
Interactive Evolution for the Procedural Generation of
Tracks in a High-End Racing Game

Luigi Cardamone
Dipartimento di Elettronica e

Informazione
Politecnico di Milano
Milano 20133, Italy

cardamone@elet.polimi.it

Daniele Loiacono
Dipartimento di Elettronica e

Informazione
Politecnico di Milano
Milano 20133, Italy

loiacono@elet.polimi.it

Pier Luca Lanzi
Dipartimento di Elettronica e

Informazione
Politecnico di Milano
Milano 20133, Italy

lanzi@elet.polimi.it

ABSTRACT

We present a framework for the procedural generation of
tracks for a high-end car racing game (TORCS) using inter-
active evolution. The framework maintains multiple pop-
ulations and allow users to work both on their own pop-
ulation (in single-user mode) or to collaborate with other
users on a shared population. Our architecture comprises
a web frontend and an evolutionary backend. The former
manages the interaction with users (e.g., logs registered and
anonymous users, collects evaluations, provides access to all
the evolved populations) and maintains the database server
that stores all the present/past populations. The latter runs
all the tasks related to evolution (selection, recombination
and mutation) and all the tasks related to the target racing
game (e.g., the track generation). We performed two sets of
experiments involving five human subjects to evolve racing
tracks alone (in a single-user mode) or cooperatively. Our
preliminary results on five human subjects show that, in all
the experiments, there is an increase of users’ satisfaction
as the evolution proceeds. Users stated that they perceived
improvements in the quality of the individuals between sub-
sequent populations and that, at the end, the process pro-
duced interesting tracks.

Categories and Subject Descriptors

K.8 [Personal Computing]: Games

General Terms

Experimentation, Design

Keywords

Interactive Genetic Algorithms, Racing Games, Procedural
Content Generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

1. INTRODUCTION
The automatic generation of game content has been a cen-

tral issue for the game industry since the early 1980s, when
the limitation of existing platforms did not allow the distri-
bution of large amounts of pre-designed content (typically
game levels). Accordingly, ad-hoc algorithmic procedures
were widely applied to generate game content on-the-fly, so
as to provide infinite levels of fun [13], and the field of Pro-
cedural Content Generation (or PCG) was born. Nowadays,
this area has become crucial as most commercial games re-
quires huge amounts of game content which would be un-
bearable for human designers (see for instance the infinite
universes of Eve Online1).

In the recent years, several researchers have investigated
the application of evolutionary methods for the automatic
discovery of innovative and interesting game content. In this
area, dubbed Search-Based Procedural Content Generation
(SB-PCG) [25], the quality assessment of the evolved content
is probably the most critical issue. So far, two approaches
have been proposed in the literature (e.g., [22, 26]). Theory-
driven approaches rely on domain experts who design ad-
hoc heuristics (typically inspired to a theory of fun [12]) to
measure the quality of game content; a limitation of these
approaches is that such heuristics are typically difficult to
implement and often biased toward the underlying theory.
In contrast, data-driven approaches exploit huge collection
of game data to build a predictive model to evaluate the
quality of unseen content. These approaches have two major
drawbacks in that (i) the data collection phase is typically
time-consuming, as it may involve several players, and (ii)
building an accurate model of players’ satisfaction is usually
challenging.

In this work, we take a completely different approach and
investigate the application of interactive evolution for SB-
PCG in the realm of car racing games. This is a rather pop-
ular game genre in which the content plays a key role for the
commercial success of the title (see for instance, Trackmania
by Nadeo2 and rFactor by Image Space Inc.3). For this rea-
son, the genre recently attracted the interest of researchers
who applied methods of SB-PCG to evolve different types
of content such as competitive driving behaviors [4], racing
lines [5], and tracks [22, 15].

Our approach investigates the human-assisted generation
of racing tracks for a high-end racing game (TORCS [1]);

1http://www.eveonline.com/
2http://www.trackmania.com
3http://www.rfactor.net

395

it is inspired to the early work of [22, 15], who applied SB-
PCG to a simple 2D game [22] and to a high-end racing game
[15] to evolve racing tracks which could either fit a target
player profile [22] or provide a large degree of diversity [15].
Both [22, 15] assess the quality of game content using sev-
eral statistics collected during one or more races involving
non-player characters (or bots). In contrast, in this work,
users define what they consider interesting game content and
employ interactive genetic algorithms to search for the rac-
ing tracks they like most. For this purpose, we developed
a framework which enables the interactive evolution of rac-
ing tracks both by single users, working alone on their own
population, and by a community of users sharing (a typ-
ically much larger) population. Our framework comprises
one web frontend and an evolutionary backend. The fron-
tend is responsible for (i) managing the interaction with the
users, (ii) rendering active populations, (iii) collecting users’
evaluations, and (iv) maintaining the database of evolv-
ing/evolved populations. The evolutionary/gaming backend
is in charge of (i) generating the content for the actual tar-
get game, (ii) performing all the evolutionary tasks (selec-
tion, recombination, and mutation) on all the currently ac-
tive population. The partitioning between a web/database
dedicated frontend and an evolutionary/gaming dedicated
backend has been mainly introduced both (i) to improve the
load-balancing between the generally light-weighted user in-
terface related tasks and the CPU demanding evolutionary
and game related tasks, but also (ii) to improve the frame-
work portability (in fact, game executables usually require
libraries that are not generally available on the most typi-
cal webservers). We validated our framework by performing
two sets of experiments involving five human subjects, four
different single-user setups and one cooperative multi-user
setup. Our preliminary results show that, in all the experi-
ments, there is an increase of users’ satisfaction as the evo-
lution proceeds. Users stated that they perceived improve-
ments in the quality of the individuals between subsequent
populations and that, at the end, the process produced in-
teresting tracks.

2. SEARCH-BASED PROCEDURAL

CONTENT GENERATION
Procedural Content Generation (PCG) dates back to the

early 1980s when simple algorithmic procedures were ap-
plied to generate huge, possibly infinite, amount of game
content with very limited resources. Some of the early ex-
amples in this area are represented by the games Rogue4,
Elite5, and MidWinter6. Nowadays, although the memory
limitations are long forgotten, procedural content generation
is still widely used both to reduce the design costs and to
generate those immense scenarios which would be infeasible
for human designers. Recent examples include [2], Diablo,
Diablo II in which maps were procedurally generated on-
the-fly; and Eve Online which involves a universe generated
using fractal methods.
Search-Based Procedural Content Generation (SB-PCG)

extends PCG by replacing the handcrafted human design
with search-based (usually evolutionary computation) meth-
ods [25]. Early examples in this area include the work of

4http://en.wikipedia.org/wiki/Rogue (computer game)
5http://en.wikipedia.org/wiki/Elite (video game)
6http://en.wikipedia.org/wiki/Midwinter (video game)

Hastings et al. [9] who applied a modified version of NEAT
[20], NEAT Particles, to interactively evolve complex and
interesting graphical effects to be embedded in computed
games so as to enrich their content. The work was extended
in [10] where the authors introduced the game Galactic Arms
Race and provided the first demonstration of evolutionary
content generation in an on-line multi-player game. Marks
and Hom [16] were the first to evolve a set of game rules
to obtain a balanced board game which could be equally
hard to win from either side and rarely ended with a draw.
Togelius et al. [22] combined procedural content generation
principles with an evolutionary algorithm to evolve racing
tracks for a simple 2D game which could fit a target player
profile. Togelius and Schmidhuber [23] evolved complete
rule sets for games. The game engine was capable of rep-
resenting simple Pacman-style games, and the rule sets de-
scribed what objects were in the game, how they moved,
interacted (with each other or with the agent), scoring and
timing. Frade et al. [7] applied Genetic Programming to
the evolution of terrains for games which would attain the
aesthetic feelings and desired features of the designer. The
approach is currently employed in the game Chapas7. More
recently, Togelius et al. [24] applied multi-objective evo-
lution to evolve maps for StarCraft using a set of fitness
functions evaluating the player’s entertainment. Sorenson
and Pasquier [19] presented a generative approach for level
creation following a top-down approach and validated it us-
ing Super Mario Bros. and a 2D adventure game similar to
the Legend of Zelda8.

3. INTERACTIVE EVOLUTION FOR

GAME CONTENT GENERATION
Interactive evolutionary algorithms measure the fitness of

individuals through the interactions with users. Accord-
ingly, these methods are typically applied to problems for
which a computable fitness function is difficult or even im-
possible to define [21]. On the other hand, interaction with
humans brings new challenges such as users’ fatigue. For in-
stance, Takagi [21] presents a review of the research efforts
for abating fatigue in interactive evolutionary systems; Llorà
et al. [14] introduced an addition synthetic fitness function
to reduce the number of users’ evaluations; Gong et al. [8]
apply clustering to reduce the initial population size.

Interactive evolution has been applied to a wide range of
domains including the generation of HTML styles [17]; fash-
ion design [11]; ergonomic design [3]; the generation of ter-
rains and landscapes [27], synthetic images [18], music [28],
and art in general. To the best of our knowledge, Galactic
Arm Race (GAR) [10] is the only application of interactive
evolution to the generation of game content. Galactic Arms
Race is a multiplayer online video game driven by methods of
automatic content generation. It features a unique weapon
systems that automatically evolves based on players’ behav-
ior through a specialized version of the NEAT evolutionary
algorithm called cgNEAT (content-generating NeuroEvolu-
tion of Augmenting Topologies) [10].

7https://forja.unex.es/projects/chapas
8Miyamoto, S., Nakago, T., Tezuka, T.: The Legend of
Zelda. Nintendo (1986)

396

4. OUR FRAMEWORK
The structure of our interactive evolutionary system is de-

picted in Figure 1. The systems consists of two servers. The
web frontend (i) manages the interaction with the users, (ii)
renders active populations, (ii) collects evaluations of the
users, (iii) maintains the database of evolving/evolved pop-
ulations, and (iv) updates the request queues for the evolu-
tionary backend. The evolutionary backend runs (i) all the
evolutionary operators (selection, recombination, and mu-
tation) on the currently active populations, (ii) the gen-
eration of actual game content (i.e., the mapping proce-
dures between genotypes and phenotypes), and (iii) any
other TORCS-related procedure such as the rendering of
the track thumbnail pictures, which requires the invoca-
tion of a TORCS executable. The partitioning between a
web/database dedicated frontend and an evolutionary ded-
icated backend was mainly introduced to improve the load-
balancing between the generally light-weighted user inter-
face related tasks and the CPU demanding evolutionary and
TORCS related tasks. In addition, since TORCS executa-
bles require libraries that are not generally available on the
most typical webservers, we decoupled the the web-related
application from the TORCS-related applications also to
make our system portable to more hosting services.

4.1 The Frontend User Interface
People can access the framework using a browser by log-

ging in either as registered or anonymous users, and can
request either to start/join a single-user session or to join
an active multi-user session.
Registered users are fully tracked and thus can (i) save the

state of an active evolutionary process, (ii) continue a previ-
ously saved process, and (iii) explore all their history (e.g.,
all the populations they evolved, all their preferences). In
contrast, anonymous users are only tracked using browsers’
cookies so that the status of their evolutionary process is lost
as soon as the browser cookies are cleared or they connect
from a different machine.
In single-user mode, users have the complete control over

the evolutionary process in that (i) they can customize the
parameter set up by specifying the population size, the se-
lection policy (tournament or truncation), etc. (ii) they
can evaluate all the individuals in the population, and (iii)
they can request the next selection, recombination, muta-
tion cycle. As an example, Figure 2 shows the interface for
a single-user evolution. The upper section of the interface
includes all the commands available to the user: Evolve re-
quests the next selection, recombination and mutation step
to the evolutionary backend and then updates the current
page with the new population; Reset restarts the evolution
from scratch (all the previous populations are stored and a
new random population is generated); Generations provides
access to the data of all the previous generations.
The lower section of the interface depicts the current pop-

ulation and, for each track, it shows (i) the track thumbnail
and (ii) its scoring interface. In particular, the framework
provides two scoring interfaces (Figure 3): a ranking inter-
face (see Figure 2 and Figure 3a) which asks users to rank
an individual with an integer between 1 and 5; a like/dislike
interface (Figure 3b), which asks users simply whether they
like the track.
In multi-user mode, users have very limited control over

the process in that they are only allowed (i) to explore and

evaluate a small number individuals, randomly selected from
the much larger underlying population, and (ii) to access the
hall of fame of the best individuals evolved so far. In this
mode, users cannot specify the parameters of the genetic
algorithm, nor they can request the activation of the evolu-
tionary cycle which is actually triggered by a heuristic based
on the number of evaluations received.

Figure 2: A screenshot of the User Interface.

Figure 3: Scoring interfaces: (a) the ranking inter-
face asks users to rank an individual with an integer
between 1 and 5; (b) the like/dislike asks users to
specify just whether they like the track.

4.2 The Evolutionary Backend
The backend runs of all the evolutionary and TORCS re-

lated tasks. It hosts a number of servers (labeled GA in Fig-
ure 1) each one listening to a separate request queue. GA
servers are mainly responsible of (i) running the selection,
recombination, mutation cycle; (ii) rendering the newly cre-
ated populations, which requires the execution of TORCS

397

Figure 1: Structure of the interactive evolutionary system.

applications; and (iii) updating the status of the evolution-
ary process on the main databases. A selection, recombina-
tion, mutation cycle can be requested either (i) explicitly, in
single-user mode, by the user through the Evolve command
on the main interface, (ii) implicitly, in multi-user mode, by
the GA server, when a sufficient number of evaluations for
the individuals in the population has been received. Note
that, for load balancing purposes, all the incoming requests
from the web frontend are queued so that each GA server can
explicitly manage the number of running processes. When
a new generation is required, a GA server first performs the
standard selection, recombination, and mutation; then, for
each one of the newly created individuals, the server runs a
TORCS executable that generates the actual TORCS track
(the phenotype), computes several track statistics, and ren-
der the track shape; finally the status on the database is
updated. Since TORCS executables tend to be CPU and
disk intensive, the GA server schedules the number of active
TORCS invocations based on the number of cores available
to avoid overloading the server.
GA servers implement a rather simple real-coded genetic

algorithm that accesses a population of tracks stored on a
remote database, using tournament or truncation selection,
single-point crossover, and mutation. When an infeasible
track is generated, it is discarded and another one is gener-
ated. In single-user mode, when very small population are
involved, the 10% of a new population is filled with randomly
generated tracks so as to avoid premature convergence.

5. TORCS
The Open Racing Car Simulator (TORCS) [1] is a state-

of-the-art open-source car racing simulator which provides
a sophisticated physics engine, full 3D visualization, several
tracks, car models, and game modes (practice, quick race,
championship, etc.). The car dynamics is accurately simu-
lated and the physics engine takes into account many aspects
of racing cars such as traction, aerodynamics, fuel consump-
tion, etc. All the experiments reported in this paper have
been carried out with TORCS 1.3.1.

6. TRACK REPRESENTATION

FOR CONTENT GENERATION
The encoding of game content is a central issue for Search-

Based Procedural Content Generation [25]. In this section,
we briefly describe the TORCS representation of tracks (the
phenotype), the encoding we designed (the genotype), and
the procedures to map genotypes into phenotypes.

The Phenotype. A track in TORCS is represented as an
ordered list of segments. Each segment is either a straight
or a turn. A straight is defined by just one parameter, its
length. A turn is defined by (i) the direction (i.e., left or
right); (ii) the arc it covers measured in radians; (iii) its
start radius and (iv) its end radius. In addition, the track
must be feasible, i.e., it must be closed, and therefore the
last segment must overlap the first segment.

The Genotype. The direct encoding of the track represen-
tation in TORCS into a genotype is infeasible as it would
result in a huge search space (thus leading to the curse of
dimensionality) containing only a tiny fraction of feasible
(closed) tracks. Accordingly, we used an indirect encoding
inspired to the work of Togelius et al. [22] on a simple 2D
car racing simulator. In [22], a track is represented as a set
of control points that the track has to cover; the track is
generated as a sequence of Bezier curves connecting three
control points and, to guarantee smoothness, have the same
first and second derivatives at the point they join. In this
work, we encoded a track as a sequence of control points
~p = {p1, . . . pn}, each one consisting of three parameters
ri, θi, and si; ri and θi identify the position of the control
point pi in a polar coordinate system (ri is the radial coor-
dinate, θi is the angular coordinate); si controls the slope of
the track tangent line in pi. Figure 4 shows an example of
our encoding: control points are depicted in red; the blue
dot represents the origin of the polar coordinate system; the
curves represent what generated by the genotype to pheno-
type mapping process, discussed in the next section.

398

Genotype to Phenotype Mapping. This procedure takes
as input the n control points ~p and returns a list ~t of track
segments in TORCS format. Initially, the polar coordinates
of the n control points (i.e., the ri and θi values) are used to
compute the ranges of feasible slope values for each control
point. If there exist a control point for which there are no
feasible slope values (thus it is not possible to joint the in-
coming and the outgoing segments in that point), no track
can be derived from ~p and therefore no track (a Null track)
is returned. Otherwise, given the ranges of feasible slope
values, the actual slope values are computed on the basis of
the si values. Next, for each pair of control points, pi and
pi+1, the corresponding TORCS segment is generated using
both the position and the slope values as constraints. Then,
the procedure tries to close the track by generating one or
more segments to connect tn−1 to t1. If the process suc-
ceeded, the resulting track ~t is returned otherwise a Null

track is returned.

Generating Closed Tracks. In general, it is not always
possible to connect the last and first control points with only
one segment and a sequence of straights and turns might be
needed. Accordingly, a procedure CloseTrack considers
the parameters defining the end and starting control points
pn and p1 and try different heuristics to generate a feasible
closed track.

Figure 4: Track encoded as a set of control
points(the red dots) represented in a polar coordi-
nate system; the blue dot is the system origin; the
solid line shows an example of a feasible slope gen-
erated by the genotype to phenotype mapping.

7. EXPERIMENTAL VALIDATION
We performed two sets of experiments involving five users

to provide an initial validation of the proposed framework.
In the first set of experiments, we focused on the single-user
mode and investigated how (i) the scoring interface (i.e., ei-
ther a ranking interface or a like/dislike interface) and (ii)
the selection policy (i.e., either tournament or truncation se-
lection) affect the quality of the evolutionary process. In the
second set of experiments, we studied the system working in
multi-user mode.

7.1 Single-User Mode
In the first set of experiments, we tested four different

configurations: (i) the ranking scoring interface combined
with tournament selection; (ii) the like/dislike scoring inter-
face combined with tournament selection; (iii) the ranking
scoring interface combined with truncation selection policy;
(iv) the like/dislike scoring interface combined with trun-
cation selection policy. For each configuration, we asked
five human subjects to complete ten generations of single-
user evolution using a population consisting of 20 individu-
als. During the experiments subjects did not know the type
of selection mechanisms in use (tournament or truncation).
Since subjects could access the system as registered users,
they were allowed to pause and restart the evolutionary pro-
cess as they wished (which, in principle, should have limited
their fatigue). However, our tests show that the evalua-
tion of a population with 20 individuals for 10 generations
would typically take around 20-30 minutes of actual time
(i.e., with no pause in between evaluations). To measure
the progress during the evaluation process, for each genera-
tion we computed the average score of the individuals in the
population as follows. When the ranking interface is used,
a integer value (i.e., a fitness) between 1 and 5 is assigned
to each track according to the user preferences. When the
like/dislike interface is used, a (fitness) value of 1 is assigned
to tracks the user does not like whereas a (fitness) value of
5 is assigned to tracks the user likes.

We first analyzed how the scoring method influences the
evolutionary process. For this purpose, we grouped all the
collected data based on the scoring method used. Figure 5
compares the average population scores for the runs using
the ranking interface (empty dots) and the like/dislike in-
terface (solid dots). Both curves show an improvement in
the users satisfaction as the number of generation proceeds.
The use of the simpler like/dislike interface appears to pro-
vide a more evident increase of the user satisfaction, whereas
the ranking interface results in a slight improvement over
time. This result was later confirmed by the feedback we
received by the subjects who stated they perceived the sim-
pler (like/dislike) interface as more effective to express their
preferences while they found it difficult to provide meaning-
ful/coherent overall rankings.

We performed a similar analysis to study how selection
may influence the evolutionary process. Accordingly, we
grouped all the collected data based on the selection method;
it is important to stress that, users did not know the selec-
tion method used during the experiments. Figure 6 com-
pares the average population scores for the runs using tour-
nament (empty dots) and truncation selection (solid dots).
Again both curves show an improvement in the users satis-
faction as the number of generation proceeds. In this case
however, there is no noticeable difference between the trials
using truncation or tournament selection, suggesting that
the selection mechanism had no influence on the users.

Overall, the feedback we received from the subjects was
generally positive. In most cases, users reported that they
perceived improvements in the quality of the individuals be-
tween subsequent populations. They also found that, at the
end, the process produced interesting tracks. As an exam-
ple, Figure 8 and Figure 9 show two of the most interesting
tracks evolved according to the users. The only criticism
we recorded concerned the ranked scheme which appears to
cause, sometimes, fatigue and frustration in the users. In

399

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8 9 10

A
V

E
R

A
G

E
 P

O
P

U
L

A
T

IO
N

 S
C

O
R

E

NUMBER OF GENERATIONS

RANKING

LIKE/DISLIKE

Figure 5: Average population score for the trials
using the like/dislike evaluation (solid dots) and the
ranked evaluation (empty dots). Curves are aver-
ages over 10 trials.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8 9 10

A
V

E
R

A
G

E
 P

O
P

U
L

A
T

IO
N

 S
C

O
R

E

NUMBER OF GENERATIONS

TOURNAMENT

TRUNCATION

Figure 6: Average population score for the trials us-
ing truncation selection (solid dots) and tournament
selection (empty dots). Curves are averages over 10
trials.

addition, users told us they would tend to be annoyed when
many very similar individuals appeared in the same popu-
lation.

7.2 Multi-User Mode
At the end, we performed a preliminary experiment to test

the multi-user mode. The experiment involved the same five
human subjects, participating in the previous experiments,
who in this case shared the same population; subjects could
not communicate one another in anyway while the exper-
iment was running. Given the limited number of subjects
involved, we used a population of only 20 individuals (the
same size used in the previous experiments) and thus al-
lowed all the subject to score all the individuals. Tracks
were evaluated using the simpler like/dislike interface; track
fitness was computed as the average score received from the
users; truncation selection was applied.
Figure 7 reports the average population score over the

number of generations. As in the single-user experiments,

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8 9 10

A
V

E
R

A
G

E
 P

O
P

U
L
A

T
IO

N
 S

C
O

R
E

NUMBER OF GENERATIONS

Figure 7: Average population score for one trial us-
ing like/dislike scoring and truncation selection.

the curve shows a clear improvement in the users’ satisfac-
tion, in fact, the number of likes increases as the evolution
proceeds, notwithstanding possible conflicting opinions that
the users have expressed.

8. CONCLUSIONS
We introduced a framework which exploits interactive evo-

lution for the human-assisted generation of tracks for a high-
end open-source car racing game (TORCS). The framework
comprises a web frontend which manages the interactions
with anonymous/registered users who can work on their
own population (in single-user mode) or can cooperate on
a shared population (in multi-user mode). An evolution-
ary backend manages both all the instances of interactive
genetic algorithms and all the tasks strictly connected to
the target racing game (e.g., the generation of the actual
in-game content, the rendering of the thumbnails needed by
the web frontend). We validated the initial prototype of the
framework with five human subjects who were asked to per-
form four single-user trials and one multi-user trial involving
all the subjects together. The preliminary feedback we re-
ceived was generally positive. In most cases, users perceived
improvements in the quality of the tracks between subse-
quent generations. Users also stated that, at the end, the
process produced some interesting tracks. The only criti-
cism we recorded concerned the evaluation interface which
requires to rank all the tracks. In fact, this seems to cause
fatigue and frustration in the users who did not feel com-
fortable in providing a complete ranking of all the tracks.
Users also told us that they tended to be annoyed, in later
generations, when many very similar individuals appeared
in the same population.

Our framework is still at a preliminary stage but the feed-
back we received, from the users who tried it, is very promis-
ing. At the moment, we are working on new features, which
the feedback we received suggested, that will also require
further validation with human subjects. First, we plan to
improve the rendering of populations by introducing a clus-
tering preprocessing to group together very similar track into
one single representative. This should alleviate the frustra-
tion we recorded when more copies of very similar tracks are

400

(a) (b) (c) (d)

Figure 8: First example of track evolved in single-user mode: (a) shape of the track as used during the
evolution; (b), (c), and (d) actual in-game renderings.

(a) (b) (c) (d)

Figure 9: Second example of track evolved in single-user mode: (a) shape of the track as used during the
evolution; (b), (c), and (d) actual in-game renderings.

shown. Second, we plan to add a sort of zooming operator
which would apply a local search to some selected individu-
als the user particularly likes. Finally, we plan to add nich-
ing mechanisms to multi-user evolution so as to maintain
higher degrees of diversity as the number of users and the
population size increases.
The next big step will be to make the framework publicly

available as a service for the TORCS community and also
for the communities of other related games such as Speed
Dreams9 and VDrift10. Our long term goal is to create
an on-line community which would make these open-source
games more attractive by enabling the generation of large
quantities of high-quality content. In our opinion, in fact,
the limited availability of game content is currently one of
the major limitations of most open-source games.

9. REFERENCES

[1] The open racing car simulator website.
http://torcs.sourceforge.net/.

[2] Procedural content generation.
http://pcg.wikidot.com/.

[3] A.M. Brintrup, J. Ramsden, H. Takagi, and A. Tiwari.
Ergonomic chair design by fusing qualitative and
quantitative criteria using interactive genetic
algorithms. Evolutionary Computation, IEEE
Transactions on, 12(3):343 –354, 2008.

[4] Luigi Cardamone, Daniele Loiacono, and Pier Luca
Lanzi. Evolving competitive car controllers for racing
games with neuroevolution. In GECCO ’09:

9http://www.speed-dreams.org
10http://vdrift.net

Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 1179–1186, New
York, NY, USA, 2009. ACM.

[5] Luigi Cardamone, Daniele Loiacono, Pier Luca Lanzi,
and Alessandro Pietro Bardelli. Racing line
optimization using genetic algoritms. In Proceedings of
the 2010 IEEE Conference on Computational
Intelligence and Games (CIG), pages 388–394,
Copenhagen, Denmark, August 18-21 2010. IEEE.

[6] Cecilia Di Chio, Stefano Cagnoni, Carlos Cotta, Marc
Ebner, Anikó Ekárt, Anna Esparcia-Alcázar,
Chi Keong Goh, Juan J. Merelo Guervós, Ferrante
Neri, Mike Preuss, Julian Togelius, and Georgios N.
Yannakakis, editors. Applications of Evolutionary
Computation, EvoApplicatons 2010: EvoCOMPLEX,
EvoGAMES, EvoIASP, EvoINTELLIGENCE,
EvoNUM, and EvoSTOC, Istanbul, Turkey, April 7-9,
2010, Proceedings, Part I, volume 6024 of Lecture
Notes in Computer Science. Springer, 2010.

[7] Miguel Frade, F. Fernandez de Vega, and Carlos
Cotta. Modelling video games’ landscapes by means of
genetic terrain programming - a new approach for
improving users’ experience. In Mario Giacobini et al.,
editor, Applications of Evolutionary Computing,
volume 4974 of LNCS, pages 485–490, Napoli, Italy,
2008. Springer.

[8] Dunwei Gong, Jie Yuan, and Xiaoping Ma. Interactive
genetic algorithms with large population size. In
Evolutionary Computation, 2008. CEC 2008. (IEEE
World Congress on Computational Intelligence). IEEE
Congress on, pages 1678 –1685, 2008.

401

[9] E. Hastings, R. Guha, and K.O. Stanley. Neat
particles: Design, representation, and animation of
particle system effects. In Proc. IEEE Symposium on
Computational Intelligence and Games CIG 2007,
pages 154–160, 2007.

[10] Erin J. Hastings, Ratan K. Guha, , and Kenneth O.
Stanley. Automatic content generation in the galactic
arms race video game. IEEE Transactions on
Computational Intelligence and AI in Games,
4(1):245–263, 2009.

[11] Hee-Su Kim and Sung-Bae Cho. Application of
interactive genetic algorithm to fashion design.
Engineering Applications of Artificial Intelligence,
13(6):635 – 644, 2000.

[12] Raph Koster. Theory of Fun for Game Design.
PARAGLYPH PRESS, 2005.

[13] John E. Laird and Jonathan Schaeffer, editors.
Procedural Level Design for Platform Games. The
AAAI Press, 2006.

[14] Xavier Llorà, Kumara Sastry, David E. Goldberg,
Abhimanyu Gupta, and Lalitha Lakshmi. Combating
user fatigue in igas: partial ordering, support vector
machines, and synthetic fitness. In Proceedings of the
2005 conference on Genetic and evolutionary
computation, GECCO ’05, pages 1363–1370, New
York, NY, USA, 2005. ACM.

[15] Daniele Loiacono, Luigi Cardamone, and Pier Luca
Lanzi. Automatic track generation for high-end racing
games using evolutionary computation. Technical
Report 2011.08, Dipartimento di Elettronica e
Informazione, Politecnico di Milano, 2011.

[16] Joe Marks and Vincent Hom. Automatic design of
balanced board games. In Jonathan Schaeffer and
Michael Mateas, editors, AIIDE, pages 25–30. The
AAAI Press, 2007.

[17] N. Monmarche, G. Nocent, M. Slimane, G. Venturini,
and P. Santini. Imagine: a tool for generating html
style sheets with an interactive genetic algorithm
based on genes frequencies. In Systems, Man, and
Cybernetics, 1999. IEEE SMC ’99 Conference
Proceedings. 1999 IEEE International Conference on,
volume 3, pages 640 –645 vol.3, 1999.

[18] Jimmy Secretan and Nicholas Beato. Picbreeder:
evolving pictures collaboratively online. In CHI, pages
1759–1768, 2008.

[19] Nathan Sorenson and Philippe Pasquier. Towards a
generic framework for automated video game level
creation. In Chio et al. [6], pages 131–140.

[20] Kenneth O. Stanley and Risto Miikkulainen. Evolving
neural network through augmenting topologies.
Evolutionary Computation, 10(2):99–127, 2002.

[21] H. Takagi. Interactive evolutionary computation:
fusion of the capabilities of ec optimization and
human evaluation. Proceedings of the IEEE,
89(9):1275 –1296, September 2001.

[22] J. Togelius, R. De Nardi, and S.M. Lucas. Towards
automatic personalised content creation for racing
games. In Proc. IEEE Symposium on Computational
Intelligence and Games CIG 2007, pages 252–259,
2007.

[23] J. Togelius and J. Schmidhuber. An experiment in
automatic game design. In Computational Intelligence
and Games, 2008. CIG ’08. IEEE Symposium On,
pages 111–118, Dec. 2008.

[24] Julian Togelius, Mike Preuss, Nicola Beume,
Johan Hagelbaeck Simon Wessing, and Georgios N.
Yannakakis. Multiobjective exploration of the
starcraft map space. In Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games,
pages 265–262, Copenhagen, Denmark, 18-21 August
2010., 2010. IEEE.

[25] Julian Togelius, Georgios N. Yannakakis, Kenneth O.
Stanley, and Cameron Browne. Search-based
procedural content generation. In Chio et al. [6], pages
141–150.

[26] Niels van Hoorn, Julian Togelius, Daan Wierstra, and
Jürgen Schmidhuber. Robust player imitation using
multiobjective evolution. In Proceedings of the IEEE
Congress on Evolutionary Computation, pages
652–659, Trondheim, Norway, 18-21 May 2009.

[27] P. Walsh and P. Gade. Terrain generation using an
interactive genetic algorithm. In Evolutionary
Computation (CEC), 2010 IEEE Congress on, pages 1
–7, 2010.

[28] Bin Xu, Shangfei Wang, and Xian Li. An emotional
harmony generation system. In Evolutionary
Computation (CEC), 2010 IEEE Congress on, pages 1
–7, 2010.

402

