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ABSTRACT 
Many systems, particularly in biology and chemistry, involve the 
interaction of discrete quantities, such as individual elements or 
molecules. When the total number of elements in the system is 
low, the impact of individual reactions becomes non-negligible 
and modeling requires the simulation of exact sequences of 
reactions. In this paper, we introduce an algorithm that can infer 
an exact stochastic reaction model based on sparse measurements 
of an evolving system of discrete quantities. The algorithm is 
based on simulating a candidate model to maximize the likelihood 
of the data. When the likelihood is too small to provide a search 
gradient, the algorithm uses the distance of the data to the model's 
estimated distribution. Results show that this method infers 
stochastic models reliably with both short time gaps between 
measurements of the system, and long time gaps where the system 
state has evolved qualitatively far between each measurement. 
Furthermore, the proposed metric outperforms optimizing on 
likelihood or distance components alone. Traits measured on the 
search novelty, age, and bloat suggest that this algorithm scales 
well to increasingly complex systems.   

Categories and Subject Descriptors 
I.6.5 [Simulation and Modeling]: Model Development – 
Modeling methodologies.  

General Terms 
Algorithms, Design, Performance. 

Keywords 
Stochastic modeling, stochastic simulation. 

1. INTRODUCTION 
Stochastic systems pervade nearly all areas of science, from 
quantum properties of atomic particles, to chemical reactions in a 
chemical bath, to fluctuations in populations or ecosystems. All 
stochastic systems are at least partially random, making them 
difficult to model dynamically or deterministically. Instead, 

Monte Carlo methods are often employed to simulate and analyze 
their behavior. 

A particularly important Monte Carlo method was developed by 
Dan Gillespie in 1977 in order to model chemical reactions 
kinetics [1]. The Gillespie algorithm performs an exact and 
statistically-correct simulation of a stochastic system based on a 
set of discrete chemical reactions, reaction coefficients, and initial 
conditions. The Gillespie algorithm has been used extensively in 
systems biology, and also similar domains. Traditionally, the set 
of reactions that model a stochastic system must be developed and 
theorized manually by experts.  

In this paper we introduce an evolutionary algorithm that 
automatically hypothesizes about the reactions and reaction rates 
taking place in a system simply by analyzing raw experimental 
data, even with large time gaps between observations (see Figure 
1). The proposed method searches over a space of reactions in 
order to find the maximum likelihood model that agrees with the 
experimental observations.  

The key challenge to searching over stochastic models is the 
computational cost of estimating likelihood values from a model 
and maintaining a search gradient. Except for only the most trivial 
systems, the probability density of a set of stochastic reactions 
cannot be solved over time. Instead, the model can be simulated 
(or sampled) repeatedly. However, efficient sampling methods 
fail over large time spans [2], making it difficult to estimate 
distribution tails.  

The proposed method overcomes this difficulty by using a two-
component optimization metric. The metric attempts to maximize 
the log-likelihood of the data given a candidate model. However, 
if the likelihood is too small to provide a gradient for the search, 
the criterion changes to the distance of each data point to the 
estimated probability density of the candidate model. In effect, 
this distance component allows even extremely inaccurate models 
to improve despite having zero likelihood. Once models get close 
enough to the data, where their likelihoods can be estimated 
accurately through sampling, the metric switches to maximize the 
likelihood. 

This metric also reduces the computational complexity, as the 
accuracy of estimating the tails of distributions is less important. 
The algorithm can thereby use fewer samples (fewer simulations 
of a candidate model) and still estimate a useful likelihood 
gradient. 

2. BACKGROUND 
Here we introduce important concepts in stochastic simulation 
algorithms, density estimation, and evolutionary algorithms. 
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2.1 Stochastic Simulation Algorithms 
The exact stochastic simulation algorithm was first developed in 
[3] and later applied to chemical kinetics in [1]. The method 
makes few assumptions about the system except that the 
environment is well mixed. 

The basic algorithm involves two steps: (1) sampling a time delay 
until the next reaction occurs, and (2) sampling among possible 
reactions which occurs. Each of these samples are dependent on 
the number of molecules in the current state. When there are a 
large number of molecules, the time until the next reaction can be 
extremely small. The counts of each species also influences which 
reaction is more likely to occur. The system is simulated by 
repeatedly applying reactions and incrementing time by the 
sampled time amount, resulting in a random walk, time-series 
trajectory. See [1] for more details. 

The exact simulation of the Gillespie algorithm becomes critically 
important when the number of molecules is sufficiently small. In 
this case, single reactions can significantly impact reaction 
propensities and future states (e.g. reaching a terminating state). 
When the number of molecules is exceedingly large, the system 
dynamics are approximately deterministic because a large 
numbers of reactions tend to average out random fluctuations. 

The exactness of the Gillespie algorithm does come at a 
computation cost, and several methods have been proposed to 
improve its performance, while still preserving exactness where 
necessary.  

For our simulations, we use the modified Poisson tau-leaping 
procedure that ensures that at most one critical reaction occurs per 
leap [4]. The tau-leaping speeds up the stochastic simulation by 
estimating the number of reactions occurring during a time period 
tau. The value of tau is chosen such that the change in reaction 
propensities during tau is arbitrarily small. When the tau leap is 

not large enough to provide useful speed up, the algorithm 
defaults to an exact simulation. 

2.2 Kernel Density Estimation 
In order to calculate the likelihood of the data given a candidate 
model, we need to estimate the probability density of the model at 
each data point. There are many ways to estimate probability 
densities. 

A simple method is to use a histogram. The histogram divides all 
samples (in our case counts of molecules after simulating a 
model) into a number of bins. The density is then the bin 
frequency divided by the bin width. Several methods exist for 
choosing optimal bin widths and positions [5].  

A major drawback to binned histograms however is that they are 
locally flat everywhere. In other words, they have no local 
gradient that is amenable to optimization.  

An alternative to a histogram, and the method used in our 
experiments, is kernel density estimation [6, 7]. Kernel density 
estimation is a non-parametric method to estimate probability 
density functions. It sums a series of kernel functions that are 
centered on each sample. We used a Gaussian kernel function, 
meaning each sample contributed a Gaussian density around its 
sample value. Choosing a uniform kernel for example would 
produce a result similar to a binned histogram. 

The Gaussian kernel produces density estimates, useful for 
optimizing, however we still need to specify bandwidth. The 
bandwidth is analogous to the bin width in a binned histogram. 
Variable kernel bandwidth selection is the technique of selecting a 
different bandwidth for each sample [8]. Variable bandwidths 
allow the kernels to be narrow in high density regions, capturing 
high details of the distribution, and wide in less certain low-
density areas. 
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Figure 1. Overview of the modeling problem. A stochastic system evolves an exact behavior over time shown in blue. Periodically,
the state of system can be measured (shown in red dots), a sample of the exact time evolution of the system. The task is to infer a 
maximum likelihood stochastic model (right) for this system from these periodic measurements. Actual data and solution shown. 
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In our experiments, we used the square-root law [9] for selecting 
the bandwidths per sample. This technique requires an initial 
estimate of the density – here, we used an ordinary histogram 
with optimize bins chosen by minimizing the mean integrated 
squared error (MISE) [5]. The final result is a smooth continuous 
estimate of the probability density that captures both sharp and 
diffuse features in the distribution. 

3. ALGORITHM 
The proposed method for inferring a maximum likelihood 
stochastic model uses an evolutionary algorithm to search for sets 
of reaction channels and rates to match the data. In this section, 
we describe the evolutionary encoding of candidate models in the 
search, and the fitness function. 

3.1 Encoding 
The stochastic model consists of a series of reactions. Each 
reaction specifies an integer number for the inputs, an integer 
number for the outputs, and a real valued number for the reaction 
rate.  If a reaction does not use an input, its input value is 0; 
likewise for outputs.  

We use a fixed, maximum number of reactions for our 
experiments. Candidate models can opt to use fewer reactions 
than the maximum by setting the reaction rate to 0, or setting the 
inputs and outputs to 0.  

Figure 2 summarizes our encoding for a stochastic model. It 
consists of a matrix of integer valued input coefficients for each 
reaction, a vector of real valued coefficients for each reaction, and 
a matrix of integer valued output coefficients for each reaction. 

A random encoding is produced by filling each matrix with 
random integers, normally distributed with zero mean and 
standard deviation of 1, and filling the reaction vector with 
random positive real values, normally distributed with zero mean 
and standard deviation of 1.  

The mutation operator works by randomizing each individual 
element with a fixed point mutation probability. The crossover 
operation recombines two parent encodings to form a new 
offspring. We use a random single point crossover on the 
reactions – for example, copying the first n reactions (inputs, 
outputs, and rate) from the first parent, and the remaining from 
the second parent. 

The complexity of the encoding is defined as the sum of all 
integer valued reaction coefficients on both inputs and outputs of 
the reactions.  

3.2 Likelihood Estimate 
Our goal is to find a maximum likelihood model. We cannot 
estimated the likelihood of a model explicitly, however, we can 
estimate the likelihood of seeing the experimental data given a 
specific model. This gives a measure of how well a particular 
model agrees with the data. In other words, we are trying to 
maximize the following expression: 
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Here, n is the number of data points (measurements of a system 
state), xi is a particular data point, m is a particular model, and P 
is the probability density of the model m at data point i. Rather 
than working directly with probabilities, it is numerically more 
stable to work with the log of probabilities, or the Log-
Likelihood: 
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Figure 2. The encoding of a solution representing a stochastic model of discrete reactions. A series of chemical reactions (top) are
represented by corresponding integer coefficients and real valued rate constants for each reaction (bottom). 
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To evaluate the likelihood, we need to estimate the value of P(xi | 
M = m). We do this by sampling the model m – that is, simulating 
the model over the time span from the previous data i – 1 point to 
the current data point i.  

 Figure 3 visualizes the simulation process. The candidate model 
is simulated, using the previous state, until the time reaches the 
current state. Each simulation is then added to a kernel density 
estimator, described above, to estimate the probability density P. 
The log of the density is then summed for each state x of the 
system to the cumulative log-likelihood value. 

3.3 Fitness Function 
Ultimately we want to maximize the likelihood of a candidate 
model, but since we can only approximate the density function, 
most random models will tend to have zero likelihood and no 
gradient to optimize on because we cannot accurately estimate the 
tails of the probability density function. 

Our solution to this problem is to use a two-component fitness 
metric. The two components are: 

1. The log-likelihood as usual, and  

2. The distance of the data point to the median value of the 
estimated distribution 

When a model has near zero likelihood (e.g. lower than epsilon = 
10-6 in our experiments) we subtract the distance of the data point 
to the median value of the distribution. Otherwise, the fitness is 
equal to the log-likelihood. This fitness metric is summarized in 
Figure 3. 

By adding the log-likelihood component to the distance 
component, the fitness function remains monotonically increasing  
for improving models. This allows initially poor random models 

to move their distributions close enough to the data points such 
that their density estimations can be used to maximize the 
likelihood. 

4. EXPERIMENTS 
We perform proof of concept experiments on the basic Lotka-
Volterra model [10, 11]. The target reactions for this system are 
shown below:  
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The Lotka-Volterra reactions model a predator-prey system. In 
the first reaction, prey (represented by x) grow exponentially. In 
the second reaction, prey may meet predators (represented by y), 
causing a prey to die and predators to increase in number. Finally 
in the last reaction, a predator can die out.  

We generated data sets of 10 pairs of measurements of the Lotka-
Volterra system. Each pair consists of a random initial condition, 
followed by a measurement after simulating for a fixed time 
duration. 

In our experiments, we compare two types of data sets, those with 
short time gaps, where measurements are made in short 
succession (time steps of 0.002), and long time gaps (time steps of 
0.1) where the state of the system changes dramatically between 
measurements. An example of the long time gaps data set is 
shown in Figure 3 (left), where each green arrow is a pair of 
measurements.  

Figure 3. Comparing a candidate model with the experimental data. The left pane shows the hypothetical exact behavior of a 
system in blue, and two known measurements of the system at red dots. The candidate model is simulated multiple times, starting 
from the first measurement for t seconds, in order to estimate a probability distribution of the model (right). The state of the 
second measurement is then compared with this distribution to evaluate the quality of the model to reproduce the measurement.  
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In the evolutionary algorithm we use a population size of 30, 
crossover probability of 50%, and mutation probability of 15%. 
We allow a maximum of 3 reactions in each model. In estimating 
a model density for a data point, we sample 100 independent 
simulations. We track various statistics of the best solution 
throughout each trial, including fitness on training and test data 
sets. We terminate all trial runs after 300 iterations (generations) 
of the evolutionary algorithm. 

We repeated multiple trials of the evolutionary algorithm using 
three different fitness metrics: 

1. Log-likelihood only 

2. Median distance only 

3. The proposed distance and Log-likelihood metric 

Therefore, we will be able to evaluate strengths or weaknesses of 
each component in the proposed metric. 

Figure 4. The search performance of the three compared fitness metrics. The top panes show performance when data points 
appear in rapid succession with short gaps in time. The bottom panes show performance when there are long gaps of time between 
data points. The left panes show the likelihood score of the best model during the search. The right panes show the percent of runs 
that identified the exact solution for the amount of computational effort. Error bars indicate the standard error. 
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5. RESULTS 
The first results is that the evolutionary algorithm is able to find 
the maximum likelihood model for all three compared fitness 
metrics. For the short time gap data set, Figure 4 (top) shows that 
all three metrics reach approximately 90% convergence to the 
exact known model. Both the likelihood and hybrid metrics 
perform 100% convergence after 100 generations.  

In terms of computation time, each generation took approximately 
1 minute. Most computation cost lies in simulating various 
candidate models to estimate their probability densities for each 
data point.  

On the data set with large time gaps, Figure 4 (bottom) shows 
greater differentiation between the three metrics. The two-
component metric reaches the highest likelihood models and 
convergence, followed by the likelihood only metric. The distance 
metric only performs the worst.  

Interestingly, when the time gaps are short, the performance of 
the two-component metric and likelihood metric are only 
approximately similar. This indicates that on short time gaps, the 
probability density of random candidate models is more likely to 
provided a useful search gradient, because data points are close to 
their initial conditions. Here, there is no benefit to using the extra 
distance component in the fitness metric. 

However, the distance metric appears to be crucial when the data 
set has large time gaps (Figure 4). Here, the two-component 
metric out performs the other metrics.  

Also interesting is that the distance metric alone performs very 
poorly. This metric allows models to get their distributions 

centered on the data, but does not optimize the likelihood making 
it inadequate on its own.  

In Figure 5 we compare the relationship between the log-
likelihood score and the distance metric. We can see that the 
distance is correlated with the log-likelihood, but imperfect. There 
is large variance vertically in the log-likelihood for fixed distance, 
indicating that log-likelihood metric is inaccurate or at least 
unstable at the tails of the model probability distribution.  

Finally, we collected various traits of the best solution for each 
algorithm during each search, shown in Figure 6. The first 
observation is that the genotypic age [12] of the best solution 
(measured in generations) is roughly equal to the total generations 
on average. This indicates that the evolutionary search is not 
being trapped by local optima, otherwise the best solutions would 
appear younger as younger solutions would replace solutions in 
local optima. Interestingly, the distance metric algorithm tended 
to have the highest ages, suggesting that it avoided local optima 
most, perhaps by identifying an attracting region for the global 
optima most reliably. 

The novelty of the best solution over time, shown in Figure 6, 
shows that the populations are initially very diverse before 
converging onto optima. But no clear difference between the 
compared metrics is apparent. Novelty [13] is defined as the 
average distance summed over the reaction coefficients of a 
candidate solution to nearest neighbors in the current population. 

In terms of bloat [14], the algorithm starts off with a low bloat 
ration after random initialization. The bloat tends to increase 
quickly, and then fall toward a ratio of 1 (no bloat) as the best 
solution converges to the target (Figure 6). The distance only 

 

Figure 5. The relationships between the distance metric of a model and its corresponding likelihood given the experimental data.
Each point in the plot is a random candidate model during the likelihood search. 

 

312



metric tended to reach higher bloat, which may be a reflection 
that it was less likely to converge to the target. 

One final observation is that for these traits in Figure 6, there 
appears to be very little difference between the likelihood metric 
and the two-component metric. The key difference is only in the 
overall performance (Figure 4). This suggests that the role of the 
distance component is to help models move toward the data so 
that the likelihood component can be used, and does not impact 
other aspects of the population or evolutionary algorithm. 

6. CONCLUSIONS 
In this paper we introduced an automated algorithm for 
identifying stochastic reaction models. The proposed method used 
an evolutionary algorithm to identify a maximum likelihood set of 

reactions and reaction coefficients. Instead of only optimizing 
likelihood, the proposed algorithm used a two-component fitness 
metric that optimized the distance of a candidate model's 
distribution from the data point when the likelihood was too small 
to provide an accurate search gradient.  

The experiments indicate that the likelihood metric alone 
performs well on data with short time gaps in data set. However, 
when the data set contained large time gaps, where the state of the 
system evolved far from the local behavior the two-component 
fitness metric performed best, finding the exact target solution 
faster and more reliably. Observations on the age, novelty, and 
bloat of the best solution indicate that the algorithm avoids local 
optima, and could scale well with increasing complexity systems. 

Figure 6. Traits of the best model over time during the evolutionary search. The top left plot shows the genotypic age of the best 
solution (the number of generations any part of the solution existed in the population). The top right shows the novelty of the best 
solution (how different it is from the rest of the population). The bottom pane shows the bloat of the best solution (ratio its 
complexity with the target solution complexity). Error bars indicate the standard error. 
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