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ABSTRACT
While the real-time focus of today’s automated accompani-
ment generators can benefit instrumentalists and vocalists in
their practice, improvisation, or performance, an opportu-
nity remains specifically to assist novice composers. This pa-
per introduces a novel such approach based on evolutionary
computation called functional scaffolding for musical com-
position (FSMC), which helps the user explore potential ac-
companiments for existing musical pieces, or scaffolds. The
key idea is to produce accompaniment as a function of the
scaffold, thereby inheriting from its inherent style and tex-
ture. To implement this idea, accompaniments are repre-
sented by a special type of neural network called a composi-
tional pattern producing network (CPPN), which produces
harmonies by elaborating on and exploiting regularities in
pitches and rhythms found in the scaffold. This paper fo-
cuses on how inexperienced composers can personalize ac-
companiments by first choosing any MIDI scaffold, then se-
lecting which parts (e.g. the piano, guitar, or bass guitar)
the CPPN can hear, and finally customizing and refining
the computer-generated accompaniment through an inter-
active process of selection and mutation of CPPNs called
interactive evolutionary computation (IEC). The potential
of this approach is demonstrated by following the evolution
of a specific accompaniment and studying whether listeners
appreciate the results.

Categories and Subject Descriptors: J.5 [Arts and
Humanities]: fine arts, music

General Terms: Algorithms

Keywords: Accompaniment Generation, Interactive Evo-
lutionary Computation (IEC), Compositional Pattern Pro-
ducing Networks (CPPNs), Music, NEAT

1. INTRODUCTION
An exciting application of computer technology to mu-

sic in recent years is accompaniment generation. Most such
systems compose in real-time by listening to a performance,
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computing a musical response, and performing with the mu-
sician. These systems learn or deduce musical structure on-
line or offline through probabilistic models, grammars, and
expert knowledge [10, 16, 23, 1]. Musical decisions, i.e. what
to play and when, are thus ultimately made by the program-
mers and algorithms. While such systems help performers
practice, improvise, and entertain, they focus less on assist-
ing novice composers to enhance their own creativity, which
is the topic of this paper.
Instead of forcing computers to make subjective decisions,

the proposed approach implements interactive evolutionary
computation (IEC), a process that lets the human, rather
than the computer, appraise accompaniments. In particu-
lar, a set of candidate accompaniments are presented to the
user, who rates each piece in the set. The next set is then
generated based on the preferred individuals of the previous
generation. That way, IEC turns the combination of the
user and computer into a team that collaborate to incremen-
tally enhance the accompaniment intuitively. However, the
success of IEC depends on the accompaniment’s represen-
tation; when the IEC search space of candidates is desolate
from poor representation, users quickly fatigue [22].
For that purpose, this paper introduces a method called

functional scaffolding for musical composition (FSMC) that
builds on an existing composition, or scaffold, to create
natural-sounding accompaniments evolved through IEC.
FSMC significantly extends a previous theory of accompa-
niment generation by Hoover and Stanley [8], which focused
exclusively on percussion accompaniment, by adding the
ability to generate harmonization. The main insight behind
FSMC is that different instrumental parts in musical com-
positions are functionally related to each other. Therefore,
if some parts are already given, then new parts (i.e. the ac-
companiment) can be generated as a function of the original
parts.
In particular, scaffolds are input to a type of artificial neu-

ral network called a compositional pattern producing net-
work (CPPN), which computes a function that transforms
the scaffold. The CPPN in effect manipulates the original
pitch and rhythmic patterns through function composition
[19] (which produces transformations) to generate realistic
accompaniment. Because CPPNs represent music as pat-
terns, i.e. as opposed to representing each note separately,
most outputs inherit at least some appealing qualities from
the scaffold. FSMC users thus can search accompaniment
space effectively without experiencing too much fatigue. Be-
cause of the bias provided by FSMC, at every iteration of
this algorithm, several viable accompaniment options are
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available to the user, which means the IEC process focuses
on principled refinement rather than on escaping chaos to
discover order.
To establish the potential of FSMC to aid novice com-

posers (and perhaps to inspire ideas for experts as well) in
this paper, the evolution of a particular accompaniment is
closely followed and analyzed, showing how the user and
computer collaborate to produce an effective process of re-
finement without the need for expert musical knowledge.
The results of this progression are also validated through
a listener study that asks independent participants to rate
different steps in the process. The main result is that FSMC-
based IEC could be a step towards new tools for expanding
the pleasure of creating multipart pieces to a wider popu-
lation than is currently possible. In effect, such a tool can
provide a stepping stone that inspires users to learn more
about music who otherwise might not. In addition, by cast-
ing IEC as a metaphor for creative exploration in general,
it shines a light on how creative endeavors and search can
interact to yield meaningful discoveries.

2. BACKGROUND
Many approaches to automating accompaniment leave mu-

sical decisions entirely to the computer. For example, Im-
provGenerator creates drum pattern accompaniment from
a live drumming performance. The patterns are generated
by context-free grammars and transition probability models
that input live patterns, infer grammatical rules, and ap-
ply them probabilistically [10]. This method incorporates
the performer’s musical sensibilities, but the performer has
little input into the accompaniment generated. Similarly,
Santarosa et al. [16] approach accompaniment generation
with a two-tiered genetic algorithm, evolving both accompa-
niments and the fitness functions with which they are rated.
In both approaches, the human user can only control the
output insofar as they can manipulate the input stream. Be-
cause important decisions on the accompaniment itself are
made by the algorithm, such approaches are best suited to
live performances as opposed to novice composers aiming to
explore ideas for new accompaniments.
In contrast, some approaches incorporate humans through

interactive evolutionary computation (IEC [22]) to address
the inherent subjectivity in musical judgments [9, 13, 3, 4, 8,
24]. The idea is that humans can rate candidate accompa-
niments rather than an explicit fitness function. IEC origi-
nated in Richard Dawkins’ book, The Blind Watchmaker, in
which he described a simple program called Biomorphs that
is meant to illustrate evolutionary principles [5]. The pro-
gram displays a set of several pictures (called Biomorphs) on
the screen at one time. The user then selects from among
those pictures (called the population) his or her favorite.
From that selection, a new generation of offspring is spawned
that replace the original population. Because the offspring
are generated through slight mutations of the underlying
genes of the selected parents, they tend to resemble their
parents while still suggesting novel traits. In this way, over
many generations, the user in effect breeds new forms.

IEC can encompass a variety of digital media [15, 22], in-
cluding images [11, 26, 6], movies [25], three dimensional
models [14], and music [9, 13, 3, 4, 8, 24]. GenJam is an
example IEC application in which users help to build im-
provisational accompaniments or soloists by rating the mea-
sures and phrases as either good or bad [3]. Yet while users

can interact with these systems, the size of the search space
remains an obstacle to novice exploration. Thus the unex-
ploited opportunity at the focus of this paper is to borrow
from the creative seed already in the scaffold to enhance that
creativity further.
The inspiration for this idea is a prior approach called

NEAT Drummer, which harnesses creativity present in an
existing piece (i.e. scaffold) to generate percussion accom-
paniment [8, 7]. Each rhythm in NEAT Drummer is repre-
sented by a CPPN [19] and evolved interactively through the
NeuroEvolution of Augmenting Topologies (NEAT) method
[20, 21]. NEAT is a method for evolving networks that some-
times adds new nodes or connections through mutations.
In NEAT Drummer, the CPPN representation and scaffold
constrain the search space to promising candidates. Fur-
thermore, the relationship between scaffold inputs and drum
pattern accompaniments can complexify over time through
NEAT, but the survival of structural additions and dele-
tions depend on the choices made through IEC. That way,
users guide the creative explorations by both choosing the
input to the system, i.e. from which input tracks to gener-
ate accompaniment, and by deciding which accompaniments
sound plausible.
The FSMC method introduced in this paper significantly

extends the ideas in NEATDrummer. Whereas NEAT Drum-
mer can only generate percussion and rhythm, FSMC gener-
ates entire harmonies through a new CPPN representation,
explained next.

3. APPROACH
Extending the idea in NEAT Drummer, harmonies in func-

tional scaffolding for musical composition (FSMC) are gen-
erated from existing compositions. These compositions form
a scaffold from which accompaniments are built. However,
unlike in NEAT Drummer, these scaffolds include timing
information and pitch information, thereby providing the
foundation for harmonization.
Because music is essentially repeating or partially-

repeating patterns over time, musical parts can be con-
ceived as functions of time. Following this idea, FSMC
represents accompaniments as a function that transforms
pitches and rhythms from input tracks (i.e. the scaffold)
into a pattern interpreted as the accompaniment. In partic-
ular, this function is encoded in FSMC by a compositional
pattern producing network (CPPN), whose representation
is detailed in the next section. Outputs from CPPNs are
interpreted as accompaniments that thereby closely follow
contours of the original song. Users then interactively ex-
plore the search space of such functions to personalize ac-
companiments through IEC.
This section details the CPPN representation of the func-

tion that generates the accompaniment and the interactive
process through which the user searches the space of such
functions.

3.1 Representing Relationships
A crucial aspect of FSMC accompaniment is its repre-

sentation, which is a CPPN. The main difference between
CPPNs and neural networks (in which every node usually
computes the same activation function) is that hidden nodes
in the same CPPN can compute a diversity of activation
functions [19]. These include Gaussian, sine, and sigmoid
functions. This representation is well-suited to music be-
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cause such functions compactly encode useful regularities
such as symmetry (through the Gaussian) and repetition
(through the sine). Because CPPNs can usually evolve ar-
bitrary topologies through the NEAT method, such func-
tions often end up composed with each other, which leads
to expressing increasingly complex nonlinear relationships,
such as repetition with variation (e.g. by composing sine
and sigmoid functions). The pattern-generating capability
of CPPNs has been demonstrated also in image generation
on the Picbreeder online service [18, 17]. In effect, in the
present work, the CPPN embodies the function that trans-
forms the scaffold into its own accompaniment.
In general, the inputs to CPPNs in FSMC are instrument

channels of the existing composition and the outputs control
different aspects of the instruments in the accompaniment.
It is important to note that input musical data must be
sequenced (i.e. not raw audio), such as notes in the MIDI
format. That way, the lengths and pitches of notes in the
scaffold are known. The harmonic accompaniment (e.g. clar-
inet or trumpet) is represented by two CPPNs: one controls
the rhythm and the other dictates pitch. Figure 1 shows
an example pair of CPPNs for rhythm and pitch genera-
tion. In figure 1a, inputs (shown at bottom) are rhythms
from the piano, guitar, and bass parts of an existing song.
One output is a volume node called OnOff, which indicates
whether a note or rest is played and the volume at which the
note is heard. The other rhythm output, called NewNote,
determines whether notes are rearticulated. Figure 1b il-
lustrates the pitch network paired with the given rhythm
network. The output of this network decides which pitch
the accompaniment track plays if a note is sounded, based
on the pitches of every instrument in the scaffold.
To understand how the networks in figure 1 generate ac-

companiment, note that the notes and timing information
that are fed into the CPPNs’ inputs are provided sequen-
tially over time over a series of ticks (usually spaced at
sixteenth-note durations, depending on the duration of the
shortest notes). That is, the CPPNs in effect “listen” to
the piece in order and thereby output accompaniment that
is also in correct temporal order. Specifically, FSMC in-
puts track rhythms to the rhythm CPPN through the spike
and decay method first introduced in NEAT Drummer [8,
7]: When a note attacks in the input track, a maximum
value is sent to the network that linearly decays until the
note ends. That way, the CPPN knows where within each
note duration it is at every tick (which effectively provides
timing information). On the other hand, track pitches are
input as pitch classes (e.g. both C4 and C5, which are an
octave apart, are input as a C). The output pitches (which
form the accompaniment) are then normalized to the key
of the existing composition. These pitches can span several
octaves, depending on the particular instrument selected for
output. The input representations just described for rhythm
and pitch are depicted in figure 2.
It is important to note that the rhythm and pitch CPPNs

are separated intentionally because combining them into a
single CPPN would in effect imply that times within a piece
are semantically similar to pitches of notes. Such a confus-
ing conflation leads to a jumble of incoherent patterns, as
preliminary experiments with such a setup confirmed. Thus
the separation is an important aspect of the representation.
The overall effect is that the CPPNs output a temporal

pattern that is functionally related to the scaffold in both

Instrument:
OnOff

Instrument: 
NewNote

Piano:
Rhythm

Guitar:
Rhythm

Bass:
Rhythm

Bias

S GG

(a) Rhythm CPPN

Instrument: 
Pitch

Bias
Piano:
Pitch

Guitar:
Pitch

G
S

Bass:
Pitch

(b) Pitch CPPN

Figure 1: Example FSMC CPPN Pair. Together,
the CPPNs shown in (a) and (b) generate pitched
accompaniment. The rhythm network in (a) indi-
cates volume or resting through the OnOff node and
also whether or not to rearticulate the note. The
pitch network in (b) controls which pitch is played if
a rest is not indicated. Hidden nodes (e.g. sigmoids
and Gaussians), which would have evolved through
NEAT, are visible within the network topologies. In
this way, the accompaniment, which is the output
of the CPPN, is a function of the existing scaffold,
thereby borrowing from its structure.

rhythm and pitch. This relationship is what makes the ac-
companiment sound sensible. However, the particular trans-
formation of the scaffold computed by the CPPN is evolved,
which means it can be arbitrarily complex and nuanced. The
next section explains how the user influences this evolution.

3.2 Choosing Scaffolds and Evolving
Harmonies

Users select accompaniments through IEC. After choos-
ing initial network configurations, i.e. inputs for the rhythm
and pitch networks and instrument outputs, FSMC presents
users with a population of possible accompaniments to the
scaffold (figure 3). These candidates are then rated by the
user. The user rates any number of pieces in the current
population, all of which influence the next generation of ac-
companiments. If mutation rates are high, the character
between generations varies greatly. Otherwise, with low mu-
tation rates, the user evolves pieces with similar character.
Mutations in CPPNs generally modify connection weights or
add or remove connections and nodes, following the NEAT
method [20].
While IEC has previously been applied to music genera-

tion [13, 12, 2, 3], the hope in FSMC is that the CPPN repre-
sentation of the functional relationship between scaffold and
accompaniment will allow a holistic evolution of song-wide

389



(a) Rhythm Inputs

(b) Pitch Inputs

Figure 2: CPPN Input Representation. The spike-
decay representation for rhythms is shown in (a)
and the pitch representation is shown in (b). Both
such inputs are depicted in two ways: The first is
a continuous-time graph that shows decaying spikes
for timing and the pitch level for pitch. The second
is a discrete-time representation of what is actually
input into the network at each discrete time step,
which is represented by darkness for rhythm and
height for pitch. Because the network samples time
discretely, results in this paper are also depicted in
the discrete-time format. In this way, this figure
gives a sense of exactly what the CPPN“hears” (for
each instrument in the scaffold) as it generates ac-
companiment.

patterns. Instead of manipulating single notes or features of
a composition, FSMC evolves entire functional relationships,
thereby ensuring that the search space at least only consid-
ers accompaniments with some relationship to the scaffold.
Selecting the scaffold is itself an important task. It re-

quires choosing to which instrument tracks the rhythm and
pitch networks should listen. While beginners can easily
choose appropriate inputs to create appealing accompani-
ments, refined choices can significantly influence the piece.
For example, whether or not the rhythm network listens
to a fast-changing instrument can impact the complexity of
the corresponding output accompaniment. In fact, chosen
tracks do not have to be the same for each network (e.g. the
rhythm network can have a piano and guitar input while the
pitch network only has a bass guitar input).
Because the parts of the scaffold themselves are human-

composed and thereby sound appealing, accompaniment built
from any combination of such tracks ends up following the
contours of the original song. However, depending on the
specific inputs selected and the internal network structure,
the relationship between selected inputs and the accompa-
niment may be of varying complexity. NEAT [20] (the un-
derlying evolutionary algorithm that evolves CPPNs), which

Figure 3: FSMC Graphical User Interface. Accom-
paniments in FSMC are presented both visually and
sonically. Unlike image evolution, in which users
can quickly evaluate the population [22], listening
to MIDIs takes time. The visual representations
help users decide which MIDIs are worth this ex-
tra time, thus speeding up evolution. There are ten
individuals in a population, which are all displayed
at once. The user rates individuals by clicking on
ratings through a drop-down menu.

occasionally adds new structure to CPPNs (and can also re-
move it in the implementation in this paper) allows such
complexity to increase or decrease following the preferences
of the IEC user.

4. EXPERIMENTS
The main focus of this paper is on the effect of the IEC

process on discovering high-quality accompaniment. The
hope is that IEC coupled with FSMC leads to definitive
improvement that requires no musical expertise and only
minimal effort (i.e. not many generations), thereby avoiding
the fatigue effect that plagues many experiments in IEC [22].
This section describes the IEC experiment and the listener
study designed to illuminate its results.

4.1 Evolving Accompaniment
The experiment focuses on accompaniment evolved by the

authors to the folk song Bad Girl’s Lament, which was origi-
nally arranged in MIDI format by Barry Taylor and is redis-
tributed with his permission. An accompaniment generated
for Scarborough Fair, also arranged by Barry Taylor, is also
presented to give insight into some of the challenges faced
by FSMC. While FSMC ultimately will be applied to incom-
plete compositions by amateur musicians, by focusing in this
first study on evolving accompaniment to a well-regarded
existing song, it is possible to begin with a baseline level
of quality. That way, we can ask whether accompaniments
maintain or degrade the quality of the initial song (which, af-
ter all, is complete even without additional accompaniment).
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By functionally relating the accompaniment to the scaffold,
the hope is that it is possible to quickly evolve into an area
of the search space that rivals the quality of the initial com-
position so that the search effectively becomes a search for
high-quality variety rather than a struggle to reconstitute
lost quality.
For Bad Girl’s Lament, an evolutionary progression be-

tween generations 1 and 12 is studied by highlighting im-
portant milestones at generations 1, 6, and 12. This 12-
generation progression took about thirty minutes in total
for the user to complete; most of the time was spent lis-
tening to candidate accompaniments. Inputs to the rhythm
and pitch CPPNs are the piano and harpsichord channels
from the scaffold.
While the particular run of Bad Girl’s Lament chosen for

analysis is anecdotal, most results with other pieces exhibit
similar features and dynamics. Thus the hope in this paper
is to provide deeper insight into what exactly FSMC does
when combined with IEC by focusing on the details of a
particular progression in the limited space of a conference
paper. In addition, an example of a problem that occurs
with some songs is demonstrated with Scarborough Fair.
Later reports will identify more general elements of FSMC,
but without the level of individual detail possible here.
Accompaniments are evolved with a CPPN mutation rate

and crossover rate of 0.3. The NewNote threshold is also
0.3. Furthermore, when the OnOff output in the rhythm
network (which also indicates volume) falls below 0.3, no
note is played. Population size was 10 per generation and
fitness is scored as 0, 1, or 2, where 0 indicates an unappeal-
ing track and 2 denotes the best tracks.

4.2 Listener Study
To understand the effect of evolution on subjective appre-

ciation, a total of 60 listeners, all of whom are students in a
diversity of majors at the University of Central Florida, par-
ticipated in a survey after listening to the evolved variants
of Bad Girl’s Lament. In particular, without knowing which
is which, they listened to (1) an intentionally poor-quality
control with inappropriate accompaniment (which helps to
establish that participants indeed generally agree on some-
thing subjective), (2) the original Bad Girl’s Lament with-
out accompaniment, (3) the accompaniment selected from
the first generation of IEC, (4) the accompaniment selected
from the sixth generation of IEC, and (5) the final selected
accompaniment from generation 12. For each of these vari-
ants, the listener was asked:

Rate MIDI i on a scale of one to ten. (1 is the
worst and 10 is the best),

where i refers to one of the five variants, which are available
for listening online at
http://eplex.cs.ucf.edu/fsmc/gecco2011/.
By establishing the perceived quality of a respected com-

position, it becomes possible to estimate how well evolution
can maintain that professional standard even though FSMC
with IEC incorporates no prior musical knowledge or exper-
tise. In fact, the important deeper aim in this experiment is
to suggest that through FSMC, evolutionary-assisted music
generation can reach a high level of quality even with al-
most no musical theory whatsoever. Of course, given such
a result, a serious application of the technology could then
augment the FSMC core with more refined knowledge.

5. RESULTS
To appreciate the results in this section it is important

to experience the generated tracks. Thus all the selections
discussed in this section can be heard at http://eplex.

cs.ucf.edu/fsmc/gecco2011/. The section begins by ana-
lyzing the evolutionary progress of accompaniments to Bad
Girl’s Lament and then turns to the listener study.

5.1 Accompaniments
Results in this section are reported through figures that

are designed to demonstrate the relationship between the
CPPN inputs and outputs as the song progresses over time.
Boxes, or ticks of the CPPN, are read from left to right
and show what each instrument is playing at a particular
instance of time. Darker box shading denotes volume and
the shading height denotes the relationship between pitches
in the accompaniment; higher pitches have taller shadings.
The absolute pitch (i.e. note) is written in bold at the top
of each rectangle. A slightly thicker dividing line between
columns denotes a measure break.
At each tick, a pitched output can either sustain the note

from the previous tick, play a new note, or rest. Sustains are
represented by a thick line struck through the box and rests
are indicated by a similar but thinner (and slightly lower)
line over a white box. Both rhythm and pitch inputs to the
CPPN are also shown in visualizations. It is important to
note that rhythm inputs represent the special spike-decay
format introduced in figure 2a while pitch inputs are simply
pitch levels (as in figure 2b).
Figure 4 shows measures 1, 2, 13, and 14 of generations

1, 6, and 12 of Bad Girl’s Lament with evolved accompani-
ments. The introduction in measures 1 and 2 of the first gen-
eration is particularly unnatural; not only are notes reartic-
ulated on each tick, lending a rushed and choppy feel to the
piece, but only one pitch is played. On the other hand, the
introductory measures in generations 6 and 12 are smoother
(i.e. with sustained notes) and conform to the rhythmic and
pitch contours of the original song. They alternate between
the notes B and D, whereas generation 1 only plays D.
The rhythm becomes more sophisticated across generations
as well. Both generations 6 and 12 have significantly less
choppy introductions than the first, but the rhythm CPPN
in generation 12 creates a swing-style pattern.
The pitches in measures 13 and 14 of the first generation

differ significantly from those created for generations 6 and
12. Pitches in generation 1 ascend across notes A, B, and
C#, followed by B, C#, and D in the next measure. How-
ever, in generations 6 and 12, the pattern more closely fol-
lows the harpsichord input from the scaffold, demonstrating
the influence of the functional relationship on the evolved
progressions. For example, they all travel from B to D and
back to B in the first measure. However, in the second mea-
sure, generation 12 falls back to a C# rather than the B se-
lected for generation 6. This variation imparts a progressive
resolution that is missing in the thirteenth and fourteenth
measures of generations 1 and 6.
While the three depicted generations in Bad Girl’s Lament

exhibit some similar characteristics (e.g. each individual plays
more rests when the piano from the scaffold is resting early
in the composition), they progressively change over evolu-
tionary time. For example, while generations 6 and 12 are
rhythmically similar, generation 12 elaborates on the pat-
tern. The pitch evolution progresses similarly to rhythm.
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Figure 4: Evolutionary Accompaniment Sequence for Bad Girl’s Lament. Evolved steel guitar accompaniment
for generations 1, 6, and 12 of Bad Girl’s Lament is shown at top, followed by the pitch and rhythm inputs to
the CPPN from the scaffold. Each accompaniment can be heard at http://eplex.cs.ucf.edu/fsmc/gecco2011/.
The type of instrument played in the scaffold is noted at left (e.g. a harpsichord is one channel in the rhythm
scaffold. The increase in harmonic and rhythmic sophistication between generations 1 and 12 is apparent in
the progression at top. In addition, the relationship (e.g. in note transition points) between the scaffold and
accompaniment can also be observed.

From generation 1 to 6 many pitches change, but genera-
tions 6 and 12 differ in pitch by only a few choice notes.
While the generated pitch sequences in Bad Girl’s Lament

improve over twelve generations (as the listener study will
confirm), some scaffolds are less amenable to guiding the
system towards acceptable accompaniment, which can lead
to fatigue. For example, figure 5 shows accompaniment for
the folk song Scarborough Fair. The inputs for this selec-
tion are the oboe, guitar, clavi, and cello, and the output
is a trombone. However, unlike with Bad Girl’s Lament,
wherein dissonance is less common even in the first gener-
ation, this first-generation accompaniment plays dissonant
notes, like the C# in measure 9 on ticks 5 through 16.
While dissonance is not inherently bad, without resolution,
the pitches sound poorly chosen. For instance, the accom-
paniment would sound better by playing a G note instead
of the C# note, thus resolving tension. While FSMC shows
how much can be accomplished through functional scaffold-
ing with little musical knowledge, this problem suggests a
potential future opportunity to research tighter constraints
on pitches while still preserving the functional relationship
at the heart of FSMC.

5.2 Listener Study Results
The results from the 60-person listener study, which fo-

cused on the same IEC-evolved accompaniments for Bad
Girl’s Lament from the previous section, are shown in table
1. The first entry is the control example, which sounds inten-
tionally artificial. As expected, it is rated significantly worse
than every other example in the survey (at least p < 0.05 for

MIDI Name Mean Std. Dev.

Poor Control 4.35 1.93
BGL without Accompaniment 7.30 1.85
BGL, Generation 1 5.15 2.20
BGL, Generation 6 6.07 1.96
BGL, Generation 12 6.83 1.98

Table 1: Perceived Quality by Survey Participants.
This table shows the average ratings and the mean
and standard deviation for the control and four Bad
Girl’s Lament (BGL) MIDIs. The MIDI names are
on the left while the average ratings are on the right.

all pair-wise comparisons with Student’s t-test). This result
establishes that listeners likely understood the questions in
the survey.
Importantly, generation 6 is judged significantly higher

quality than generation 1 (p < 0.05) and generation 12 is
judged significantly better than generation 6 (p < 0.05).
Thus the participants felt that the progression from gen-
eration 1 to 12 indeed exhibits continual improvement in
quality.
Furthermore, although the original MIDI without accom-

paniment is judged significantly better than generation 6
(p < 0.001), it is not judged significantly better than gen-
eration 12. Thus evolution guided by the human user even-
tually achieves in a short number of generations a level of
quality indistinguishable from the quality of the original.
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Figure 5: Dissonant Accompaniment for Scarborough Fair. This image shows an accompaniment from the
first generation evolved with the Scarborough Fair scaffold. The accompaniment can be heard at http:

//eplex.cs.ucf.edu/fsmc/gecco2011/. Unlike with Bad Girl’s Lament, for which many accompaniments sound
harmonious in the first generation, Scarborough Fair produces some that are dissonant like this one. Thus
one potential improvement for FSMC is more intelligent post-processing of the pitch outputs.

6. DISCUSSION AND FUTURE WORK
From the results of the listener study, it is apparent that

IEC was effective in this case for navigating the search space
induced by FSMC. The average ratings from generation 1
and generation 12 significantly improved while the quality of
the original piece is indistinguishable from that in generation
12, demonstrating that IEC yielded a significant subjective
improvement that ultimately re-approached the quality of
the original song, yet now with a new accompaniment added.
However, although FSMC created an accompaniment of

indistinguishable quality from a human composition, FSMC
is not ultimately intended for accompaniment generation
from complete songs that are already good. The results in
this paper were accompaniments generated from the already-
full compositions Bad Girl’s Lament and Scarborough Fair
because they meet a threshold of quality recognized in folk
music. Thus accompaniment quality could be assessed rel-
ative to the original benchmark in different stages of de-
velopment. Yet once this capability is established (through
this study and others), eventually the aim will be to show
that the quality of incomplete songs is actually improved by
adding evolved accompaniment. Of course, it was difficult
to improve the compositions in this study because they were
already complete and well-regarded.
Because the listener study shows that it can take as few

as 12 generations to reach an area of the search space of vi-
able accompaniments, it is plausible to infer that the FSMC
method is not forcing the user to search the entire space
of possible accompaniments, which would be onerous. Both
the CPPN representation and the scaffold help to capture
the human essence of a pre-existing song, which the accom-

paniment can transform to sound plausible. In effect, FSMC
“steals”the quality inherent in the scaffold and then manipu-
lates it to create something new, thereby feeding off the skill
of the human originator. Therefore, the FSMC method po-
tentially can help users to find appealing accompaniments
faster than could be found without such a method. This
principle should even work with more complex musical pieces
because the complexity in the scaffold will still be reflected
in the output of the CPPN that transforms it.
Future work will focus on preserving the functional rela-

tionship between scaffold and accompaniment while at the
same time imposing further constraints or post-processing
on the pitch output, which is sometimes dissonant (as in
the Scarborough Fair example). While dissonance is a prob-
lem, the relative movement and rhythm of pitch patterns
output by CPPNs for Scarborough Fair are still compelling,
suggesting that dissonance can potentially be treated as an
orthogonal problem that is solved by manipulating but not
removing the framework established in this paper.

7. CONCLUSION
This paper introduced functional scaffolding for musical

composition (FSMC), a method for generating accompani-
ments from existing compositions, or scaffolds. Represented
by CPPNs, patterns among pitches and rhythms in the scaf-
fold are transformed yet respected. Elaborating on these
patterns through IEC gives inexperienced composers the
opportunity to explore accompaniment space for their own
compositions. While future work will naturally focus on im-
proving the method further, FSMC in effect opens up a new
direction in research on evolutionary music generation by
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providing a succinct and effective theory based on a simple
principle from which to build, i.e. that the different parts of
a song are functionally related.
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