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ABSTRACT
Conotoxin classification could assist in the study of the struc-
ture function relationship of ion-channels and receptors as
well as identifying potential therapeutics in the treatment
of a wide variety of diseases such as schizophrenia, chronic
pain, cardiovascular and bladder dysfunction. In this study,
we introduce a novel method (Toxin-AAM) for conotoxin su-
perfamily classification. Toxin-AAM incorporates evolution-
ary information using a powerful means of pairwise sequence
comparison and amino acid composition knowledge. The
combination of the sequential model and the discrete model
has made the Toxin-AAM method exceptional in classifying
conotoxin superfamily, when compared to other state-of-the-
art techniques.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: [bioinformatics,
Learning].

General Terms
Algorithms, Performance, Reliability.
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1. INTRODUCTION
Conotoxins are small neurotoxic peptides with disulphide

connectivity that target ion-channels or G-protein coupled
receptors. Conotoxins have a variety of actions, most of
which have not yet been explored. Based on the number
and pattern of disulphide bonds and the biological activi-
ties, conotoxins can be classified into eleven superfamilies:
A, D, I1, I2, J, L, M, O, P, S, and T [1–6]. With the grow-
ing interest in conotoxins, accurate automated superfam-
ily classification methods are needed to classify the increas-
ing number of discovered sequences and structures. The
earlier methods for protein homology detection and clas-
sification include FASTA [7], BLAST [8] and PSI-BLAST
[9]. Most of the successful methods though typically rely
on profile-sequence or profile-profile alignment such as PSI-
BLAST [9, 10], COACH [11] and HHsearch [12], profile-
profile alignment with SVM [13], profile-based direct ker-
nels [14]. Other methods that utilize structural information
are PROSPECT [15], distance-profile [16] and ProfNet [17].
However, these methods depend on multiple sequence align-
ments and are therefore computationally extensive. More-
over, despite the importance and extensive experimental in-
vestigations on conotoxins, the above mentioned methods
have not been intensively tested to classify conotoxin fam-
ilies. This is probably due to the nature of the conotoxin
sequence. Most of the conotoxin proteins are typically short
(10-30 amino acids long) and therefore a profile information
generated for any of the conotoxin family or superfamily
could be rather limited.

Recently, researchers have turned their attention to clas-
sifying conotoxins using alignment-free approaches. Mon-
dal et al. [6] have used several theoretical approaches for
classifying conotoxin proteins into their respective super-
families based on the primary sequence of the mature cono-
toxin. They incorporated the concept of pseudo-amino acid
composition (PseAAC) [18] to represent the conotoxin pro-
tein sequence. This representation was further utilized in
conjunction with several classifiers such as multi-class sup-
port vector machine (SVM), ISort (Intimate Sorting) predic-
tor [19], least distance algorithms [20,21], a multiple binary
approach [22] - known as the one-versus-rest (1-v-r) SVMs.

Despite the success of the alignment-free methods dis-
cussed above, these methods have a major limitation. They
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consider only the PseAAC to represent the conotoxin pro-
tein sequence and therefore the evolutionarily and structural
relationships within the conotoxin superfamily were not in-
corporated. Since the superfamily is originally defined as a
group of evolutionarily related proteins, members of a cono-
toxin superfamily could result from divergent evolution of
homologues with significant similarity in the amino acid se-
quences. It is well established that homology can be inferred
from sequence similarity, and, that homological relationships
usually imply the same or at least very similar structural re-
lationships.

One obvious way to gain evolutionarily information is
through protein sequence similarity detection. Sequence
similarity typically implies homology, which in turn may
imply structural and functional similarity. For instance, se-
quences of several A-conotoxins have been determined with a
high degree of homology evident. The discovery of a statisti-
cally significant similarity between two proteins is frequently
used to justify inferring a common functional role for the
two proteins. However, in many cases, proteins within the
same conotoxin superfamily may not have significant simi-
larity due to the hyper-variability of mature toxins, therefore
a combination of sequential and non-sequential (discrete)
models is highly desired.

In this study, we introduce a new feature extraction method
for protein representation by incorporating evolution infor-
mation using a powerful means of pairwise sequence compar-
ison (sequential model)and amino acid composition knowl-
edge (discrete model). The conventional Amino Acid Com-
positions (AAC) contain 20 components, each of which re-
flect the normalized occurrence frequency for one of the 20
native amino acids in a sequence. Owing to it’s simplicity,
the AAC model was widely used in many earlier statistical
methods for predicting protein attributes [23, 24]. The ex-
tracted features are then used in conjunction with SVMs to
discriminate between conotoxin superfamilies members.

2. METHODS

2.1 Datasets
The dataset used to evaluate our method was developed

by Mondal et al. [6]. The protein sequences for conotoxins
were collected from the Swiss-Prot release 47.1 [25]. Su-
perfamilies with few sequences such as P-conotoxin and S-
conotoxin were not included in the analysis. I-conotoxin
superfamily was not included either as it was previously di-
vided into two distinct gene superfamilies (I1-conotoxin and
I2-conotoxin). The outcome of this process was a dataset
that included 156 mature conotoxin sequences from A, M,
O and T superfamilies. Data redundancy was removed us-
ing a greedy incremental algorithm as implemented in the
CD-HIT program which was developed by Li et al. [26]. The
final dataset consists of 116 entries from four superfamilies,
i.e. A (25 entries), M (13 entries), O (61 entries) and T (17
entries) was constructed. A negative dataset that included
60 sequences that do not belong to any of the four mentioned
superfamilies was formed from different eukaryotes with di-
verse functions. The CD-HIT program was used once again
to screen the negative set which resulted in 60 sequences
with identity less than 40%. The dataset is available at
http://faculty.uaeu.ac.ae/nzaki/Toxin-AAM.htm. Once the
benchmark dataset was constructed, the subsequent prob-
lem was how to find a precise prediction engine to represent

the protein samples for training the engine and conducting
the prediction?

2.2 Overview of the Toxin-AAM algorithm
Figure 1 illustrates the overview of the proposed method,

which we call it conotoxin Amino Acid Matching (Toxin-
AAM). The method consists of two major steps: (a) protein
feature extraction/representation and (b) classification. In
the subsequent sections we describe both steps.

Figure 1: Overview of the Toxin-AAM algorithm.

2.3 Feature extraction

2.3.1 Amino acid matching algorithm
In this step the protein features are generated by match-

ing all the amino acid pairs available in the two protein
sequences of interest. A pair of amino acids will have a
non-zero entry if it occurs anywhere (not necessarily con-
tiguous) in the amino acid sequence. The feature extraction
algorithm is summarized as follows:

1. Let
∑

be a finite amino acid sequence.

2. For protein sequences s, t we denote by |s| and |t| the
lengths of the sequence s = s1...s|s| and t = t1...t|t|
respectively. Clear the matching score: Ss,t = 0

3. The amino acid composition (AAC) of the protein s is
s = [a1, ..., a20]

4. For each of the two sequences s, t, we extract all the
amino acid pairs (si, sj) and (tm, tn) which could oc-
cur anywhere in s, t (not necessarily contiguous) along
with the corresponding distances dsi,j and dtm,n be-
tween each of the two amino acids.

5. For the sequences s, t, we match all the pairs (si, sj)
with (tm, tn) as depicted by steps (5) and (6.a.ii). We
initially clear all the matching scores Ss,t = 0, for all s
and t, and set the weight decaying factor λ (0 < λ < 1)
to 0.8, which has experimentally proven to improve the
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accuracy. The weight decaying factor contributes to
the matching score as seen in step (6.a.ii).

6. For all pairs (si, sj) and (tm, tn) in sequences s and t,
respectively:

(a) if the pairs (si, sj) and (tm, tn) match, i.e. si = tm
and sj = tn , then

i. add their corresponding distances dsi,j and
dtm,n , ds,t = dsi,j + dtm,n , such that the dis-
tance d = 1 if the amino acids in the pair
are contiguous, d = 2 if the amino acids in
the pair are separated by a gap of 1 amino
acid, d = 3 if the amino acids in the pair are
separated by a gap of 2 amino acids, etc...

ii. update the score Ss,t = Ss,t + λdi,j × ai × aj ,
where ai, aj are the corresponding composi-
tion values of the amino acids pairs (si, sj),
respectively.

The above algorithm can be illustrated by the following
example:

Consider the two amino acid sequences s = lqlwa, t =
lqal. The corresponding normalized amino acid composition
of the amino acids are (a = 0.11056), (l = 0.22112), (q =
0.11056) and (w = 0.11056). For each of the two sequences
s and t we extract all the amino acid pairs (lq, ll, ql, la,
qa and al). The two sequences are implicitly transformed
into feature vectors, where each feature vector is indexed by
the one pair of amino acids. The seven dimensional features
vectors are given in Table 1:

Table 1: Matching the two sequences (lqlwa) and
(lqal) to seven dimensional feature vectors.

Sequence lq ll lw la ql qw qa

s (lqlwa) λ1 λ2 λ3 λ4 λ1 λ2 λ3

t (lqal) λ1 λ3 0 λ2 λ2 0 λ1

For λ = 0.8, the matching score of each pair is calculated
as follows:

lq = λ2 × a1 × a2 −→ (0.8)2 × (0.22112)× (0.11056) =
0.015646.

:

qa = λ4 ×a1 ×a2 −→ (0.8)4 × (0.11056)× (0.11056) =
0.005007.

The total score Ss,t in this case is, 0.015646+· · ·+0.005007.
It is obvious that the pair lq yields a higher score than

qa since the match is exact (contiguous). This is clearly
demonstrates that the proposed method is able to capture
the potential similarity between the two sequences.

2.3.2 Representation of the protein sequence
In the feature extraction step, we represent each conotoxin

protein sequence by a fixed-length of feature vectors. Each
coordinate of this feature vector is typically the matching
score Ss,t as calculated in section 2.3.1. In this case each of
the 176 conotoxin protein sequence in the dataset was com-
pared and matched against the rest of the protein sequences.

For instance, if we have a protein sequence s then the corre-
sponding score will be Fs = fs0 , fs1 , . . . , fsl−1 , where l is the
total number of proteins and fsi is the Ss,i score between
sequence s and the ith sequence. This process is illustrated
as follow:

s1 s2 . . . s176 Class
s1 S1,1 S1,2 . . . S1,176 A
s2 S2,1 S2,2 . . . S2,176 A
: : : . . . : A
s25 S25,1 S25,2 . . . S25,176 A
s26 S26,1 S26,2 . . . S26,176 M
: : : . . . : :
s176 S175,1 S176,2 . . . S176,176 N

Following the feature extraction step, each conotoxin pro-
tein sequence is now represented by a fixed dimensional fea-
ture vector of a length equivalent to the number of the cono-
toxin protein sequences in the training set. This representa-
tion satisfies the important requirement of the SVM input,
in that SVM requires that each data instance is represented
as a vector of real numbers. The SVM adds to this model
the ability to learn from negative examples as well, by dis-
criminating between the conotoxin superfamily members.

2.4 Classification
The aim of support vector classification is to devise a

computationally efficient way of learning ’good’ separating
hyper-planes in a high-dimensional feature space. The input
vectors are mapped into high-dimensional feature space us-
ing kernel functions and a hyperplane is constructed which
can separate the different classes [27], [28]. To illustrate the
idea of using SVM, let us assume that we would like to rec-
ognize conotoxin protein sequences belong to ’A-conotoxin’
superfamily from a dataset of proteins contains sequences
from various conotoxin superfamilies ’non A-conotoxin’. Let
s = (s1, s2, ...s|s|) denotes the conotoxin protein sequence of
length |s|, where si ∈ {A,R,N,D,C,Q,E,G,H, I, L,K,M,
F, P, S, T,W, Y, V } and r = (r1, r2, ..., rn) denotes the input
feature vector, where ri ∈ �n. The classification of the se-
quence s into ’A-conotoxin’ or ’non A-conotoxin’ class finds
an optimal mapping from �n space into {+1,−1} where +1
and −1 correspond to ’A-conotoxin’ and ’non A-conotoxin’
classes, respectively. Let {(rj , qj), j = 1, 2, ..., N} denotes
the set of training exemplars, where qj denotes the desired
class (’A-conotoxin’ or ’non A-conotoxin’) for the input fea-
ture vector rj of sequence sj ; N denotes the number of train-
ing sequences.

SVM first transforms the input to a higher dimensional
space with a kernel function and then linearly combines
them with a weight vector w to obtain the output [29].

In the classification step, SVM constructs a discriminant
function by solving the following optimization problem:

Minimize

1

2
wTw + C

N∑

j=1

ξj (1)

subject to the constrains

qi(w
Tφ(rj) + b) ≥ 1− ξj , ξj ≥ 0 (2)

where slack variables ξj represent the magnitude of the
classification error, φ represents the mapping function to a
higher dimension n, b is the bias used to classify the protein
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samples and C(> 0) is the regularization parameter that de-
cides the trade-off between the training error and the margin
of separation [27].

The minimization of the above optimization problem is
equivalent to maximizing the following quadratic function:

maxα

N∑

j=1

αj − 1

2

N∑

j=1

N∑

i=1

αjαiqjqiK(rj , ri) (3)

subject to 0 ≤ αj ≤ C and
∑N

j=1 αjqj = 0.

The function K(rj , ri) in this case is called the kernel func-
tion.

Once the parameters αj are obtained from the optimiza-
tion, the resulting discriminant function f is given by

f(ri) =

N∑

j=1

qjαjK(rj , ri) + b = wTφ(ri) + b (4)

where bias b is chosen so that qjf(rj) = 1 for all j with
0 < αj < C. The class corresponding to the input pattern ri
is ’A-conotoxin’ if f(ri) > 0 or ’non A-conotoxin’ if f(ri) <
0.

In this study, the Radial Basis Function (RBF) kernel was
employed which is formulated as follows:

K(rj , ri) = exp(−γ||rj − ri||2) (5)

where γ(> 0) is the scaling parameter. The RBF kernel
non-linearly maps samples into a higher dimensional space,
therefore, unlike the linear kernel, it can handle the case
when the relation between class labels and attributes is non-
linear [30].

3. EXPERIMENTAL WORK AND RESULTS
We investigated the ability of Toxin-AAM method to clas-

sify conotoxin superfamilies. In our experimental work, we
tested the performance of Toxin-AAM on the dataset de-
scribed in Section 2.1. A jackknife cross validation test was
used as it is deemed the most rigorous among others and
hence it has been widely adopted by researchers [6, 31, 32].
The performance of Toxin-AAM was measured by how well
the system can recognize members of any of the conotoxin
superfamilies. Recall (RE) , Precision (PR) and accuracy
(AC) are used as evaluation measures of the performance
and they are calculated as follow:

RE =
true positives(TP )

true positives(TP ) + false negatives(FN)
(6)

PR =
true positives(TP )

true positives(TP ) + false positives(FP )
(7)

AC =
true positives(TP ) + true negatives(TN)

total number of examples(n)
(8)

In the feature extraction step the weight decaying factor
λ was set to 0.8. LIBSVM (Library for Support Vector Ma-
chines) 1 [33] as implemented in WEKA [34] was employed

1http://www.csie.ntu.edu.tw/ cjlin/libsvm

to discriminate between proteins from different conotoxin
superfamilies. In all of the experimental works, the scaling
parameter of the RBF kernel γ was set to 0.1, the loss func-
tion was 0.1 and the penalty parameter C was set to 10.
The training and testing attributes were linearly scaled to
the range between −1 and +1 prior to applying the SVM.
The main advantage of this scaling is to avoid attributes in
greater numeric ranges dominating those in smaller numeric
ranges. Another advantage of scaling the data is to avoid
numerical difficulties during the calculation [29]. As ker-
nel values usually depend on the inner products of feature
vectors, e.g. the linear kernel and the polynomial kernel
generate large attribute values that may cause numerical
problems.

In Table 2 we recorded the performance results of the A,
M, O and T conotoxin suberfamilies classification.

Table 2: Toxin-AAM results.
Superfamily RE PR AC
A 0.957 0.955 0.9545
M 0.966 0.966 0.9659
O 0.891 0.892 0.892
T 0.966 0.966 0.9659
N 0.95 0.93 0.94

3.1 Comparison to the existing methods
The BLAST algorithm was tested by Mondal et al. [6]

to scan against the non-redundant Swiss-Prot database con-
taining 202,310 sequences. The accuracy values for iden-
tifying the members of A, M, O and T superfamilies were
88.0%, 69.2%, 85.2% and 11.8% respectively. Thus, it can be
interpreted from the performance that the BLASTP tool for
searching homologues is not suitable for the hyper variable
conotoxins. Therefore, it was imperative to use a superior
classification system.

In Table 3, we further compare the performance of the
Toxin-AAM to other several methods such as multi-class
SVMs, One-versus-rest SVMs, Least Hamming distance and
ISort predictor to classify A, M, O, T and N subsets of pep-
tides. Table 3 shows that Toxin-AAM was able to add con-
siderable classification accuracy.

To evaluate the feature extraction step, we replaced the
matching algorithm discussed in section 2.3.1 with the Smith-
Waterman (SW) algorithm as implemented in Fasta [7]. The
SW [35] has undergone two decades of empirical optimiza-
tion in the field of bioinformatics and thus, considerable
prior knowledge is implicitly incorporated into the pairwise
sequence similarity scores [36]. To study the effect of in-
corporating AAC knowledge in the matching algorithm, we
removed the values of ai and aj in step 6 of the matching
algorithm 2.3.1. The comparison results shown in Table 4
indicate that Toxin-AAM method is able to outperform the
traditional pairwise method. By incorporating AAC, the
Toxin-AAM method was able to add reasonable classifica-
tion accuracy.

We assess the statistical significance of differences among
methods using a two-tailed signed t-test. As shown in Ta-
ble 5, the performance difference of Toxin-AAM in terms of
RE is statistically significant at a threshold of 0.05 (in bold).
The resulting induced performance ranking of methods is
Toxin-AAM,Multi-class SVMs, One-versus-rest SVMs, Least
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Table 3: A performance comparison of Toxin-AAM to other existing methods.
Method A M O T Average

RE (PR) RE (PR) RE (PR) RE (PR) RE (PR)
Toxin-AAM 0.957 (0.955) 0.966 (0.966) 0.891 (0.892) 0.966 (0.966) 0.945 (0.945)
Multi-class SVMs 0.840 (0.955) 0.920 (0.800) 0.870 (0.869) 0.940 (0.940) 0.893 (0.891)
One-versus-rest SVMs 0.840 (0.955) 0.846 (1.000) 0.820 (0.962) 0.765 (0.929) 0.818 (0.962)
Least Hamming distance 0.800 (0.667) 0.539 (0.539) 0.771 (0.723) 0.824 (0.824) 0.734 (0.688)
ISort 0.760 (0.792) 0.692 (0.600) 0.705 (0.683) 0.882 (0.790) 0.76 (0.716)

Table 4: A performance comparison of Toxin-AAM to Toxin-AAM without incorporating AAC and with the
Smith-Waterman (SW) algorithm as implemented in Fasta.

Method A M O T Average
RE (PR) RE (PR) RE (PR) RE (PR) RE (PR)

Toxin-AAM with AAC knowledge 0.957 (0.955) 0.966 (0.966) 0.891 (0.892) 0.966 (0.9659) 0.945 (0.9447)
Toxin-AAM without AAC knowledge 0.736 (0.858) 0.926 (0.858) 0.427 (0.653) 0.816 (0.903) 0.726 (0.818)
Fasta 0.840 (0.955) 0.846 (1.000) 0.820 (0.962) 0.765 (0.929) 0.8685 (0.908)

Hamming distance and ISort. Multi-class SVMs is also per-
formed significantly better then ISort. In Table 6, we show
the statistical significance in terms of PR. In this case
Toxin-AAM, Multi-class SVMs and One-versus-rest SVMs
performed significantly better than Least Hamming distance
and ISort.

4. DISCUSSION AND CONCLUSION
In this study, we introduced a novel method (Toxin-AAM)

for conotoxin superfamily classification. The method is based
on combining a sequential model and a discrete model. The
combination of the sequential model and the discrete model
has made the Toxin-AAM method superior in classifying
conotoxin superfamily when compared with other state-of-
the-art techniques. The method has also shown significantly
improved results when compared to traditional sequence sim-
ilarity search techniques such as Fasta. The reason behind
these improvements is the fact that Toxin-AAM compares
each pair of amino acids (not necessarily contiguous) that
occurs in the two sequences of interest. For instance, if we
compare two sequences s = lqlwa and t = lqal using the SW
algorithm then the results are as follows:

Figure 2: Comparison results of the sequences s =
lqlwa and t = lqal using SW algorithm.

It is clear that some of the sequence information has not
been taken into consideration. Additional sequence infor-
mation such as comparing q − −a in sequence s to qa in
sequence t and l−−− a in sequence s to l− a in sequence t
are not included (please refer to Table 1 to see the matching
of these strings using Toxin-AAM).

Besides accuracy improvement, the Toxin-AAM method
also shows improved efficiency. The amino acid matching al-
gorithm was implemented on an x86 quadcore PC using Mi-
crosoft Visual Studio.NET 2003 with fast code optimization.
The implementation of the Toxin-AAM launches 16 paral-
lel threads which are allocated an equal number of amino

acid pairs to match and which generate the scores of pairs
of sequences assigned to them. One significant source of ef-
ficiency is that our implementation restricts the generation
of substrings (pairs of amino acids) to only those with an
inter-distance of 8 or less. This restriction reduces tremen-
dously the execution time, without compromising the score
accuracy. Our implementation also benefited from fast code
and SIMD vectorization compilation. The total computa-
tional cost of the algorithm is O(|s| × |t|) for computing the
similarity score of any pair of sequences. In the parallel
load-balanced implementation, this cost is roughly divided
by the number of cores (up to the number of threads limit,
16) on which the work is distributed upon. When matching
multiple pairs of sequences, this cost is multiplied by the
numbers of pairs of protein sequences to match. Moreover,
parallelism (via throughput computing) can be employed at
the outer level, whereby multiple protein sequence matches
are simultaneously performed on different computers, fur-
ther reducing the cost by the number of pairs of sequences
to match. The CPU time for computing the matching scores
between all the 176 protein sequences is approximately one
second.

Finally, the results reported here may provide a pointer
for potentially newer applications of in-silico methods that
address problems in the burgeoning, but computationally
less explored field of conotoxins. While this discriminative
framework is specially developed for identifying conotoxin
superfamily members, it naturally extends to other prob-
lems in bio-sequence analysis, such as the identification and
classification of promoters, protein remote homology, splice
sites, and other features in genomic DNA.

Currently, the proposed method extracts all the possible
amino acid pairs which could occur anywhere in the two se-
quences of interest, in the future, we will explore the possi-
bility of extracting substrings of various amino acids lengths.
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Table 5: Statistical significance of the differences of predictive performance in terms of the Recall (RE)
between pairs of classification methods.

Method Multi-class
SVMs

One-versus-
rest SVMs

Least Ham-
ming distance

ISort

Toxin-AAM 0.038 0.017 0.019 0.004
Multi-class SVMs 0.059 0.054 0.012
One-versus-rest SVMs 0.237 0.282
Least Hamming distance 0.536
ISort

Table 6: Statistical significance of the differences of predictive performance in terms of the Precision (PR)
between pairs of classification methods.

Method Multi-class
SVMs

One-versus-
rest SVMs

Least Ham-
ming distance

ISort

Toxin-AAM 0.141 0.398 0.007 0.003
Multi-class SVMs 0.137 0.003 3.627E-05
One-versus-rest SVMs 0.009 0.006
Least Hamming distance 0.415
ISort
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