
Evolving Random Boolean Networks with Genetic
Algorithms for Regulatory Networks Reconstruction

Mariana R. Mendoza
PPGC, Instituto de Informática

Universidade Federal do Rio Grande do Sul
C.P. 15064, 91501–970
Porto Alegre, RS, Brazil

mrmendoza@inf.ufrgs.br

Ana L. C. Bazzan
PPGC, Instituto de Informática

Universidade Federal do Rio Grande do Sul
C.P. 15064, 91501–970
Porto Alegre, RS, Brazil

bazzan@inf.ufrgs.br

ABSTRACT

The discovery of the structure of genetic regulatory networks
is of great interest for biologists and geneticists due to its
pivotal role in organisms’ metabolism. In the present pa-
per we aim to investigate the inference power of genetic
regulatory networks modeled as random boolean networks
without the use of any prior biological information. The
solutions space is explored by means of genetic algorithms,
whose main goal is to find a consistent network given the
target data obtained from biological experiments. We show
that this approach succeeds in reconstructing a model with
satisfactory level of accuracy, representing an useful tool to
guide biologist towards the most probable interactions be-
tween the target genes.

Categories and Subject Descriptors

J.3 [Life and Medical Sciences]: Biology and genetics

General Terms

Algorithms

Keywords

Gene Regulatory Network, Genetic Algorithm, Boolean Net-
work, Reverse Engineering, Gene Interactions

1. INTRODUCTION
One of the most challenging problems in bioinformatics is

the inference of genetic regulatory networks (GRNs). With
the recent advances in biological experiments and the avail-
ability of large amounts of gene expression data, scientists
have shifted their attention to a systematic study of organ-
isms, rather than a gene-by-gene analysis. The main motiva-
tion is to gain insight into the underlying complex networks
of organisms, as well as to characterize the genetic regulation
responsible for cellular development and function.
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The process of identifying gene interactions is commonly
referred in literature as reverse engineering of GRNs. There
are three important factors for the effectiveness of this pro-
cedure, as outlined by Marbach in [10]: the qualitative and
quantitative features of gene expression dataset; the selected
modeling framework and, at last, search methods applied to
find the most probable network structure given the dataset
and any available prior knowledge.

Nowadays, most research on the reconstruction of GRNs
is based on gene expression data from microarray experi-
ments. The microarray technology allows the measurement
of mRNA concentration for a large number of genes. This
information can be interpreted as the expression levels of
genes under certain environmental conditions and, theoret-
ically, can be used to discover the interactions among genes
when a large enough dataset is available. However, this
approach suffers from the so-called dimensionality problem:
the quantity of time points is usually scarce considering the
large number of observed genes [19]. This issue, combined
to the fact that gene expression data is intrinsically noisy,
is one of the current drawbacks of the reverse engineering
process.

In the last years, a wide variety of frameworks to model
GRNs have been proposed. In a general way, they can
be either continuous or discrete, deterministic or stochas-
tic, static or dynamic, as mentioned in a comparative study
of reverse engineering methods held by Hache et al. in [4].
Bayesian networks, for instance, have been applied to GRNs
modeling and learning by Friedman et al. in [3]. This is a
particularly suitable tool for handling noisy data since the
probabilistic nature of Bayesian Networks allows the analysis
of the statistical properties of dependence and conditional
independence between multiple interacting entities. Also,
techniques that cover the continuous level of gene expres-
sion, like neural networks and S-systems, have been success-
fully explored in [12] and [17] respectively. Both methods
have the advantage of reproducing the non-linearity of ge-
netic regulation, but require the inference of a large number
of parameters.

Regarding the discrete approaches, one of the most well-
known methods for modeling GRNs is based on random
boolean networks, which were first applied to this context
by Kauffman in [5]. Although they are extremely simple,
random boolean networks are able to capture much of the
complex dynamics of gene networks and allow the extrac-
tion of meaningful biological information [8]. Algorithms
for inferring gene networks with random boolean networks
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have been early proposed in [1] and [9], and more recently in
[8] and [11]. These works focus on finding a consistent net-
work given the input data (which has been lately referred
as the consistency problem), by performing an exhaustive
search over the state transition matrix of discretized gene
expression data.

As previously mentioned, a good modeling framework does
not guarantee the effectiveness of the procedure by itself;
it must be combined with efficient search or learning algo-
rithms so that relevant knowledge can be discovered. Lately,
evolutionary algorithms (EAs) have attracted researchers at-
tention due to its ability to cope with a large solution space
[14]. They have been widely used in genetic data analysis in
association with the distinct frameworks formerly presented.

In [2], genetic algorithms are used to optimize the struc-
ture of networks modeled by a weight matrix of regulatory
pathways. The expressions are regulated in discrete state
transitions, given by the weighted sum of expression level of
other genes. Solutions were evaluated based in the absolute
error between the generated expression and the target ex-
pression pattern, and search was biased by the Minimum De-
scription Length so that obtained results are the most sim-
plest structured models. Authors have applied this method-
ology to randomly generated target networks and have suc-
cessfully identified networks with several dozen genes to sig-
nificant accuracy.

Discrete models were also used in [15] to develop a rank-
ing method of alternative hypothesis models to a target
GRN. Since experimental data has limited availability, au-
thors propose a more realistic approach, in which the set of
alternative hypotheses is given as input file to a genetic algo-
rithm together with the gene expression data. Through the
minimization of a quadratic error function between expres-
sion profiles obtained from generated and target networks,
the method successfully ranked the alternative hypothesis,
identifying the most probable network structure given the
input gene expression patterns.

Although GRNs may be easily codified into discrete mod-
els, most of researches involving EAs still use continuous
modeling frameworks. S-Systems, one of the most common
approaches, have been combined with EAs in [13] and [18],
providing satisfactory reconstruction for small and middle-
sized genetic regulatory networks. In [7], a hybrid system
has been proposed, combining genetic algorithms with a
single-layer artificial neural network. The algorithm has ac-
curately fit the data on which is was trained for both ar-
tificial and real data, and correctly reproduced connections
between genes when trained with artificial data. For further
information on different types of EAs for reverse engineer-
ing GRNs using S-Systems and neural networks as modeling
frameworks, see [17]. Also, a broad review of applications of
EAs in different problems of bioinformatics can be found in
[14].

In the present work we aim to investigate the viability of
reverse engineering GRNs, modeled as random boolean net-
works, by exploring the search space of consistent topologies
with genetic algorithms based solely in experimental data.
Our goal is to evaluate the power of inference of this ap-
proach and how far we can reconstruct an accurate model
without supplying any biological prior knowledge. This is
useful when no such prior knowledge is available, which is a
common situation. The generated model would be a valu-

Figure 1: An example of N = 3 interacting genes,
with K = 2, modeled as boolean devices. A green
node represents expressed genes (state 1), while a
red dashed node denotes not expressed ones (state
0).

able start point for biologists in the investigation of gene
interactions.

This paper is organized as follows. In the next section
we will briefly describe the RBN-based modeling framework
and its dynamics. In the sequence, we present a detailed
description of the proposed model. In section 4 the data
and parameters values used in experiments are explained.
Finally, we present and discuss the results of our work, as
well as possibilities of improvements and further research.

2. METHODS: RANDOM BOOLEAN

NETWORKS
A random boolean network (RBN), G(V, F ), is defined

by a set of nodes V = {x1, x2, . . . , xN}, which in GRNs
context represent genes, and a set of boolean functions F =
{f1, f2, . . . , fN}. Each node xi, i = 1, . . . , N , is a boolean
device that stands for the value (state) of gene i. Generally,
xi = 1 denotes that gene i is expressed, while xi = 0 means
that it is not expressed. Each node has its value determined
by a boolean function fi ∈ F , which represents the rules of
regulatory interactions between genes, andKi specific inputs
(xj , with j = 1, . . . , N), denoting its regulatory factors.

Function fi specifies, for each possible combination of Ki

input values, the status of the regulated variable xi. Thus,
being Ki the number of input variables regulating a given
gene, since each of these inputs can be either expressed or
not (1 or 0), the number of combinations of states of the
Ki inputs is 2Ki . For each of these combinations, a spe-
cific boolean function must output either 1 or 0. There-
fore the total number of boolean functions over Ki inputs

is 22
Ki

. When Ki = 2, some of these functions are well-
known (AND, OR, XOR, NAND, etc.), but in the general
case functions have no obvious semantics.

To illustrate the regulation process, Figure 1 depicts a
simple example of a GRN modeled as a RBN of N = 3
genes controlled by 2 regulatory factors each (Ki = 2). The

Table 1: Boolean functions for genes A, B, and C.

(OR) (OR) (NAND)
B C A A C B A B C
0 0 0 0 0 0 0 0 1
0 1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0
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Table 2: State transition for Table 1.
(t) (t+1)

A B C A B C
0 0 0 0 0 1
0 0 1 1 1 1
0 1 0 1 0 1
0 1 1 1 1 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 1 1 0
1 1 1 1 1 0

000 → 001
↓ x state

010 → 101 → 111 → 110 cycle 1
↑

100 → 011

Figure 2: State transition graph for Table 1.

parents’s set for nodes A, B and C are, respectively, {B,C},
{A,C} and {A,B}. A boolean function is randomly assigned
to each gene and the final regulatory rules are shown in
Table 1: genes A and B are regulated by function OR, while
gene C is regulated by a NAND function. Given the boolean
functions from Table 1, Table 2 shows, for all 23 states at a
given time t, the resulting expression of each gene xi at time
t+1, i.e. the successor state of each state. Further, from this
table, it is possible to determine the state transition graph
of the network, which appears in Figure 2. One sees that
there is only one attractor state for this example, namely
110.

Random boolean networks have been used to explain adap-
tation and self-organization in complex systems. The study
of the behavior of regulatory systems by means of networks
of boolean functions was introduced by Kauffman in 1969 [5].
Examples of the use of this approach in biology, genomics,
and other complex systems can be found in [6].

3. PROPOSEDMODEL

3.1 Coding description
Due to the interesting combination of simplicity and in-

ference capacity of RBNs, this was the selected framework
to describe the structure and dynamics of regulatory net-
works. As previously mentioned, in this context each node
of the network represents a gene and the edges translate the
existing dependencies between them. Each gene might be
either at state 1 or 0, indicating if it is expressed or not, re-
spectively. A gene is considered expressed when the protein
which it codes is being produced. The regulation of gene
expression is controlled by other genes, henceforth referred
as gene’s parents, through boolean functions. The boolean
function denotes the necessary conditions in terms of par-
ents’ state for a gene to express its carried information.

As we are interested in reconstructing the conditions and
relations of gene regulation from experimental data, this is
an adequate model because it allows us to concentrate in the
qualitative features of the network. Former works have tack-
led the task of discovering GRNs by performing an exhaus-

Figure 3: An example of GA individual codification
for network depicted in Figure 1.

tive search over states transition table of experimental data
or discretized gene expression data [1, 9, 11]. This kind of
search has succeed in finding most of topology of the under-
lying target GRN, but it requires high computational time
even for small-sized networks. Since most organisms are
composed of hundreds of genes at least, unveiling the corre-
sponding GRNs would require a prohibitive amount of time,
if feasible at all. Therefore, more powerful search methods
have been recently proposed. The use of genetic algorithms
(GAs) is useful because they are known to cope well with a
large solution space and they have a large amount of implicit
parallelism.Thus, GAs have been widely applied in different
tasks of genetic analysis, as reviewed in [14]. In the present
work, we combine the robustness of GA with the simplic-
ity of RBNs aiming to reach an accurate reconstruction of
GRNs.

In the GA-based modeling, each individual represents a
candidate network, whose topology is codified into a binary
string. This string contains the binary values of parents’ IDs
and the boolean function for all genes in the network. Genes
are identified from 1 to N , where N is the number of genes
in GRNs, and have, each, Kmax or less connections. Both
N and Kmax are user-configurable parameters.

An example of codification is given in Figure 3 for the
RBN depicted in Figure 1 and its corresponding boolean
functions in Table 1. For illustration purposes, this exam-
ple shows genes identified as A, B and C. However, in the
real application, these IDs are binary coded. Also, note that
only the function’s output values of Table 1 are represented
in the string (the last four bits of each node’s encoding is
reserved for its function in Figure 3). The information in
the bits referring to the gene’s parents is the key to retrieve
the input combination. This mechanism avoids represent-
ing all possible input/output combinations, which might get
excessively large for higher values of K. The length of bi-
nary strings clearly depends on the number of genes and the
maximum number of allowed connections per gene (Kmax).
For large-sized networks, the strings may end up being long.
However, this has not posed any problem related to compu-
tational time.

3.2 Fitness function
Individuals are evaluated based in a so-called inconsis-

tency ratio (IR) computed from a target data. Each mea-
surement in the given data set is associated with a positive
weight which indicates its quality. Since it is usually im-
practicable to estimate the quality of each measurement, we
assume weights to be uniform and equal to 1, following the
suggestion in [11]. For each 2K possible input combination
of a node, k = 1, ..., 2K , the total weight of measurements
whose output value is 0 and 1 are stored in variables wk(0)
and wk(1), respectively. Considering that w is the sum of
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Table 3: Example of inconsistent data.

Input xi1 1 0 1 0 0 1 0 0 1 1
xi2 0 0 1 1 0 0 1 0 0 1

Output xi 0 1 0 1 1 1 1 0 0 0

all measurements’ weights, the IR for a single node is hence
defined as in Equation 1.

IRi = w−1

2
K∑

k=1

min(wk(0), wk(1)) (1)

Inconsistencies are related to the number of mismatches
found in the gene expression profiles in respect to the struc-
ture of networks generated by the GA. For a given combi-
nation of input, we expect the model to generate the same
output according to the regulation rules described by the
boolean functions. Otherwise, an inconsistency exists. For
example, in Table 3, inputs (0, 0) and (1, 0) produce respec-
tively outputs 1 and 0 in most of experiments. Therefore,
whenever the output for these inputs are 0 and 1, these are
considered inconsistent values. The inconsistency ratio for
this specific node and the given data is equal to 2/10 = 0.2.
In [11] this criteria was used to find the most consistent par-
ent set and boolean function for each gene, since the noise
in experimental data renders the identification of a single
consistent tuple and mapping rule not feasible.

Once the IR for each gene is calculated, the network incon-
sistency is determined by the sum of all nodes’ IR, according
to the following equation:

IRN =
N∑

i=1

IRi (2)

The goal of the genetic algorithm is to minimize the net-
work inconsistency regarding the input expression profiles.
The fitness function is thus defined such that the least incon-
sistent individuals are more likely to be selected in further
generations:

φ1 =
1

1 +
IRN

N × 0.5

(3)

in which N ×0.5 refers to the maximum inconsistency value
that may be carried by a network.

In order to bias our search towards sparser networks, which
are known to be GRNs’ representative, we also tested the
inclusion of a penalty factor in the fitness function. This fac-
tor is computed as the number of inferred pathways in the
model (NP) divided by the maximum number of possible
connections, as shown in Equation 4.

φ2 =
1

1 +
IRN

N × 0.5
+

NP

N2

(4)

3.3 Algorithm
An overview of the proposed method is depicted in Fig-

ure 4. Also, a general view of the implemented GA is shown
in Algorithm 1. The first stage consists of setting the pa-
rameters for the algorithm and randomly generating the ini-
tial population (networks). Once created, individuals must

Table 4: Inconsistency analysis for data in Table 3.

k Input wk(0) wk(1) min(wk(0), wk(1))
1 (0,0) 1 2 1
2 (0,1) 0 2 0
3 (1,0) 2 1 1
4 (1,1) 2 0 0

IRi =
1 + 0 + 1 + 0

10
= 0.2

Figure 4: An overview of the implemented method.

be evaluated according to a fitness function so that selec-
tion can happen. In the present work the evaluation criteria
is related to the minimization of an inconsistency ratio re-
garding a given gene expression data set, which will be later
explained in Section 4.1. Each individual is decoded and the
GRN topology is saved as an adjacency matrix. Then, the
inconsistency ratio is computed for each network’s node in
respect to its parents’ set.

After the fitness value has been computed for all individu-
als, elitism is applied. In this phase, the E fittest individuals
are selected to integrate the next generation without suffer-
ing any change in their genetic material. The individuals
to fill the remaining slots in the subsequent generation are
selected, in proportion to their fitness values.

The group of individuals on which crossover and mutation
operators are applied is the pool generated by the selection
mechanism. Individuals are recombined in pairs with prob-
ability Pcross using two-point crossover. Each bit suffers
mutation with probability Pmut. In order to allow further
variability in the first generations, this probability is ini-
tialized with a high value and is gradually decreased by a
constant factor until it reaches an user-configurable target.

As GAs provide us a set of candidate solutions ranked by
their fitness, at the end of the simulation, it is necessary to
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somehow choose a network that best represents the hidden
relations of the input biological data based in the supplied
solutions set. One possible approach is to apply the concept
of wisdom of crowds, where the information contained within
each individual is combined in order to make more accurate
network predictions. A simple, but still widely used tech-
nique to do so is known as majority voting: every network
in the best solutions set votes on the classification of each
edge (interaction) as present or absent. The existence of the
interaction is then defined according to the majority of the
votes.

In this work we adopt a similar approach, creating a con-
sensus network based on individuals of the last generation.
Although they may have different fitness values, all of them
carry important information since they explore different sites
of the solutions space. The first step towards the consensus
network consists of generating a confidence matrix, which re-
flects the portion of individuals in the solutions set in which
a certain interaction exists. A consensus network is then cre-
ated by including all the edges whose corresponding factor
(confidence level) in the confidence matrix is superior than
an user-configurable threshold. This process is repeated for
each simulation run. In the end, the final consensus network
is created aby pplying the same methodology to all previ-
ously found partial consensus networks, as shown in Figure
5.

4. EXPERIMENTS

4.1 Data
The gene expression profiles used in this work derive from

intracellular multicolor flow cytometry experiments applied
by Sachs in [16] over eleven phosphorylated proteins and
phospholipids that compose the Raf pathway. Raf is a crit-
ical signalling pathway involved in the control of cell pro-
liferation in human immune system cells. A deregulation
of this pathway may lead to carcinogenesis. Therefore, this
network has been extensively studied and a representation
of the currently accepted gold standard network is available,
which can be seen in Figure 6.

At this point we stress that we use this standard network
just for evaluation purposes. We have not used the struc-
ture or any other knowledge about the real network in the
proposed method. Rather, the main motivation is exactly
to avoid such use, employing only the experimental data in
the inference problem, as will be later explained in Section
5.

Algorithm 1 General view of the implemented GA.

Initialize parameters and first generation
for each generation do

for each individual do
Decode network’s structure
Compute fitness of each individual

end for
Create a new population of Psize where the E fittest re-
main and the others are selected and reproduced based
on their fitness
Apply point mutation with probability Pmut to individ-
uals not in elite

end for
Find consensus network

Figure 5: Identification process of the consensus net-
work.

The experiments run by [16] resulted in 5400 data points,
where 1200 are observational and 4200 are interventional.
In [20] the original data was randomly sampled to smaller
data sets so that they would represent a better figure of mi-
croarray experiments, which do not provide such abundance
of data. In this process, five data sets of 100 measurements
each were originated from the observational data.

Discretization of the reduced observational data sets into
binary values was performed based in the median, as sug-
gested in [21]. The two smallest and largest values were
considered outliers and thus discarded. Assuming that mea-
surements are disposed in a r × c matrix (A), where rows
contain experiments results and each column refers to a dif-
ferent gene, the median for each protein is computed (MC).
The upper 50 percentile was treated as expressed genes (1)
and the lower 50 percentile as unexpressed genes (0). Is im-
portant to mention that the term gene is generically used to
denote all interacting nodes in the network, albeit they may
actually refer to genes’ products, such as proteins.

4.2 Parameters
The GA was implemented with a population of Psize =

50 individuals evolved for 1000 generations. Elitism is ap-
plied with an elite size E = 4. As previously mentioned
in Section 3.3, the mutation probability starts with a high
value and is gradually decreased. The initial probability
is configured as 0.1 and it is decreased until it reaches the

Figure 6: Raf signalling pathway.
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Table 5: GA parameters.

Parameter Description Value
Gmax Number of generations 1000
Psize Population size 50
E Elite size 4
Pmutinit

Initial mutation probability 0.1
Pmutmin

Minimum mutation probability 0.001
Pcross Crossover probability 1

limit value of 0.001. Crossover is applied with probability 1.
These values were chosen based on previous experiments.

According to the target network, depicted in Figure 6, we
set up N to 11 genes and tested the model for Kmax equal
to 2 and 3. Kmax represents the maximum connectivity of
a single node, which means that the generated model has
the flexibility of having a node with less connections if this
simplification results in a better description of input gene ex-
pression patterns. However, self-loops are not allowed since
they will always be perfectly consistent according to consis-
tency problem and therefore, search would be biased towards
topologies with high frequency of self-loops. All parameters’
values are summarized in Table 5.

5. RESULTS
To test the effectiveness of the proposed method, 30 sim-

ulations were run and the results were then combined into
a consensus network, as explained in Section 3.3. The sim-
ulations were set up by varying Kmax value between 2 and
3. Also, the penalty factor in the fitness function was either
included or not. The algorithm was implemented in MAT-
LAB and it requires approximately 5 minutes to perform all
the evolution for a single simulation in a PC with a Core 2
Duo T7500 processor and 2Gb RAM memory.

Our method has two evaluation points, as shown in Fig-
ure 4. The first one refers to the scoring process of GA
individuals applying the fitness functions previously defined
(Equations 3 and 4). This step receives as input a random
subset of the observational data sets generated by [20], dis-
cretized as explained in Section 4.1. The subset is a random
choice in two senses: at each evaluation, one of the five data
sets is selected with equal probability and then a sequence of
30 measurements is randomly chosen. As these data points
have been already sampled from a larger collection, they do
not hold any time dependency between them. This proce-
dure aims in preventing the model of overfitting the data.

The second evaluation point occurs at the end of the al-
gorithm’s execution and consists of assessing the method’s
performance. A confusion matrix is created by compar-
ing the structure of both GA generated and real networks.
This matrix quantifies the inferred correct interactions (true
positives, TP), incorrect interactions (false positives, FP),
correct non-interactions (true negatives, TN) and incorrect
non-interactions (false negatives, FN). Accuracy and preci-
sion are then calculated according to Equations 5 and 6,
respectively:

Accuracy =
TP + TN

n
(5)

Precision =
TP

TP + FP
(6)

Table 6: Average accuracy and precision over 30
runs for a confidence level of 95%.

Kmax Penalty Accuracy Precision
Factor? avg. std. avg. std.

2 No 0.806 0.018 0.335 0.110
Yes 0.816 0.020 0.386 0.126

3 No 0.781 0.022 0.286 0.083
Yes 0.797 0.024 0.325 0.113

Table 7: Average number of true positives edges in
partial consensus networks for simulations including
the penalty factor.

Kmax True Positive Edges
avg. std.

2 3.5 1.1
3 4 1.5

In Equation 5, n denotes the number of maximum possible
edges, i.e. n = TP + TN + FP + FN . The accuracy met-
ric reports the degree to which information on the inferred
model matches the target network. Precision reflects the rel-
evant proportion of the total predicted edges and is useful
to find how similar are inferred networks to each other.

The obtained results are summarized in Table 6. These
metrics are drawn from the partial consensus networks gen-
erated for each execution of the GA. We applied a confidence
level of 95%, which means that an edge will be included in
the partial consensus network only if it occurs in at least 95%
of the solutions indicated by the final generation. As one can
see at Table 6, results concerning accuracy were quite sat-
isfactory. The applied approach was able to reconstruct the
Raf signalling pathway with an average accuracy of 0.8. This
is a satisfactory score considering no prior knowledge about
the network structure has been supplied to the algorithm.
The inference has been made solely based upon discretized
gene expression data.

The highest accuracy values are related to simulations
with Kmax = 2: the measured accuracy was 0.806 for sim-
ulations run with fitness function of Equation 3, and 0.816
for simulations with the inclusion of the penalty factor. For
this configuration, partial consensus networks have on aver-
age 3.5 correctly inferred interactions, with a standard devi-
ation of 1.1. The occurrence of true positive edges increases
for Kmax = 3, in which 4 true interactions are inferred per
partial consensus network on average, with a standard de-
viation of 1.5. However, as the frequency of false positives
is also higher for the case where Kmax = 3, there is no per-
formance improvement. In fact, accuracy is lower in sim-
ulations with Kmax = 3. Also, the inclusion of a penalty
factor to prioritize the evolution of sparser topologies seems
to improve both accuracy and precision means.

Unlike accuracy, precision values are low. The average
precision for simulations made is 0.33. Here, we formulate
two possible reasons. First, the fact that partial consensus
networks contain several amount of false positive influences
the precision metric (see Equation 6). Also, we understand
that this may be produced by the stochastic nature of GA,
which allows individual solutions to be different from each
other aiming to better explore the search space. This can be
verified by the fact that although partial consensus networks
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Figure 7: Confidence level associated to edges in the
final consensus network for simulations with Kmax =
2. Edges drawn in gray dotted line were not inferred
by the method.

have few true positive edges, when the 30 partial solutions
are combined into one final consensus network, most of the
existing interactions are correctly inferred.

Figures 7 and 8 show the confidence levels associated to
edges of the RAF signalling pathway in the final consensus
network of simulations with Kmax = 2 and Kmax = 3, re-
spectively, and including the penalty factor. These values
are obtained after the combination of the partial consensus
networks and reflect the probability of occurrence of a given
interaction. The gray dotted lines denote interactions which
were not inferred by the proposed model. Also, edges whose
confidence level are greater than 0.1 are highlighted with the
corresponding numbers written in boldface.

In Figure 7 it is possible to observe that the method cor-
rectly predicts 18 out of the 20 true interactions in the RAF
signalling pathway when Kmax = 2. From these, 7 have ap-
peared in at least 10% of the partial consensus networks and
are therefore associated to higher confidence levels. Both
PIP3 → AKT and PKA → P38 interactions have not been
inferred. The shown values refer to the method’s raw results.
Since we aim to analyse how powerful is the implemented
algorithm in predicting the existing interactions, no filtering
mechanism have been applied in the final network construc-
tion , i.e., edges have not been discarded according to a given
threshold so that only the most probable ones remain in the
model.

The execution of the algorithm with Kmax = 3 has cor-
rectly inferred 17 existing connections. Although the accu-
racy is lower than simulations with Kmax = 2, these sim-
ulations resulted in a larger set of interactions associated
with higher confidence levels. In this case, 11 out of the
17 inferred connections exists in 10% of solutions or more.
The missing edges are PIP3 → AKT, PIP2 → PKC and
MEK → ERK.

6. CONCLUSION
Nowadays, reverse engineering of genetic regulatory net-

works is a major challenge in bioinformatics. The relevance
of these networks for organisms’ metabolism brings a wide
range of knowledge application, such as the development of
new drugs and treatments. Despite the great interest of
scientists and the availability of high quality data, achieve-
ments are still modest and proposed methods have not been
able to fully infer GRNs to high accuracy levels yet. Most of
available reverse engineering methods reach good results by

Figure 8: Confidence level associated to edges in the
final consensus network for simulations with Kmax =
3. Edges drawn in gray dotted line were not inferred
by the method.

either applying some source of biological knowledge in the
inference process or performing an exhaustive search over
the solutions space. However, neither of these scenarios are
realistic or desirable, since both biological knowledge and
time are usually limited.

In the present paper we combined RBNs and genetic al-
gorithms for the reconstruction of GRNs without the in-
clusion of any biological prior knowledge. The inference is
based solely in experimental data and information about real
GRN’s structure was used only for performance assessment.
The target network is the Raf signalling pathway, which is
involved in the regulation of cell proliferation in human im-
mune system cells. Simulations were run varying the num-
ber of maximum connections per node, given by parameter
Kmax, and by either including or not a penalty factor into
the fitness function. This factor intends to prioritize sparser
topologies, which are known to be GRNs’ representatives.
Each condition was simulated 30 times and concepts of wis-
dom of crowds were applied to find partial consensus net-
works based in all individuals of the last generation of the
GA, as explained in Section 3.3. A final consensus network
is created at the end of the process to summarize the results
of the simulations set.

Regarding the reconstruction of the Raf pathway, the im-
plemented method reached a good accuracy level considering
that no biological information was provided. All regulatory
factors and rules were inferred from discretized experimental
data solely. The average accuracy for the simulations run is
0.8. However, the average precision reached a much lower
mark: 0.33. We explain this in terms of the high number
of false positives and the stochastic nature of GA, which al-
lows individuals to explore different sites of search space and,
therefore, to have different topologies between themselves.
However, exploring different solutions simultaneously is ex-
tremely advantageous when the partial consensus networks
are combined into a final consensus network: almost all in-
teractions in the Raf signalling pathway have been correctly
inferred by the model. For simulations with Kmax = 2,
18 out of the 20 existing interactions in the Raf signalling
pathway were correctly predicted, while for Kmax = 3, this
number reduced to 17.

We found the accuracy of the generated model to be sat-
isfactory considering the several constraints involved in the
problem of inferring GRNs. Although occurrence probabil-
ity may be low for some interactions, their presence in the
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final consensus network is a relevant evidence to suggest fur-
ther investigation towards these interactions through in vitro
experiments. However, generated models contain many false
positives that must be filtered out in order to improve both
accuracy and precision.

Therefore, for future works, we deem advisable to study
filtering techniques robust enough to successfully differen-
tiate false positives from true positives associated to low
confidence levels. It would be equally interesting to test the
effect of distinct thresholds on the method’s performance
(accuracy and precision). Another important research di-
rection regards the application of the method to artificial
networks of different dimensions so that reconstruction effi-
ciency can be evaluated in scenarios of distinct complexity.
Finally, we stress the necessity of studying a fitness function
efficient in coping with self-loops, which are known to be
prominent in real GRNs. We believe that these refinements
would increase the reliability of information contained in the
generated model and thus make it a more relevant source of
knowledge for the discovery of GRNs.
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