SVM. NB
and SVM are often the only members of the Pareto front for
more complex categories for accuracy vs. feature rate runs.
However the ‘complexity’ ranking is not easy - if the opti-
mization process is applied for a new user-predefined cate-
gory, it is very hard to recommend the choice of appropriate
classifiers.

5.3 Analysis of Selected Features
Of course, we are also interested in the concrete features

chosen during optimization. If a robust feature set with sta-

Figure 5: Selected features after the optimization.
Both upper subfigures: accuracy vs. feature rate
runs; both bottom subfigures: recall vs. specificity

ble best performance over different categories can be found,
further optimization of feature selection does not make sense
any more. However Fig. 5 underlines another situation.
Here we calculated how often the features have been selected
for different categories and different classifiers across all cor-
responding runs. The highest selected rates are marked by
dark red color. The frequently selected features are not the
same for the different categories and classification methods.
For the latter, some of them are more or less equally dis-
tributed among all classifiers, and some of them are prefer-
able for particular methods. E.g. the mean of the 5th fluctu-
ation pattern characteristic (ID 547) is often selected by RF
and SVM; NB selected frequently the standard deviation of
MFCC 1 (ID 84) and the standard deviation of the 1st bark
scale magnitude (ID 186).

For the recall vs. specificity runs, the differences are not
that evident. Here, feature number reduction was not a
target in the optimization process, and it seems that many
different features are responsible for the creation of tradeoff
solutions. Again, no clear tendencies for the feature role in
the categorization can be seen.

6. SUMMARY AND OUTLOOK
In our experimental study we applied a multi-objective

approach to feature selection for several different music cat-
egorization tasks. The analysis of the Pareto fronts after the
large number of SMS-EMOA evaluations supports the sug-
gestion that the calculation of at least two objectives makes
sense for these tasks. No clear winner can be stated for the
four classification methods; all of them produce contribu-
tions for Pareto fronts for at least some of the categories.
However, by leaving out C4.5, not much quality would be
lost. The selected features are also different depending on
category and classifier. Therefore, it is reasonable to apply
feature selection each time a listener defines a new category
and wishes to optimize the preferred metrics.

In future, we want to investigate further metric combi-
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Figure 3: Non-dominated solutions of the last populations. Best fronts for each classifier across all repeats
are marked by lines. The Pareto front built from all runs is marked by thick dashed line
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Figure 4: Non-dominated solutions of the last populations. Best fronts for each classifier across all repeats
are marked by lines. The Pareto front built from all runs is marked by thick dashed line
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nations (cf. Sect. 2.2). The optimization of more than
two objectives is another promising approach. Other pos-
sibilities are to adjust the parameters of the classification
chain – enlarge the feature number, tune the classification
method parameters, or solve other tasks such as instrument
or harmony recognition. Since the application area of the
multi-objective optimization for music data analysis tasks
is currently not investigated in detail, we hope that we can
motivate other researchers from both MIR and optimization
domain to explore it further.
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