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ABSTRACT
A transmembrane helix (TMH) topology prediction is be-
coming a central problem in bioinformatics because the struc-
ture of TM proteins is difficult to determine by experimental
means. Therefore, methods which could predict the TMHs
topologies computationally are highly desired. In this paper
we introduce TMHindex, a method for detecting TMH seg-
ments solely by the amino acid sequence information. Each
amino acid in a protein sequence is represented by a Compo-
sitional Index deduced from a combination of the difference
in amino acid appearances in TMH and non-TMH segments
in training protein sequences and the amino acid composi-
tion information. Furthermore, genetic algorithm was em-
ployed to find the optimal threshold value to separate TMH
segments from non-TMH segments. The method success-
fully predicted 376 out of the 378 TMH segments in 70 test-
ing protein sequences. The level of accuracy achieved using
TMHindex in comparison to recent methods for predicting
the topology of TM proteins is a strong argument in favor
of our method.

Categories and Subject Descriptors
I.5 [PATTERN RECOGNITION]: [Structural, bioinfor-
matics]; I.2.8 [ Problem Solving, Control Methods,
and Search]: [Heuristic methods]
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1. INTRODUCTION

1.1 Background and motivation
A biological membrane or biomembrane is an enclosing or

separating membrane that acts as selective barricade within
or around a cell in which cells may maintain specific chem-
ical or biochemical environment. Membrane proteins play
key roles in biological systems as pores, ion channels and
receptors. Being important in intracellular communication
and coordination, membrane proteins may serve as good
drug targets. For instance, varying the function of signal-
ing, proteins may assist in correcting defects in signaling
that are the root of many diseases. Biological membrane
is usually spanned by a TM protein which makes them im-
portant targets of both basic science and pharmaceutical re-
search [1]. The major category of TM proteins is the Alpha-
helical proteins. This protein category constitutes roughly
30% of a typical genome and is usually present in the inner
membranes of bacterial cells, the plasma membrane of eu-
karyotes or in the outer membranes. In fact, alpha-helical
transmembrane proteins are involved in a wide range of im-
portant biological processes such as cell signaling, transport
of membrane-impermeable molecules, cell-cell communica-
tion, cell recognition and adhesion. Since many TM are also
prime drug targets, it has been estimated that more than
half of the currently commercialized drugs target membrane
proteins [2]. Therefore, the prediction of TMH could play
an important role in the study of membrane proteins. The
importance of this role is emphasized by the lack of high-
resolution structures for such proteins, available for no more
than 0.5% of the Protein Data Bank (PDB). Knowledge of
the TMH topology can help in identifying binding sites and
infer functions for membrane proteins. However, because
membrane proteins are hard to solubilize and purify, only a
very small amount of membrane proteins have structure and
topology experimentally determined. This has motivated
various computational methods for predicting the topology
of membrane proteins [3]. These methods enclose important
applications in genome analysis, and can be used to extract
global trend in membrane protein evolution.
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1.2 Existing methods
In the last two decades, researchers have developed a bat-

tery of successively more powerful methods for predicting
TMH. This development can be broken into three main cat-
egories. In the first category, early TMH prediction meth-
ods were based on experimentally determined hydropathy
indices of hydrophobic properties for each residue in the
protein sequence. Examples of this category include TOP-
Pred [4], DAS-TMfilter [1] and SOSUI [5] which are among
the most reliable methods in providing descriptive infor-
mation about TMHs. These methods use hydrophobicity
analysis alone and therefore, they can not predict TMHs
with length greater than 25 residues [6]. The recent high-
resolution structures production of helical membrane pro-
teins revealed that TMH could have a wide length distribu-
tion of more than 25 residues.

In the second category, further accuracy was achieved by
employing probabilistic approaches such as Hidden Markov
Models (HMMs). In this case actual biological structural
knowledge was incorporated into the model’s architecture
in order to increase its prediction power. Methods such as
HMM-TOP [7], TMHMM [8], THUMBU [9] and Phobius
[10], allowed researchers to predict reliable integral mem-
brane proteins in a large collection of genome. However,
HMM based methods are considered computationally expen-
sive since they involve multiple sequences alignments, calcu-
lation of the profile HMM topology and parameterization,
and training via expectation maximization. Moreover, the
HMM based methods are unable to correctly predict TMHs
shorter than 16 residues or longer than 35 residues [6]. As
for distantly related protein sequences, a profile alignment
may not be possible if, for example, the sequences contain
shuffled domains.

In the third category, additional accuracy was gleaned by
leveraging machine learning techniques such as neural net-
works, support vector machines and k-nearest neighbor. Ex-
amples of this category include PHD [11], MemBrain [6] and
MEMSAT-SVM [12]. Despite their success, the mentioned
machine learning methods have two major limitations. First,
the learning ability drops when the datasets are small. Sec-
ond, the feature extraction step requires extensive computa-
tions, and thereby a simple algorithm that does not require
sequence alignments in the feature extraction step is desir-
able.

1.3 Proposed solution
In this paper, we focus on the determination of TMH span-

ning segments and the amino-terminal orientations. We in-
troduce TMHindex which predicts TMH segments solely by
the amino acid information. The prediction is performed by
using TMH compositional index deduced from the dataset
of TMH segments and the amino acid composition. A TMH
preference profile is then generated by calculating the aver-
age TMH index values along the amino acid sequence using
a sliding window of different sizes. Finally, a genetic algo-
rithm was employed to refine the prediction by detecting
the optimal set of threshold values that separate the TMH
segments from non-TMH segments.

2. METHOD
In this section we introduce the proposed method for pre-

dicting TMH proteins topology, referred to as TMHindex.
An overview of TMHindex method is shown in Figure 1.

TMHindex consists of the two following major steps detailed
further in Sections 2.1 and 2.2, respectively:

1. Calculation of the TMH compositional index: In this
step we extract the TMH segments and non-TMH seg-
ments from the training dataset, compute the differ-
ence in amino acid appearances in TMH segments and
non-TMH segments, compute the amino acid compo-
sition of the protein testing sequence and finally cal-
culate the TMH compositional index.

2. Employing a Genetic Algorithm (GA) to find the op-
timal set of threshold values: In this step we tailor a
GA in order to find an optimal set of threshold val-
ues that will accurately segregate TMH and non-TMH
segments.

Figure 1: TMHindex overview.

2.1 TMH compositional index
We started by analyzing the amino acid composition in

TMH segments and non-TMH segments. We denoted by S∗

the enumerated set of sequences in the database of mem-
brane protein sequences. From each protein sequence si in
S∗, we extracted known TMH and non-TMH segments and
store them in datasets S1 and S2, respectively. To represent
the preference for amino acid residues in TMH segments, we
defined an index t. The index ti for the amino acid i ∈ {A,
R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T,W, Y, V}, is
calculated as follows:

ti = −ln

(
fnon−helix
i

fhelix
i

)
(1)

where fnon−helix
i and fhelix

i are respectively the frequencies
of amino acid i in the datasets S1 and S2. The negative value
of ti (threshold value of 0) indicates that the amino acid i
preferably exists in TMH segment. This is rather analogous
way to DomCut method [13] which was developed to predict
the inter-domain linker segments in amino acid sequences.
However, the information contained in the index values ti
has demonstrated as insufficient to accurately predict the
TMH segments, thus we incorporated the amino acid com-
position knowledge to the ti index. The conventional Amino
Acid Compositions (AAC) contain 20 components, each of
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which reflects the normalized occurrence frequency for one
of the 20 native amino acids in a sequence. Owing to its sim-
plicity, the AAC model was widely used in many earlier sta-
tistical methods for predicting protein attributes. Therefore,
it was previously used in many bioinformatics applications
such as inferring the lifestyle of an organism from the char-
acteristic properties of its genome [14] and compensating for
the lack of domain information in predicting protein-protein
interaction [15].

To this end, we recalculated the compositional index ri as
follows:

ri = −ln

(
fnon−helix
i

fhelix
i

)
× ai, (2)

where ai is the AAC of amino acid i. We then represented
each residue in each of the testing protein sequences by its
corresponding compositional index ri. The index values are
then averaged over a window that slides along the length
of each protein sequence. To calculate the averaged compo-
sitional index values mw

k,j for a protein sequence sk, given
a single window size w, we apply Algorithm 1 where Lk is
the length of the kth protein and sk,j is the amino acid at
position j in protein sequence sk:

Algorithm:CompositionalIndexAlgorithm(w)

for j ← 1 to Lk do
if j > (w − 1)/2 and j ≤ Lk − (w − 1)/2 then

mw
k,j ←

∑j+(w−1)/2
i=j−(w−1)/2

rsk,i

w

else if j ≤ (w − 1)/2 then

mw
k,j ←

∑j+(w−1)/2
i=1 rsk,i

j+(w−1)/2

else if j > Lk − (w − 1)/2 then

mw
k,j ←

∑Lk
i=j−(w−1)/2

rsk,i

Lk−j+1+(w−1)/2

end
end

end
end

Algorithm 1: Averaged Compositional Index Algorithm

As revealed in MemBrain method [6], fusion of various
window sizes provides more flexibility in accounting for length
variation of TMHs, and thus reduces the bias towards a fixed
TMH length introduced by using only one window size (as
treated in most of the previous TMH topology predictors).
Therefore, the averaging is carried across a sequence of odd
window sizes ranging from b to e (3 ≤ b < e), yielding the
set of values mk,j for each sequence k:

mk,j =

∑(e−b)/2
l=0 mb+2l

k,j

((e− b)/2) + 1
, j = 1, ..., Lk, (3)

where l is the summation index that ranges across the e−b
2

+1
window sizes.

The values mk,j are then used in conjunction with GA to
refine the prediction by detecting short loops and turns that
separate the TMH segments.

2.2 Dynamic threshold using GA
Finding an optimal threshold which separates TMH seg-

ments from non-TMH segments is crucial to the accuracy of

the topology prediction. It is a challenging matter that re-
mains unsolved by many existing predictors. Most of the
existing methods were using fixed thresholds to segment
the scores (e.g. residues with scores higher than a defined
threshold value, are assigned as helix segment). Indeed, this
is a weakness because optimal threshold for defining two
TMH segments separated by long loops is different from
a threshold required for identifying TMH segments sepa-
rated by short loops or tight turns. High-resolution struc-
tures show that two consecutive TMH segments are often
connected by very short loops or turns and that is why in
MemBrain [6] for instance, the authors have utilized a dy-
namic threshold value in which a base threshold propensity
of 0.4 was used to initially define TMH fragments. Then
the threshold was raised according to the shape of the lo-
cal propensity profile for identifying short loops or helical
breaks in fragments. Despite the success shown by utilizing
dynamic threshold, it is noticeable that rising the threshold
could improve the predictions of the TMH segments in part
of the sequence and could reduce the prediction accuracy in
another part of the sequence.

In our present work, we consider the amino acid sequence
as a set of sequence chunks. Each chunk would have its
proper dynamic threshold value. Therefore, the problem
turns out to be a search problem of a set of dynamic thresh-
old values that will better reflect the structure of the amino
acid sequence and predict accurately the TMH and non-
TMH segments. Such a search problem can be seen as a
kind of partition problems [16], known as NP-complete al-
most certainly unsolvable with a polynomial time algorithm.
The application of metaheuristic search techniques to this
class of problems is a promising solution [16–18]. Meta-
heuristics are high-level frameworks that employ heuristics
to find solutions for combinatorial problems at a reasonable
computational cost. Moreover, they are strategies ready for
adaptation to specific problems. In particular, GA is one
of the most commonly used techniques and has proven its
effectiveness in combinatorial optimization and complex pre-
diction [16, 19]. Besides, GA is easily customizable for our
problem. In the following sections we will focus on the de-
scription of GA and its adaptation to our TMH segment
prediction method.

2.2.1 Overview of Genetic Algorithms
The basic idea of GA is to typically start from a set of ini-

tial solutions, and use biologically inspired evolution mech-
anisms to derive new and possibly better solutions ( [17]).
The derivation starts by an initial solution set P0 (called
the initial population), and generates a sequence of popu-
lations P1, , PT , each obtained by ”mutating” the previous
population. The elements of the solution sets are called
chromosomes. The fitness of each chromosome is measured
by an objective function called fitness function. Each chro-
mosome (possible solution) consists of a set of genes. At
each generation, the algorithm selects a number of pairs of
chromosomes using a selection method that gives priority
to the fittest chromosomes. To each selected pair, the algo-
rithm applies one of two operators, crossover and mutation,
with probability pc and pm, respectively, where pc and pm
are input parameters of the algorithm. The crossover oper-
ator combines the genes of the two chromosomes, while the
mutation operator randomly modifies certain genes. Each
selected pair of chromosomes produces a new pair of chro-
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mosomes that constitute the next generation. The Ne fittest
chromosomes of each generation are automatically added to
the next generation. The algorithm stops if a convergence
criterion is satisfied or if a fixed number of generations is
reached. The GA is summarized in Algorithm 2.

Algorithm:GeneticAlgorithm(T, pc, pm,Ne)

Initialize P0

BestFit← fittest chromosome of P0

BestFitEver← BestFit
for t← 0 to T do

Q← pairs of members selected by roulette-wheel
from Pt

Q′ ← offsprings of pairs in Q derived by crossover
and mutation
Pt+1 ← Q′∪ {the Ne fittest members of Pt}
BestFit← fittest chromosome in Pt+1

if BestFit is fitter than BestFitEver then
BestFitEver← BestFit

end
end
return BestFitEver

Algorithm 2: Summary of a genetic algorithm

To apply GA to a specific problem, all elements of the
generic algorithm must be customized and adapted to the
problem. In particular, the solutions must be encoded into
chromosomes, the two operators (crossover and mutation)
and the fitness function must be defined.

2.2.2 Encoding protein sequence as chromosome
To properly apply GA to our problem, we define a chro-

mosome encoding for the protein sequence represented by
a vector of mk,j values calculated in Equation 3. As each
chromosome is a set of genes of size N , we encode a gene as
a pair (λ, μ), where λ is a threshold value and μ is the up-
per position in the protein sequence before which λ is used
as threshold. For more details let (λi−1, μi−1), (λi, μi) and
(λi+1, μi+1) be three consecutive genes in the chromosome
representing the sequence of a given protein. The value λi is
interpreted as the threshold applied from the position μi−1

to the position μi in the protein’s sequence and λi+1 is the
threshold applied from the position μi to the position μi+1

in the sequence. In particular, the threshold λ1 would be
applied from the beginning of the sequence to the position
μ1 as illustrated in Figure 2.

1 2 N-1 N

μ1 μ2 μN-1 μN

N genes : Pairs (threshold, upper-rank)

Chromosome Encoding for a Protein Sequence 

Figure 2: Encoding protein sequence as chromosome

2.2.3 Crossover Operator
Crossover is a reproduction operator that occurs with high

probability pc. It takes two parent chromosomes and pro-
duces one or two child chromosomes. Our encoding scheme
of chromosomes allows greater freedom to use different ways
of performing crossover and mutation. Based on the chro-
mosome real-representation, we define two types of crossover
techniques for our problem; one-cut point crossover, and uni-
form crossover.

One-cut point crossover is a standard way to perform
crossover between the chromosomes. It consists of cutting
at a position i one of the two parent chromosomes into two
subsets of genes (vector of pairs λ and μ). Then the second
chromosome is cut at the position j into two other subsets.
The cutting point j is determined as the rank of the pair
(λi, μi) where the position μj is the smallest position in
the second parent chromosome greater than μi. Two new
chromosomes are then created by interleaving the subsets.
Figure 3 shows an illustrative example of the one-cut point
crossover between chromosomes representing a protein se-
quence of length 250.

In the uniform crossover, two parent chromosomes give
birth to a single offspring. Each gene of the new offspring
is a copy of a gene from one of the parents selected in the
following way:

The gene i of the offspring (λi, μi) is a copy of the gene
i of one of the two parent selected randomly. If μi in the
gene i of the selected parent is not greater than μi−1 of the
previously copied gene, then the gene i is selected from the
second parent.

Cut Point

11 12 13 14 15 16 17

45 89 142 175 200 220 250

21 22 23 24 25

50 100 150 200 250

11 12 13 23 24 25

45 89 142 150 200 250

21 22 14 15 16 17

50 100 175 200 220 250

Cut Point

OFFSPRINGS

PARENTS

Figure 3: Crossover operator

The crossover ways described above are motivated by the
fact that moving the intervals boundaries or modifying the
threshold values will diversify the population and then by
the fitness evaluation, selection process and elitism (see Al-
gorithm 2), the fittest solutions will be chosen to reproduce
and form the next improved generation.

2.2.4 Mutation Operator
Mutation is the second reproduction operator that occurs

with a small probability pm. It is employed to extend the
search space by creating new points that could be potential
solutions. When a chromosome is selected for mutation, a
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small number of its genes are randomly chosen in order to
be modified. With our chromosome encoding, two ways of
modifying a gene (λi, μi) are possible (See Figure 4). In
the first, the threshold λ is modified by making a positive
or negative variation of its value, while in the second way,
the upper bound μi is moved either towards μi−1 or μi+1.

Selected gene 

1 2 0.89 0.55 0.76 6 7

45 89 142 175 200 220 250

1 2
0.89 0.60 0.76

6 7

45 89 142 175 200 220 250

1 2
0.89 0.55 0.76

6 7

45 89 142 165 200 220 250

Original chromosome

Mutated chromosome

By modifying 

threshold  value

By modifying 

threshold scope

Figure 4: Mutation operator

2.2.5 Initial Population and Selection Method
Before starting its evolutionary process, the GA needs to

build an initial population P0 of solutions (vectors of pairs).
An individual of the initial population P0 is obtained by
firstly choosing a random number N of ranges within the
protein sequence size. Next, the N ranges are arbitrarily de-
fined by slicing the protein sequence into N chunks. Finally,
for each range, a threshold is defined by selecting randomly
one of the scores assigned to one of the residues within the
range. The size of the initial population is a parameter of our
algorithm that will be set after several tuning runs. The pro-
cess of evolution starts by selecting a pair of chromosomes
according to the roulette-wheel selection technique, whereby
one can imagine a roulette wheel where all chromosomes are
placed. Each chromosome is assigned a portion of the wheel
that is proportional to its fitness. A marble is thrown and
the chromosome where the marble halts is selected.

3. EXPERIMENTAL RESULTS

3.1 Evaluation measures
To test the TMHindex method and compare its perfor-

mance to the existing state-of-the-art predictors, we used
four commonly used evaluation measures:

1. TMH segments prediction success rate (rpsr),

rpsr = rc/rt, (rt = 378) (4)

Where rc and rt are the number of TMH segments cor-
rectly predicted and total number of TMH segments in
the test dataset, respectively. A prediction is consid-
ered correct if there is an overlap of at least nine amino
acids between the predicted and experimentally known

TM segment. This threshold length is quite reasonable
in comparison to the typical TMH which are on aver-
age 21 residues long. Different residues overlap was
used in the past such as 3 residues [8], 5 residues [20]
and 9 residues [6].

2. Protein prediction success rate (ppsr),

ppsr = pc/pt, (pt = 70) (5)

Where pc and pt are the number of correctly predicted
proteins and total number of proteins in the test dataset,
respectively. A protein is considered correctly pre-
dicted if all its TMH segments are correctly predicted.

3. Residue prediction success rate (spsr),

spsr = sc/st, (st = Lk) (6)

Where sc and st are the number of correctly predicted
residues and the total number of residues in a pro-
tein sequence, respectively. This evaluation measure
is equally used as a fitness function to the proposed
GA.

4. The N-score and C-score,

These two scores (illustrated in Figure 5) evaluate the
accuracy of predicting the in and out ends of TMHs
[21]. N and C scores are the number of N- and C-
terminal residues that do not match when comparing
the predicted TMH segment and the known TMH seg-
ment. A lower score in this case yields a more accurate
prediction. If the prediction of this TMH segment is
an exact match, then the prediction score is equal to
0. It means that its N-score and C-score are null.

Figure 5: The N and C scores.

3.2 Illustration
To illustrate the experimental work, in Figure 6 and Fig-

ure 7 we show the way the TMH segment is detected in a
sample protein 1OCC using the index ti with a threshold
value of 0. We used odd window sizes, from b = 5 to e = 19
and the final values mk,j representing each amino acid in
the sequence are calculated. The maximum window size
was chosen to be 19 because a 19-residue segment is close to
the thickness of the hydrocarbon core of a lipid bilayer [22].
In this case, the known TMH segment (in bold) starts in
residue 12 and ends in residue 35. The length of the protein
sequence Lk = 46 and therefore spsr = 0.78, C-score = 6
and N-score = 4.

To improve the prediction accuracy we incorporated the
compositional index ri and the results are shown in Figure 8,
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Figure 6: Sample protein 1OCC.
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Figure 7: TMH segment detection in protein 1OCC
using the index ti.
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Figure 8: TMH segment detection in protein 1OCC
using the compositional index ri.

therefore the obtained accuracies were improved, i.e., spsr =
0.89, C-score = 1 and N-score = 4.

As a second enhancement of our approach, GA was ap-
plied to find the optimal threshold set separating TMH seg-
ments from the non-TMH segments as illustrated in Fig-
ure 9. Prior to the application of GA, several runs were
performed in order to tune the different parameters. As
a result of parameters tuning, our algorithm converged to-
wards a near-optimal solution after T = 80 generations and
with a population size set to 80. During the reproduction
process, crossover and mutation occur with probabilities pc
equal to 0.6 and pm equal to 0.2, respectively. The elitism

strategy was used by which theN fittest chromosomes of one
generation are cloned and copied to the next generation. Af-
ter applying GA to the sequence of the protein 1OCC, the
latter is divided into 2 equal parts. Each part consists of
23 residues and the two upper boundary positions, μ1 and
μ2, are respectively set to 23 and 46. The threshold values
λ1 and λ2 are computed to be 1 and 0.25, respectively. The
obtained structure of the protein 1OCC computed by GA
achieved high accuracies, i.e., spsr = 1, C-score = 0 and
N-score = 0.
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35

λ2 = 0.25

Figure 9: TMH segment detection in protein 1OCC
using GA.

3.3 Comparison with existing methods
The aim of the TMH segments predictions method is to

obtain high accuracy when applied to unknown proteins. For
predicting the TMH segment within a protein, we first com-
puted the index ti. We collected the TMH and non-TMH
segments from a training dataset. The training dataset
contains 50 protein sequences which consist of 327 known
TMH segments. The testing dataset used contains 70 pro-
tein sequences which consist of 378 known TMH segments.
The training and testing datasets have no sequence over-
lap. The datasets have experimentally determined TMH
topology and they were used by most of other TMH predic-
tors such as MemBrain [6], Phobius [10], THUMBU [9] and
TMHMM [8]. The datasets are available at ftp://ftp.ebi.ac.
uk/pub/datasets/testsets/transmembrane.

The performance of TMHindex was measured by rpsr,
ppsr, N-score, C-score and the number of TMH segments
which were correctly predicted. The comparisons of the
performance of TMHindex with those of THUMBU, SO-
SUI , DAS-TMfilter , TOP-PRED, TMHMM, Phobious and
MemBrain, are reported in Table 1. The results show that
TMHindex is successful in making fewer mis-classifications
of TM helices. It outperforms the compared methods ac-
cording to all of the measures used for performance evalu-
ations. TMHindex was able to predict 376 of the total 378
TMH segments in the test dataset. The unpredicted TMH
were from proteins 2IUB:A and 2B5F:A. Furthermore, the
residue prediction success rate spsr was 0.905.

The distributions of helix lengths in the testing datasets
were also examined (Figure 10). The investigation shows
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Table 1: Performance comparison of various TMH predictors.

Predictor rpsr (%) ppsr (%) N-Score C-Score Correct
TMHs

THUMBU 85.5 47.1 6.9± 4.9 058± 0.19 316

SOSUI 89.1 57.1 5.0± 4.2 0.44± 0.21 334

DAS-TMfilter 90.7 64.3 5.5± 5.3 0.58± 0.16 341

TOP-PRED 92.6 60 4.6± 3.9 0.45± 0.15 352

TMHMM 91 65.7 4.5± 3.9 0.44± 0.15 343

Phobious 91.8 71.4 4.4± 4.1 0.44± 0.19 345

MemBrain 97.9 87.1 3.1± 2.8 0.35± 0.14 371

TMHindex 99.46 91.1 2.19± 0.04 2.04± 0.03 376

that the prediction methods typically search for TM helices
with length raging between 17 and 25 residues. In fact,
out of the 378 TM helices in the dataset, only 204 (54%)
of the helices fall within this range, 29 (7.7%) have length
less than 17 and 145 (38.3%) of the helices with length ex-
ceeding 25 residues. Several membrane proteins contain TM
helices that do not span the bilayer, for example the pore (P)
helix of the potassium channel KcsA (1K4C) and the NPA-
containing loops of the aquaporins. These ’half-TMs’ are
shorter in length than conventional TM helices and are ex-
pected to be more difficult to predict [21]. The distributions
of TM helices given in Figure 10 reveal a small but significant
population of half-TMs are present in the testing dataset.
Similarly, there are many TMH segments which are longer
than 25 residues in length that often ended unpredicted or
partially predicted by most of the available methods. Fig-
ure 10 clearly show that Phobius is unable to detect TMH
segments shorter than 16 and longer than 30 residues. DAS-
TMfilter and THUMBU are unable to detect many TMH
segments longer than 25 residues. MemBrain is unable to
detect many TMH segments longer than 30 residues. The
only remark that needs more inversigation of the TMHindex
method is related to the prediction of some TMH segments
of length 23 and 24, respectively. Their predictions show
more errors than any other segments.

With respect to CPU time, the current version of TMHin-
dex needs approximately 20 minutes for predicting and con-
verging towards accurate structures of the available 70 pro-
tein sequences using a computer equipped with Intel Core 2
Duo CPU T7250 @ 2.00 GHz and 2.99 GB of RAM.

4. CONCLUSION
The prediction of TMH has proven to be important in

the study of membrane proteins which play many roles in
cells, including TM transport, signaling and energy trans-
duction. In this paper we introduce TMHindex method
which was able to successfully predict 376 out of the 378
TMH segments in 70 benchmark protein sequences. The
level of the accuracy achieved using TMHindex in compar-
ison to known methods for predicting the topology of TM
proteins is a strong indication of the TMHindex capability.
The improvement of the proposed method was due to two
main reasons. First, the employment of the TMH compo-
sitional index which was deduced from a dataset of priory
known TMH segments and the incorporation of the amino
acid composition knowledge. Second, tailoring a GA which

offered a flexible way to model an intelligent predictor of
TM proteins segments based on more dynamic thresholds.

In the future, we will extend the TMHindex method to
predict signal peptides. Predicting TMH and signal pep-
tides is challenging because of the high similarity between
the hydrophobic regions of a transmembrane helix and that
of a signal peptide [10]. Although, GA customization sig-
nificantly improved the prediction, further tuning and other
strategies choices within the metaheuristic could achieve more
capable and flexible prediction.
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