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ABSTRACT 
Applying grammatical evolution to evolve neural networks 
(GENN) has been increasing used in genetic epidemiology to 
detect gene-gene or gene-environment interactions, also known as 
epistasis, in high dimensional data.  GENN approaches have 
previously been shown to be highly successful in a range of 
simulated and real case-control studies, and has recently been 
applied to quantitative traits.  In the current study, we evaluate the 
potential of an application of GENN to quantitative traits 
(QTGENN) to a range of simulated genetic models.  We 
demonstrate the power of the approach, and compare this power 
to more traditional linear regression analysis approaches. We find 
that the QTGENN approach has relatively high power to detect 
both single-locus models as well as several completely epistatic 
two-locus models, and favorably compares to the regression 
methods. 

Categories and Subject Descriptors 
I.5.0 [Computing Methodologies]: Pattern Recognition 

General Terms: Performance 

Keywords 
Grammatical evolution, neural networks, genetic association, 
epistasis, interactions 

1. INTRODUCTION 
The decreasing cost of whole-genome genotyping has led to the 
rapidly exploding availability of genomic data for disease 
mapping in humans.  The use of traditional statistical 
methodology has led to some enticing discoveries and 
confirmations [1].  However, analyzing this data on a gene-by-
gene basis has not been successful in determining the etiology of 
many human diseases, such as diabetes and cardiovascular 
disease, despite repeated studies indicating their relatively high 
heritability (the proportion of trait variance due to genetic 
variation) [2]. 

One hypothesized reason that many association results have not 
revealed reliable predictors of disease across replication datasets 
is epistasis:  interactions between multiple genes with little to no 
main effects that have not often been investigated [3].  The search 
for such interactions is a challenge.  One of the key challenges is 
the actual statistical modeling of such interactions.  Traditional 
statistical models can be limited in their ability to model such 
interactions due to the large number of empty contingency table 
cells in higher order interactions given the limited sample sizes of 
human genetic samples [3, 4]. 

Additionally, as genotyping technology has advances, and 
hundreds of thousands or millions of genetic variables are readily 
genotyped, variable selection (choosing the most predictive 
variables from the many genotyped) is an important challenge.  
Variable selection is difficult even in selecting univariate models, 
and the combinatorics of evaluating interactions expands the 
challenge exponentially when considering interactions.  Whereas 
analyzing each single-locus model for a traditional regression 
analysis on a genome-wide scale is well within the capabilities of 
modern computers, the number of multi-locus models increases 
exponentially, rendering an exhaustive search of all models 
impractical as the number of loci surveyed increase from the 
thousands up to the millions of variants available on current-
generation genome-wide genotyping arrays [5].  Besides this 
technical limitation, the statistical implications of multiple 
comparisons on the order of 1012 make this approach 
computationally infeasible. 

The standard tool used for association analyses of quantitative 
traits in population-based cohorts is linear regression.  This 
technique has a number of good attributes:  it has solid theoretical 
grounding in statistics, is easily interpretable, and generally 
accepted by the research community [6]. While checking all 
multi-locus models is impractical (as stated earlier), variable 
selection approaches (backward, forward, etc) are often applied in 
an attempt to ameliorate this problem [6]. One popular method of 
searching for genetic models with multiple loci is forward 
stepwise selection [7].  In this procedure, loci are tested one at a 
time for main effects using regression.  Loci are added at each 
step based on how much their presence improves the model.  
However, this approach is limited to constructing models with 
only main effects (while multiple loci may be included, their 
interaction terms are not). 

In response to these challenges, machine-learning approaches are 
gaining in popularity in human genetics [8].  The development, 
optimization, and application of new data mining approaches is a 
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booming area of research, and a wide number of methods are 
being developed to simultaneously perform statistical modeling 
and variable selection tasks in genetic association studies. 

One very promising area of research is the application of 
evolutionary algorithms to build a variety of classifiers for 
detecting gene-gene interactions in high throughput data.  These 
methods have emerged as a viable alternative to exhaustive search 
approaches when the scale of data (in terms of number of input 
variables) is very large. 

A number of evolutionary algorithms have been used to evolve a 
wide range of classifiers, but the use of grammatical evolution to 
evolve neural networks (GENN) [9] has shown particular success.  
GENN was originally developed for case-control data (with a 
binary trait) and was recently extended to quantitative traits [10, 
11].  In the current study, we use a quantitative trait GENN 
(QTGENN) implementation similar to those described previously 
to investigate the power of the approach to detect quantitative trait 
associations with a broad range of effect sizes.  Such power 
studies are an important stage in methods development, and are 
crucial to understand the potential of a new method for 
application to real data.  Additionally, we compare the 
performance of the QTGENN approach to traditional regression 
approaches, in order to understand how these power results 
compare to traditional statistical approaches. 

2. METHODS 
2.1 Grammatical Evolution  
Genetic algorithms (GA) [12] are a problem-solving technique 
where an initial population of many potential solutions to a given 
problem is generated, evaluated according to how well they solve 
the problem at hand, then ‘breed’ to produce the next generation.  
This process is iterated with the goal of having solutions converge 
on the correct solution.  The breeding process can involve such 
actions as randomly mutating some of the solutions, or combining 
parts of multiple solutions to come up with new ones. 

Grammatical Evolution (GE) is a form of a GA that allows the 
generation of computer programs using grammars.  It is described 
in detail in [13, 14]. GE uses linear genomes and grammars to 
define populations for the GA process. In GE, each individual 
consists of a binary string divided into codons, where mutation 
takes place on individual bits along this binary string and 
crossover only takes place between codons. The relative fitness of 
a GE model (the “phenotype”) is produced by translating the 
codons according to the grammar, and evaluated according to a 
specified optimization function.  After fitness is evaluated, 
evolutionary operators are applied. GE is unique compared to 
other EC algorithms as it separates “genotype” from “phenotype” 
in the evolutionary process and allows greater genetic diversity 
within the population than other evolutionary algorithms [13, 14].  
This process is analogous to the translation of RNA into a protein 
according to the amino acid code. 

2.2 Neural Networks 
Neural networks (NN) are a highly successful class of pattern 
recognition algorithms developed to model the basic functional 
unit of the brain, the neuron [15].  NNs were developed to model 
and capitalize on the parallel architecture of the human brain.  
This parallel architecture is a advantage over conventional 
computer programs, as they traditionally process data sequentially 
[16]. 

To model this capability, NN are used to construct a collection of 
simple analog processors in parallel to take an input pattern and 
generate an output signal [16].  In the case of genetic association 
studies, the inputs are genetic variants, and the output is a 
phenotypic value (such as disease status or a quantitative clinical 
variable like blood pressure, insulin levels, etc.)  NN are a 
specific type of directed graph [17], consisting of nodes that 
represent processing elements, arcs that represent the connections 
of the nodes, and directionality on the arcs that represent the flow 
of information [18].  The nodes are arranged in layers such that 
the input layer receives the external pattern that is to be processed 
by the NN.  Each node in the input layer is connected to one or 
more nodes in a hidden layer.  In turn, nodes in the hidden layer 
are connected to either additional hidden layers or to an output 
node.  The number and organization of inputs, nodes, and arcs is 
referred to as the architecture of a NN.  Each connection within 
the NN has a weight associated with it.  The external signal is 
conducted from the input layer, though the hidden layer(s) to the 
output layer, which is typically a single node.  This output node 
then generates an output signal that can then be used to classify 
the original input pattern [18].  Figure 1 demonstrates the 
structure of a general NN. 

NN are a highly appropriate model for human genetics studies for 
several reasons. Importantly, as the scale of data is rapidly 
expanding, NN are able to handle large quantities of data in 
reasonable computation time.  Additionally, NN are universal 
function approximators so they should be able to approximate any 
type of genetic etiology that underlies phenotypic values.  Finally, 
they are model-free in that no assumption has to be made about 
the genetic architecture that results in a particular phenotype, 
which is important when performing data-mining explorations of 
high dimensional data when little biology is known a priori.   
 

 
 
Figure 1. A feed-forward neural network with one input layer 
consisting of five nodes, two hidden layers with four and one 

node respectively, and one output layer (O).   The connections 
between layers have associated connection strengths or 

weights. 
 
Traditional application of NN models involve the implementation 
of a user-specified architecture (including variable selection), and 
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backwards selection optimization of weights between nodes.  This 
traditional approach is highly reliant on these arbitrary parameter 
choices.  This is a major concern for genetic association studies, 
as the proper variables and appropriate NN architecture is unclear 
[19].  To overcome these limitations, the application of 
evolutionary computation algorithms has emerged as a promising 
solution for evolving such models [20].  This approach has been 
successful in many fields [20], and has been successfully applied 
in association studies as well [21-23]. 
 

2.3 Grammatical Evolution Neural Networks 
(GENN) 
An application of GE to evolve NN for genetic association data 
has previously been described in detail ([24]).  This Grammatical 
Evolution Neural Network (GENN) approach was originally 
designed to select from a large number of potential input variables 
(typically categorical genetic variants, or single nucleotide 
polymorphisms (SNPs)) and associate them to a binary outcome 
variable (like case-control status). 

Before analysis, the original genotype data (input variables) is 
recoded into dummy variables as proposed by [24]. This is done 
to remove assumptions of additivity in the genetic model by using 
a numeric encoding.  Single-locus genotypes, encoded as 0, 1, 2 
(representing three genotypes derived from a biallelic genetic 
locus), are re-encoded as two-variable linear contrasts, such that 0 
becomes -1 and –1, 1 becomes 0 and 2, and 2 becomes 1 and -1. 

GENN used GE to evolve every aspect of NN analysis.  Details of 
the GENN process have been previously described [24].  The 
basic steps are as follows, shown in Figure 2.   

Briefly, the data is split into ten different pieces, for ten-fold 
cross-validation (CV).  9/10 of the data are used to train the neural 
networks (NNs), and the remainder is used to test the final NNs.  
For each of the ten CV splits, the following analysis is carried out. 

Step 1: Random bit strings are generated corresponding to valid 
neural networks (NNs) using sensible initialization [13, 14], to 
create an initial population of NNs.   

Step 2: These bit strings are translated into NNs using the 
grammar.  

Step 3: Each NN is evaluated on the training data, comparing the 
actual contents of the training data to the values predicted by the 
NN using the fitness metric.  

Step 4: NNs that performed ‘best’ according to the fitness metric 
are chosen, and a new generation of solutions is constructed via 
reproduction, including random crossover and mutation of the bit 
strings.   

Steps 2 through 4 are iterated until either fitness (one of several 
measures of classification accuracy for classical GENN) reaches 
100%, or the maximum number of generations has been reached.  
At this point, the final population of NNs is evaluated using the 
fitness metric against the remaining 1/10 of the data held out as 
the testing set.  The best performing of these NNs is used as the 
final model.   

In an attempt to escape local minima in the search space, as well 
as take advantage of parallel computing facilities, steps 1 through 
4 take place in multiple populations of NNs running on separate 
processors.  The best individual from each population is 
periodically replicated to all other populations. 

After this process is completed for all 10 cross-validation 
replicates, the variables in the final model of each run are 
inspected.  Variables with the highest cross-validation consistency 
(i.e., they appear in the final models from most or all of the CV 
runs, more often than the other variables) are chosen for inclusion 
in the final model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. An overview of the GENN process that shows the 
six-step process of initialization, cross-validation, training, 
fitness evaluation using balanced error, natural selection 
(tournament) and testing – evaluating prediction error. 

2.4 Quantitative GENN (QTGENN) 
For this study, the standard balanced error fitness metric implemented for 
case-control studies was replaced with the R2 value, calculated as the 
square of the correlation, 

          
where xi and yi are the actual and predicted trait values 
respectively for individual i.  The predicted values yi are the 
output of a neural network constructed from each individual’s bit 
string according to the grammar.  

This grammar modification allows for the evaluation of 
quantitative traits with GENN (QTGENN).  Since there is not a 

0010110101…
0111010100...

<pinput> ::=  W(<winput>), W(<winput>), 2 
           |  W(<winput>), W(<winput>), W(<winput>), 3
           |  W(<winput>), W(<winput>), W(<winput>), W(<winput>), 4
           |  W(<winput>), W(<winput>), W(<winput>), W(<winput>)...
            
<winput> ::= <cop>, <v>
           | <cop>, <p>
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restriction of the NN models to binary outcomes, this extension of 
the grammar to quantitative traits is a natural extension. 

The grammar’s language contains symbols for arithmetic 
operators such as addition, subtraction, multiplication, and 
division, numeric constants, and more complex symbols allowing 
these to be joined together.  It also includes input variables, which 
are read from the input data for each sample, and consist of 
genotypes (and possible environmental covariates).  The exact 
grammar used in this implementation is explicitly included in the 
Appendix. 

2.5 Linear Regression 
To compare QTGENN against a widely used technique for 
genetic association, we used R (r-project.org [25]) to perform 
forward stepwise linear regression on each of the datasets.  In this 
technique, linear regression models are constructed by starting 
from a null model, adding each locus to the model in turn, and re-
evaluating.  Decisions on whether to keep each locus or remove it 
at each step are based on the selection criterion – in this case, the 
Bayesian Information Criterion (BIC) [26].  Power for linear 
regression was defined as the percentage of replicates for each 
model/effect size for which analysis identified all of the causal 
loci.   
As a positive control, explicit regression was used to determine 
how much genetic signal each model contained.  In explicit 
regression, models are constructed which contain only the causal 
loci, their interactions, and the intercept.  These models are then 
tested to determine the average r-squared value across all 
replicates, as well as the percentage of replicates for which each 
effect is significantly different from zero.  If the explicit 
regression finds little to no significance in the known actual 
model, it would be unsurprising for other methods to perform 
poorly at discovering the correct model de novo. 

2.6 Data Simulations 
To test and compare the power of the QTGENN approach, a range 
of genetic models and effect sizes were simulated. We use 
penetrance functions to represent epistatic genetic models, where 
penetrance typically defines the probability of disease given a 
particular genotype combination by modeling the relationship 
between genetic variations and disease risk.   

Since we are interested in quantitative traits instead of binary 
traits, penetrance functions were used not to assign disease status, 
but to assign individuals into two different phenotype 
distributions.  Instead of assigning “case” status, the penetrance 
function is used to define the probability of an individual’s 
assignment to the higher/upper trait distribution.  The genetic 
variations modeled are single-nucleotide polymorphisms (SNPs) 
with 2 alleles (A and a) that result in three genotypes per SNP 
(AA, Aa, aa). Genotypes were generated according to Hardy-
Weinberg proportions (in both models, p=q=0.5) [27, 28]. 

Both single-locus and multi-locus interaction models were 
simulated. Single-locus models with different genetic modes of 
inheritance were simulated (dominant and recessive).  In the case 
of the dominant model, allele A is “dominant” to allele a, such 
that genotypes AA and Aa have the same probability of 
assignment to the upper (higher) trait distribution, and the 
genotype aa has a zero probability of being assigned to the upper 
distribution.  In the case of the recessive model, the aa genotype 

has risk of being assigned to the upper distribution, and the AA 
and Aa genotypes are assigned to the lower distribution. 

Canonical examples of 2-locus epistatic models, XOR and ZZ 
(described by [29]), were used to evaluate the potential of the 
method to detect “purely” epistatic effects, with no marginal main 
effects. Additional 2- and 3-locus epistatic models were also 
generated using the SimPen software [30]. SimPen uses a genetic 
algorithm to find penetrance functions with minimal main effects, 
based on user specified effect sizes (in terms of heritability and 
odds ratio) and controlling the minor allele frequencies of causal 
genes. These models were chosen such that the heritability of 
which distribution was chosen was relatively low (0.05 or 0.10), 
and with odds ratios that varied from 2 to 5.  Heritability was 
calculated as discussed in [31]. 

Example penetrance functions for the XOR and ZZ functions are 
shown below in Table 1.  The XOR model demonstrates an 
interaction effect in which high risk of assignment to the upper 
trait distribution is dependent on inheriting a heterozygous 
genotype (Aa) from one locus or a heterozygous genotype (Bb) 
from a second locus, but not both.  In the ZZ model, high risk of 
assignment to the upper trait distribution is dependent on 
inheriting exactly two high-risk alleles (A and/or B) from two 
different loci.  The additional penetrance functions used in the 
current simulation study are available on the following website: 
www4.stat.ncsu.edu/~motsinger, or directly from the authors by 
request. 
 
Table 1. Example Epistatic Penetrance Functions, where the 

probability of assignment to the higher quantitative trait 
distribution is listed in the cells (the multilocus genotype 

combinations for two genes, A and B).  Table A demonstrates 
the XOR function, while B demonstrates the ZZ model. 

 
A. XOR Model, Heritability=5.26% 

 BB Bb bb 

AA 0 0.1 0 

Aa 0.1 0 0.1 

aa 0 0.1 0 

 

B. ZZ Model I, Heritability=5.13% 

 BB Bb bb 

AA 0 0 0.1 

Aa 0 0.05 0 

aa 0.1 0 0 

 

The final trait distribution in all datasets was thus a mixture of 
two normal distributions:  one sampled from N(0,1), and the other 
from N(µ, 1), where µ took the value of 0.25, 0.5, 1.0, 2.0, or 3.0.  
This leads to a more easily interpretable range of varying model 
difficulty, from obvious (an effect size of 3) to almost non-
existent (an effect size of 0.25), as can be seen by Figure 3.  
These extremely low effect sizes were used as a negative control 
– on datasets with so little signal, any analytical methods can be 
expected to perform poorly at determining the causal loci.  This 
simulation approach has been described in detail in [32], and is 
outlined in Figure 3. 
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Figure 3.  Workflow of the Data Simulation Process. 

 
In total, sixteen different genetic models were simulated, with 5 
effect sizes (shifts in means for the two distributions) for each.  
The models simulated are listed in Table 2.  Each dataset 
contained 500 individuals sampled from the low distribution and 
500 from the high distribution.  Each dataset had 100 total loci, 
with one, two, or three of these being causal (depending on the 
genetic model) and the rest being unlinked to the trait (or each 
other).  Allele frequencies were 0.5 for all loci.  Each combination 
of genetic model and effect size was replicated 100 times, each of 
which was analyzed separately.  Datasets with 100 loci are 
certainly not representative of the genome-wide data available 
today, but a power study using GWAS data is currently 
computationally infeasible. Figure 4 shows histograms of example 
trait distributions for two of the effect sizes simulated. 

2.7 Data Analysis 
QTGENN was executed with 10-fold cross-validation, 4 demes 
per run.  Each deme was allowed to run for a maximum of 5000 
generations, with each deme exchanging their best NN every 25 
generations.  Demes had a population of 250.  Standard crossover 
was used, with a crossover rate of 0.9, and the mutation rate was 
0.2.  Minimum chromosome size was 50 codons, and maximum 
was 500.  Tournament selection was used – in this method, 
individual NNs are chosen at random in groups of 3, and the best-
performing one is selected for breeding in the EC process.   

These values were chosen after a previous, smaller-scale 
simulation study (smaller in terms of number of models 
simulated,  

 
Figure 4. Examples of mixed trait distributions (frequency 
histograms) of model A, with effect sizes of 0.25 (A) and 3 (B). 
 

Table 2. Summary of simulated models.   
For special genetic models, the odds ratio is undefined because 

of a zero value in the penetrance function. 

# Causal Loci h2 
Odds Ratio 

(Special Genetic 
Model) 

1 0.05 
Undefined 
(Dominant) 

1 0.05 
Undefined 
(Recessive) 

2 0.05 2 
2 0.05 2.5 
2 0.05 3 

2 0.05 
Undefined 

(XOR) 

2 0.05 
Undefined 

(ZZ) 
2 0.10 3 
2 0.10 4 
2 0.10 5 
3 0.05 2 
3 0.05 2.5 
3 0.05 3 
3 0.10 3 
3 0.10 4 
3 0.10 5 

 
not number of SNPs or individuals) parameter sweep experiment 
was performed on similar simulated data (results not shown) –
observing varying performance of the method as different 
parameter values were tried.  The fitness criterion used to evaluate 
each NN was the R2 calculation described above.  These 
parameters resulted in the highest power of the QTGENN method 
in these parameter sweeps. 

QTGENN was implemented in C++, compiled using GCC 3.4.6 
for 32-bit Linux, and executed on cluster nodes with Intel Xeon 
processors running RHEL 4.  Average execution time of each 
cross-validation replicate on this system was 24 minutes.  
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Instructions for acquiring the source code can be found through 
the following website: http://www4.stat.ncsu.edu/~motsinger/.  

Power for QTGENN was defined as the percentage of datasets (of 
the 100 replicates simulated for each model) analyzed in which 
the final model contained all causative loci at a higher cross-
validation consistency (CVC) than any non-causal locus (with no 
false positive or false negative loci). For the step-wise linear 
regression analysis, power was defined as the percentage of times 
across the 100 replicates for each simulated model that regression 
selected the causal variable(s) in the final model (with no false 
positive and no false negative loci). 

3. RESULTS 
Table 3 contains a summary of QTGENN power over a range of 
disease models.  QTGENN has increasing power to detect all 
causal loci in models with larger effect sizes, heritabilities, and 
odds ratios.  Conversely, QTGENN has less power to detect 
models with increasing numbers of purely epistatic loci, with 3-
locus models having relatively low power.  Only when very large 
effect sizes are reached does the method show power above zero 
at all. 

Table 3. QTGENN Power  (%) (ES = Effect Size) 

Model 

ES 
0.25 

ES 
0.5 

ES 
1.0 

ES 
2.0 

ES 
3.0 

Loc
i 

h2 

Odds Ratio 
(Special 
Genetic 
Model) 

1 0.05 
 Undefined 
(Dominant) 

0.02 0.13 0.78 0.92 0.95 

1 0.05 
Undefined 
(Recessive) 

0.22 0.99 1.0 1.0 1.0 

2 0.05 2 0 0.04 0.51 1.0 0.99 
2 0.05 2.5 0 0 0.08 0.52 0.61 
2 0.05 3 0 0 0.24 0.73 0.85 

2 0.05 
Undefined 

(XOR) 
0.03 0.47 1.0 1.0 1.0 

2 0.05 
Undefined 

(ZZ) 
1.0 0.54 1.0 1.0 1.0 

2 0.10 3 0 0.03 0.39 0.98 1.0 
2 0.10 4 0 0.04 0.40 0.99 1.0 
2 0.10 5 0 0.04 0.63 1.0 1.0 
3 0.10 2 0 0 0 0 0 
3 0.10 2.5 0 0 0 0.01 0.01 
3 0.10 3 0 0 0 0 0 
3 0.10 3 0 0 0 0.01 0.02 
3 0.10 4 0 0 0 0.21 0.24 
3 0.10 5 0 0 0 0.06 0.21 

 

The results of the step-wise linear regression analyses are shown 
below in Table 4.  These results show that the power of step-wise 
linear regression is higher than that of QTGENN for the single 
locus models, but is much lower for the epistatic models.  
Unsurprisingly, given the hierarchical nature of the step-wise 
variable selection procedure, step-wise linear regression has 
powers of zero for all the interactive models. 

Because a multistep approach was taken for the data simulations, 
we calculated R2 values for all the simulated models to have better 
context for the results of the QTGENN and step-wise regression 

results.  Table 5 lists the average R2 across the 100 datasets for 
each model.  The correlation coefficients quantify the true amount 
of signal in the datasets generated. 
 
Table 4. Stepwise Linear Regression Power (%) (ES = Effect Size) 

Model 

ES 0.25 ES 0.5 ES 1.0 ES 2.0 ES 3.0
Loci h2 

Odds Ratio
(Special 
Genetic 
Model) 

1 0.05 
Undefined 
(Dominant)

0.02 0.26 0.99 1 1 

1 0.05 
Undefined 
(Recessive)

0.32 1 1 1 1 

2 0.05 2 0 0 0 0 0 

2 0.05 2.5 0 0 0 0 0 

2 0.05 3 0 0 0 0 0 

2 0.05 
Undefined 

(XOR) 
0 0 0 0 0 

2 0.05 
Undefined 

(ZZ) 
0 0 0 0 0 

2 0.10 3 0 0 0 0 0 

2 0.10 4 0 0 0 0 0 

2 0.10 5 0 0 0 0 0 

3 0.05 2 0 0 0 0 0 

3 0.05 2.5 0 0 0 0 0 

3 0.05 3 0 0 0 0 0 

3 0.10 3 0 0 0 0 0 

3 0.10 4 0 0 0 0 0 

3 0.10 5 0 0 0 0 0 
 

4. DISCUSSION 
The results of our simulations show several trends.  For both 
QTGENN and regression, power increases with effect size and 
odds ratios.  This is not surprising, since these cases represent 
models with stronger genetic effects that should be easier to find.  
We are encouraged by relatively high power of QTGENN to 
detect models for which explicit regression finds small R2 values 
(0.05 - 0.10).  We believe this indicates the promise of the method 
to detect epistatic models even in the absence of main effects, 
significant or otherwise. 

The results of this study demonstrate that the QTGENN approach 
is promising for detecting genetic risk factors in association 
studies, and provides initial results to understand the power of this 
analytical approach in a wide range of models.  While these 
results are exciting, there are many more questions that should be 
followed up in the continual development of this method. 

There are many aspects of the implementation itself that might be 
improved.  For example, the grammar used in this paper allowed 
the NNs to extrapolate from the data – i.e., trait values outside the 
observed range could be predicted.  Although this provides 
maximum generality, it may reduce QTGENN power, or increase 
computational time required for convergence.  In follow up 
studies we would like to experiment with additional model 
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components, including new protected operators which limit 
predictive NN values to be in the same range as the training 
dataset.  More complex non-terminals could also be envisioned, 
such as logarithms, exponentials, and trigonometric functions.  
Although the current grammar allows approximations of these 
functions to evolve, having them available as building blocks of 
the NN may allow more complex behavior to evolve in fewer 
generations.  

Table 5. Variance explained by Causal Loci when Explicitly 
Modeled (R2). (ES = Effect Size) 

Model 

ES 0.25 ES 0.5 ES 1.0 ES 2.0 ES 3.0
Loci h2 

Odds Ratio 
(Special 
Genetic 
Model) 

1 0.05 
Undefined 
(Dominant)

0 0.01 0.03 0.07 0.1 

1 0.05 
Undefined 
(Recessive

) 
0.01 0.03 0.12 0.3 0.43 

2 0.05 2 0 0.01 0.02 0.06 0.08 

2 0.05 2.5 0 0.01 0.02 0.05 0.06 

2 0.05 3 0 0.01 0.02 0.05 0.07 

2 0.05 
Undefined 

(XOR) 
0.01 0.02 0.07 0.18 0.25 

2 0.05 
Undefined 

(ZZ) 
0.01 0.03 0.1 0.24 0.34 

2 0.10 3 0.01 0.01 0.03 0.08 0.1 

2 0.10 4 0.01 0.01 0.04 0.09 0.12 

2 0.10 5 0.01 0.02 0.04 0.1 0.13 

3 0.05 2 0.02 0.02 0.04 0.05 0.07 

3 0.05 2.5 0.02 0.02 0.04 0.06 0.08 

3 0.05 3 0.02 0.03 0.04 0.07 0.09 

3 0.10 3 0.02 0.03 0.05 0.08 0.11 

3 0.10 4 0.02 0.03 0.05 0.1 0.14 

3 0.10 5 0.02 0.03 0.06 0.11 0.15 
 

Optimization of the implementation itself will also be important.  
While the methodology is promising on these smaller scale 
datasets, in thinking towards scaling the methodology to real data, 
with hundreds of thousands of variables, the implementation will 
need to be improved.   

In addition, we plan to follow up these results with comparisons to other 
computational methods that are designed to detect gene-gene 
interactions in human genetic association studies, such as the Recursive 
Partitioning Method (RPM) [32] and generalized Multifactor 
Dimensionality Reduction (GMDR) [33].  Such comparisons would be 
an important next step in understanding the niche of GE optimized 
neural networks for detecting quantitative traits. 

Finally, because of the flexibility of NNs as classifiers, the 
method could readily be expanable to quantitative inputs as well 
as outputs.  This would allow for the application of the QTGENN 
method to a wider range of genomic, environmental, and clinical 
input variable types, such as gene expression data, etc. 
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6. APPENDIX 
The grammar used in the QTGENN implementation is below, 
where N describes the nonterminals, T describes the terminals, 
and S represents the start codon. 

N = {p,pn,pinput,wt,winput,cop,op,v,num, dig} 
 
T = [W,*,+,/,-,Concat,.,V1-200] 
 
S = p 

 
<p>      ::= <op>(<pinput>) 

 
<pn>     ::= PA 

           | PS 
           | PM 
           | PD 
 

<pinput> ::=  W(<winput>), W(<winput>), 2  
            | W(<winput>), W(<winput>), W(<winput>), 37. 
            | W(<winput>), W(<winput>), W(<winput>),  

  W(<winput>), 4 
            | W(<winput>), W(<winput>), W(<winput>),  

  W(<winput>), W(<winput>), 5 
 

<winput> ::= <cop>, <v> 
           | <cop>, <p> 
        
<cop>    ::= (<cop> <op> <cop>) 
           | Concat(<num>) 
 
<op>     ::= + 
           | - 
           | * 
           | / 
 
<num>     ::= . 0 0 <dig> <dig>  5 
 
<dig>    ::= 0 
           | 1 
           | 2 
           | 3 
           | 4 
           | 5 
           | 6 
           | 7 
           | 8 
           | 9 
 
<v>       ::= V1-200 
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