
Particle Swarm Optimisation with Gradually
Increasing Directed Neighbourhoods

Hongliang Liu
Information Technology

Department
National University of Ireland,

Galway
University Road, Galway,

Ireland
h.liu1@nuigalway.ie

Enda Howley
Information Technology

Department
National University of Ireland,

Galway
University Road, Galway,

Ireland
enda.howley@nuigalway.ie

Jim Duggan
Information Technology

Department
National University of Ireland,

Galway
University Road, Galway,

Ireland
jim.duggan@nuigalway.ie

ABSTRACT
Particle swarm optimisation (PSO) is an intelligent random search
algorithm, and the key to success is to effectively balance between
the exploration of the solution space in the early stages and the
exploitation of the solution space in the late stages. This paper
presents a new dynamic topology called "gradually increasing di-
rected neighbourhoods (GIDN)" that provides an effective way to
balance between exploration and exploitation in the entire iteration
process. In our model, each particle begins with a small number
of connections and there are many small isolated swarms that im-
prove the exploration ability. At each iteration, we gradually add a
number of new connections between particles which improves the
ability of exploitation gradually. Furthermore, these connections
among particles are created randomly and have directions. We for-
malise this topology using random graph representations. Experi-
ments are conducted on 31 benchmark test functions to validate our
proposed topology. The results show that the PSO with GIDN per-
forms much better than a number of the state of the art algorithms
on almost all of the 31 functions.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—Prob-
lem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation

Keywords
Particle Swarm Optimisation, Dynamic Topologies, Neighbourhood
Topologies, Exploration and Exploitation

1. INTRODUCTION
Particle Swarm Optimisation (PSO) was proposed by Eberhart

and Kennedy in 1995 [12, 5]. It is inspired by the socially self-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

organised populations such as bird flocking and fish schooling. The
PSO algorithms (PSOs) have gained increasing popularity in recent
years. The PSOs have been widely used in many science and engi-
neering domains [6, 1]. This is mainly due to its fast convergence
rate and few parameters to tune.

The vital property of the PSO is the interactions or connections
between particles. These connections are generally known as the
"neighbourhood topology" of the algorithm. The neighbourhood
topologies of the swarm determine the speed of information flow
in the entire population, and furthermore, the speed of informa-
tion flow could be used to control exploration and exploitation of
the search space [24]. The most commonly used topologies are
gBest (or the fully connected topology) and lBest (or the ring
topology) [13]. In the gBest topology, all the particles are con-
nected, and consequently at each iteration, the best position attracts
all the particles towards that location. The information flow in
the gBest is extremely fast. The PSO with the gBest topology
has strong ability on exploitation (the use of known solutions), but
could be easily trapped into local optima and cause the premature
convergence problem. As for the lBest, each particle is only di-
rectly connected with two adjacent neighbours, and therefore the
information flow spreads around the population quite slowly, which
improves the PSO’s ability on exploration (the search for new so-
lutions). However, it eventually affects the convergence speed of
the PSO and usually requires a large number of objective function
evaluations.

Therefore, we could say that the gBest and lBest topologies
represent the two extremes of the information flow speed. But we
could also state that the lBest topology meets the requirements of
exploration in the early stages, while the gBest topology satisfies
the requirements of tuning the search areas in the late stages. If we
can dynamically adapt the topologies, it will provide an effective
way to balance between exploration and exploitation in the entire
convergence period. This paper presents a dynamic neighborhood
topology through gradually increasing the number of connections
for each particle in the population. We have formalised this topol-
ogy using random graph representations. In order to validate our
proposed method, we have tested the PSO on 31 benchmark test
functions. The results show that the changes in the PSO result on
better performance than a number of the state of the art algorithms
on almost all of the functions.

The rest of this paper is organised as follows. In Section 2, we
will give a detailed review on the related work of this paper. The
proposed PSO-GIDN is presented in Section 3. In Section 4 we will
provide our experimental results and analysis. Finally in Section 5
we will briefly summarise the contributions of this paper.

29

2. BACKGROUND RESEARCH
In this section, we first introduce the PSO, and then review the

research on the neighbourhood topologies.

2.1 Particle Swarm Optimization
In the PSO, there is a population of solutions referred to as parti-

cles. Particles fly around the d-dimensional solution space, and are
evaluated according to a fitness criteria after each iteration. The i-th
particle’s position is represented by a vector−→x i,t = (xi1, xi2, . . . ,
xid) (where t is the iteration counter). The flying velocity for a
particle i is represented by a vector −→v i,t = (vi1, vi2, . . . , vid). In
every iteration, each particle’s flying velocity is updated according
to the following two positions. The first one is the position at which
its best fitness has achieved so far. This position is a "personal best

position" (cognitive component) and is denoted by a vector
−→
pbi,t.

The second position is the best position obtained so far by the par-
ticles in its neighbourhood. This position is a "neighbourhood best
position" (social component) and is represented by

−→
nbi,t. Tradi-

tionally, the velocity update equation is −→v i,t = w ∗ −→v i,t−1 +−→
U [0, c1]⊗ (

−→
pbi,t−1−−→x i,t−1)+

−→
U [0, c2]⊗ (

−→
nbi,t−1−−→x i,t−1),

where
−→
U [m,n] is a vector of random real numbers distributed over

[m,n], and w is the inertia weight that has been shown to pro-
vide improved performance [22]. There are a number of modified
versions of the velocity update equation. Clerc and Kennedy [4] in-
troduced the constriction factor χ making the following equation.

−→v i,t = χ(−→v i,t−1 +
−→
U [0, ϕ1]⊗ (

−→
pbi,t−1 −−→x i,t−1)

+
−→
U [0, ϕ2]⊗ (

−→
nbi,t−1 −−→x i,t−1)) (1)

where χ = 2

|2−ϕ−
√

ϕ2−4ϕ|
, ϕ = ϕ1 + ϕ2 and ϕ > 4.0. After

updating velocity, each particle updates its position based on its
velocity using the following equation.

−→x i,t =
−→x i,t−1 +

−→v i,t (2)

The PSO using the lBest topology and the Equations (1) and (2)
has become the standard PSO [2].

From the discussion above, we can see that the PSO mainly in-
cludes two components: the cognitive and social components. The
social component plays a key role in the success of the PSO. We
usually use the neighborhood topologies to depict the social inter-
actions among particles. There is a body of research on the neigh-
bourhood topologies which we discuss in the followings.

2.2 Neighbourhood Topologies in the PSOs
The neighbourhood topology or sociometric structure indicates

the connections between particles. It determines the spread of the
information1. The information flows faster between connected pairs
of individuals while slows down by the presence of the intermedi-
aries. The greater connectivity speeds up convergence, but it does
not tend to improve the population’s ability to discover global op-
tima. The neighbourhood topology has a strong influence on the
particles’ search behaviour, and subsequently on the PSOs’ suc-
cess.

In order to find a topology that works for a wide range of prob-
lems, various topologies have been proposed and examined. In the
following, we first discuss the representation of the topologies, and
then review the existing topologies including static and dynamic
topologies.

1The information mainly refers to the best positions in the swarm.

2.2.1 Representation
Neighbourhood topologies in the PSOs are usually defined infor-

mally, using only ordinary language or diagrams. It is unambiguous
for many simple topologies, but not for more complex and dynamic
topologies due to its inherent imprecision.

In order to more accurately represent neighbourhood topologies
in the PSOs, Mendes used undirected graphs to represent social
topologies [17]. Undirected graphs can only be used to model sym-
metric relations or bidirectional interactions. In order to model
more general relationships, such as single direction communica-
tions between particles, we need a model of directed graphs. A
directed graph or digraph G is a triple consisting of a vertex set
V (G), an edge set E(G), and a function�(G) assigning each edge
an ordered pair of vertices. The first vertex of the ordered pair is
the tail of the edge, and the second is the head. Each ordered pair
or each edge in a digraph is the (tail, head) pair that represents a
link from tail to head. We can see that the population structure in
the PSOs can be easily represented by a digraph G. The vertex set
V (G) is all the particles (p1, p2, . . . , pn). Note that the neighbour-
hood topologies may change at each iteration in a dynamic topol-
ogy. In this case, we can use Gt to denote the topology at iteration
t.

The neighbourhood of a particle relates to the concepts of in-
neighbourhood set and out-neighbourhood set. The group of the
particles that exerts influence over the particle pi at iteration t is the
in-neighbourhood set H+

t (pi) = {x ∈ V (G) : x→ pi}. In other
words, the particles from the in-neighbourhood set send their per-
sonal best positions to the particle pi. The out-neighbourhood set
is the group of particles to whom the particle pi contributes its per-
sonal best information. It is formally defined as H−

t (pi) = {x ∈
V (G) : pi → x}. These two sets are complementary. Therefore
we only need to specify one set when we define a topology. In this
paper, we prefer to define the in-neighbourhood set to construct a
topology.

The main advantages of using the digraph representation is that
we can explicitly model the information flow direction. Most re-
cent work on the neighbourhood topologies has been adopted this
representation [20, 16, 21].

2.2.2 Static Topologies
In the static (or fixed) topologies, the connections do not change

over time. The earliest and most common used topologies are the
gBest and lBest topologies [7, 22, 2]. In the gBest topology,
all particles are fully connected with each other, and the informa-
tion flows fastest. Subsequently, the PSOs used the gBest con-
verge quickly but are likely to be trapped in local optima. In the
lBest topology, each particle shares its information with two adja-
cent neighbours. Therefore, the flow of information is much slower.
The PSOs adopted lBest have stronger ability to explore different
regions, but take longer time to converge. Inspired by the idea of
"small worlds", Kennedy studied the effects of randomly changed
connections of a number of social networks including gBest and
lBest [10]. The test results show that the neighbourhood topolo-
gies can significantly affect the PSO’s performance, and the effects
are also dependent on the test functions. Recently, Kennedy and
Mendes have systematically examined 70 different topologies [13,
17]. These topologies not only include the traditional regular topol-
ogy such as von Neumann, pyramid and lBest topologies, but also
a large of random graphs2 with varying degrees of separation or
levels of clustering. They find that the von Neumann topology per-

2These random graphs do not change during a trial, and therefore
they are also static topologies.

30

forms pretty well among these topologies, but their research has
not precisely identified the topology factors that lead to best perfor-
mance on a range of problems. All the topologies mentioned above
are only considered mutual communications between connected
pairs of particles. More recently, Muñoz-Zavala et al. have pro-
posed a new neighbourhood structure, called "singly-linked ring".
There is no mutual interactions between adjacent particles [21]. In
this topology a particle k only communicates with particles k − 2
and k + 1 as neighbors (not k − 1 and k + 1 as in the original
ring structure). The information in this topology flows even slower
than that in the ring topology. Their simulation results show its
superiority over the ring and von Neumann topologies in a small
range of problems. These studies above are based on the stan-
dard PSOs that each particle is influenced by the best performer
among its neighbours. Mendes et al. have proposed a new variant
of the PSO, called fully informed particle swarm (FIPS) [18]. The
FIPS changes the way of processing the information. Each parti-
cle is influenced by all its neighbours and, thus, the particles are
"fully informed". The FIPS still faces the same problem of finding
a neighbourhood topology that works well on a wide rang of prob-
lems. There are already a number of research on this problem [14,
9].

In summary, researchers still do not find a static topology that
performs effectively for a wide range of problems. Recently, ran-
domized topologies and dynamic topologies have been gained more
attention.

2.2.3 Dynamic Topologies
In the dynamic topologies, the connections between particles

may change over iterations. A number of techniques have been
used to manipulate the neighbourhood topologies such as cluster-
ing, randomly adding, removing, or migrating edges, and recon-
structing neighbourhood periodically.

Suganthan [24] has designed a neighbourhood operator in or-
der to balance the exploration and exploitation. For each particle,
a certain percentage of particles close to it were considered as its
neighbors. In the early stage, each particle only has a small num-
ber of neighbours, while near end of the algorithm, each individ-
ual’s neighbourhood consists of the entire population. Specifically,
a particle pi’s neighbourhood is determined by the distance rate
between pi and any other particle in the population, and a thresh-
old fraction. The threshold fraction is defined: fra = (3.0t +
0.6max_t)/maxt, where t is the current iteration, maxt is the
maximum iteration number. If fra > 0.9, then the pi’s neighbours
are the entire population, otherwise, it is taken to consist of all par-
ticles whose distance d from pi satisfies d/max_d < fra, where
max_d is the maximum distance between pi and any other particle
in the population.

Kennedy [11] has used a clustering technique (k−means) to re-
construct the populations into several groups at each iteration. The
particles in one group or cluster are very close in search space. The
effects of using cluster centers as an alternative to using an indi-
vidual’s previous best pb or its neighborhood previous best nb are
studied. The preliminary study demonstrates that particle swarm
search is relatively effective when individuals are influenced by
the centers of their own clusters, and is not generally good when
they are influenced by the neighbors’ cluster centers. However, the
clustering using k − means adds some extra computational cost.
Liang and Suganthan [15] have introduced a dynamic multi-swarm
PSO (PSO-DMS). In the PSO-DMS, the population is divided into
a number of swarms randomly, and the particles in each swarm are
organised using the lBest topology. These swarms are regrouped
frequently in order to exchange information between swarms.

Mohais et al [20, 19] have proposed to use random neighbour-
hoods in the PSOs, together with dynamism operators. Their ran-
dom neighbourhoods can be represented using directed graphs as
the relationships between particles are single directional. Both the
size and member of the in-neighbourhood set H+

t (pi) are gener-
ated uniformly. Two methods of dynamism called random edge
migration and total re-structuring are given in [20, 19].

A number of other dynamic topologies have also been examined
such as the scale-free characteristics topologies and self-adjusting
neighbourhoods [8, 3].

In summary, the neighbourhood topologies have become an ac-
tive research direction. These existing studies on the various topolo-
gies have gained insight into the effects of the topologies on the per-
formance of the PSOs. However, these studies have the following
common disadvantages.

• Only a small number of test functions (usually 6 functions)
are used to validate the proposed topologies, and consequently
the effectiveness of the topologies is not fully examined.

• Much extra computation cost is added for some complex dy-
namic topologies, which makes the PSOs run much slower.

In this paper, we present a new dynamic topology in order to
balance between exploration and exploitation of search space. To
address the disadvantages mentioned above, we validate this topol-
ogy on a wide range of test functions. Furthermore, our topology
requires very little extra computation cost compared with the orig-
inal PSOs.

3. PSO WITH GRADUALLY INCREASING
DIRECTED NEIGHBOURHOODS

We aim to provide a neighbourhood topology that can effectively
balance between the exploration and exploitation of the solution
space. In the early stage of the iteration, the PSOs should focus on
exploring the whole parameter space in order to find a promising
search space, and in the late stage all the particles should work
together to exploit the best area found so far.

We design a new neighbourhood topology, called "Gradually In-
creasing Directed Neighbourhoods (GIDN)", to satisfy the desired
balance between exploration and exploitation in the entire stage.
Specifically, at the beginning each particle only communicates with
a small number of particles. This forms many small swarms in the
population and thus, improves the exploration ability in the early
stage of the evolution. The neighbourhood of each particle in-
creases over time, and each particle is connected with more indi-
viduals. In the late stage, all particles will be connected with each
other, and share all the information together which improves the
exploitation ability.

In our model, we gradually add connections between particles
and these connections between particles are randomly chosen and
also have directions. So we choose a random directed graph G(N, b,
γ, t) to formally define our GIDN. We define the in-neighbourhood
set H+

t (pi) for any particle (pi) in the G(N, b, γ, t) first. The size
of H+

t (pi) at iteration t is determined by the following equation.

|H+
t (pi)| = �(t

maxt
)γ ∗N + b	 (3)

where �x	 is the largest integer not greater than x (the floor func-
tion), maxt is the maximum iteration number, N denotes the size
of the population, b and γ are two parameters. The parameter b is
the number of neighbours that each particle begins with. We sug-
gest that b is set to a small number such as 2 or 3 in order to create

31

Algorithm 1: The PSO with Gradually Increasing Directed
Neighbourhoods (PSO-GIDN)

Step 1 : Initialisation: randomly generate each particle’s
position and velocity; Set each particle’s neighbour number
(|H+

t=0(pi)| = 0);
Step 2 : Renew each particle’s neighbourhood. Firstly, obtain

each particle’s neighbour number (|H+
t (pi)|) using Equation

(3), then update the topology as follows:
for i← 1 to N do

if |H+
t (pi)| > |H+

t−1(pi)| then
Randomly choose |H+

t (pi)| − |H+
t−1(pi)| distinct

particles that still do not have connections with the
particle pi as pi’s new neighbours;

Step 3 : Evaluate: update each particle’s fitness according to
the fitness function;
Step 4 : Update: l) If the current position is better than

−→
pbi,t,

then update
−→
pbi,t . 2) If this is a better position than

−→
nbi,t in

its neighbourhood, then update
−→
nbi,t;

Step 5 : Update each particle’s position and velocity according
to Equation (1) and (2);
Step 6 : Check stop criterion: If not, return to Step 2 ,
otherwise output the best solution found so far.

lots of small swarms in the population. The parameter γ controls
the neighbourhood size increasing speed and subsequently the in-
formation flow speed. Thus, γ can be used to control exploration
and exploitation. f(γ) = (t

maxt
)γ is a decreasing function be-

cause of 0 < t
maxt

≤ 1. Our results show that γ = 2 provides a
better balance between exploration and exploitation.

From Equation (3), we observe that each vertex (or particle)
starts with b edges and at iteration t adds |H+

t (pi)| − |H+
t−1(pi)|

new neighbours or edges. How to choose new neighbours for pi?
In this paper, we investigate three different strategies. The first one
is to choose particles randomly as their new neighbours. Another
one is to choose the particles that are nearest in the search space.
The last one is to choose nearest particles in the function space.
Our results show that these strategies have no significant effects on
the PSO’s performance. Therefore, we recommend to choose ran-
domly from the population as it adds the least computational cost.

Algorithm 1 shows our proposed algorithm (PSO-GIDN). The
step 2 in the PSO-GIDN indicates the process of the GIDN.

4. EXPERIMENTAL RESULTS
In this section, we first examine the parameter settings for the

PSO-GIDN, and then evaluate its performance through comparing
with a number of the existing PSOs.

Table 1 shows all the test functions used in our experiments. The
first 6 functions (f1 ∼ f6) are some standard test problems which
have been widely used to validate new algorithms [15, 14]. The rest
of 25 functions (f7 ∼ f31) are proposed by Suganthan et al [23].
These 25 functions are constructed from some basic test functions
through adding noise, shifting, rotating or hybrid composition, etc.
Due to these adjustments, these functions become more challeng-
ing to optimise.

We use the following parameter settings for all the experiments
unless otherwise specified. The population size (N) is set to 60.
The parameter χ is set to 0.72984, both ϕ1 and ϕ2 are set to 2.05,
and b is set to 3. For the functions f1 ∼ f6, the iteration number
is 1000, while for f7 ∼ f31 it is set to 5000. The dimensions for
all the functions are set to 30. Each set of the results are from 25

Table 1: Test Functions (Uni.=Unimodal, Multi.=Multimodal,
Sh.=Shifted, SR=Shifted and Rotated, HC=Hybrid Composi-
tion, RHC=Rotated and HC, GB=Global on Bounds, NC=Non-
Continuous, and NM=Number Matrix)

No. Type Description Bounds Optimum
f1 Uni. Sphere [-5.12, 5.12] 0.0
f2 Uni. Rosenbrock [-2.048, 2.048] 0.0
f3 Multi. Ackley [-30, 30] 0.0
f4 Multi. Griewank [-600, 600] 0.0
f5 Multi. Rastrigin [-5.12, 5.12] 0.0
f6 Multi. Schaffer [-100, 100] 0.0
f7 Uni. Sh. Sphere [-100, 100] -450
f8 Uni. Sh. Schwefel 1.2 [-100, 100] -450
f9 Uni. SR Elliptic [-100, 100] -450
f10 Uni. f8 with noise [-100, 100] -450
f11 Uni. Schewefel 2.6 GB [-100, 100] -310
f12 Multi. Sh. Rosenbrock [-100, 100] 390
f13 Multi. SR Griewank [0, 600] -180
f14 Multi. SR Ackley GB [-32, 32] -140
f15 Multi. Sh. Rastrigin [-5, 5] -330
f16 Multi. SR Rastrigin [-5, 5] -330
f17 Multi. SR Weierstrass [-0.5, 0.5] 90
f18 Multi. Schwefel 2.13 [-π, π] -460
f19 Multi. Sh. Expanded F8F2 [-3, 1] -130
f20 Multi. SR Scaffer F6 [-100, 100] -300
f21 Hybrid HC Function [-5, 5] 120
f22 Hybrid RHC Function 1 [-5, 5] 120
f23 Hybrid f22 with noise [-5, 5] 120
f24 Hybrid RHC Function 2 [-5, 5] 10
f25 Hybrid f24 with basin [-5, 5] 10
f26 Hybrid f24 with GB [-5, 5] 10
f27 Hybrid RHC function 3 [-5, 5] 360
f28 Hybrid f27 with NM [-5, 5] 360
f29 Hybrid NC Rotated f27 [-5, 5] 360
f30 Hybrid RHC function 4 [-5, 5] 260
f31 Hybrid f30 without bounds 260

independent runs. We conduct all the experiments on an Intel (R)
CPU T8300, 2.40 GHz, 4 GB RAM and Windows 7 OS computer
using Java language.

4.1 Parameter Setting Analysis for PSO-GIDN
The first 6 functions (f1 ∼ f6) are used to analyse the parameter

settings in the PSO-GIDN. The main concern for the PSO-GIDN
is the parameter γ setting which determines the speed of informa-
tion flow among particles. While another interesting issue is that
how to choose their neighbours when the particles dynamically in-
crease their neighbours. These two parameters are examined in the
following.

4.1.1 γ

As discussed earlier, γ determines the evolution of population
topologies in the PSO-GIDN. In order to find a proper value for
γ, we examine the convergence of the PSO-GIDN under a group
of settings. Specifically, γ is set to 0.5, 1, 2 and 3. The particles
randomly choose their new neighbours. From Equation (3), we can
get: N > ck(γ = 0.5) > ck(γ = 1) > ck(γ = 2) > ck(γ = 3) >
2. Therefore, at early stage of the evolution, the convergence rate
should be: GPSO > PSO-GIDN (γ = 0.5) > PSO-GIDN (γ = 1)
> PSO-GIDN (γ = 2) > PSO-GIDN (γ = 3) > SPSO (the GPSO
and SPSO represents the PSO with gBest and lBest topologies
respectively). Our experimental results confirm this. However, we

32

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s

Iterations

GPSO
PSO-GIDN(γ=0.5)
PSO-GIDN(γ=1)
PSO-GIDN(γ=2)
PSO-GIDN(γ=3)
SPSO

(a) Sphere

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s

Iterations

GPSO
PSO-GIDN(γ=0.5)
PSO-GIDN(γ=1)
PSO-GIDN(γ=2)
PSO-GIDN(γ=3)
SPSO

(b) Rosenbrock

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s

Iterations

GPSO
PSO-GIDN(γ=0.5)
PSO-GIDN(γ=1)
PSO-GIDN(γ=2)
PSO-GIDN(γ=3)
SPSO

(c) Ackley

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s

Iterations

GPSO
PSO-GIDN(γ=0.5)
PSO-GIDN(γ=1)
PSO-GIDN(γ=2)
PSO-GIDN(γ=3)
SPSO

(d) Griewank

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s

Iterations

GPSO
PSO-GIDN(γ=0.5)
PSO-GIDN(γ=1)
PSO-GIDN(γ=2)
PSO-GIDN(γ=3)
SPSO

(e) Rastrigin

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s

Iterations

GPSO
PSO-GIDN(γ=0.5)
PSO-GIDN(γ=1)
PSO-GIDN(γ=2)
PSO-GIDN(γ=3)
SPSO

(f) Schaffer

Figure 1: Convergence

Table 2: PSO-GIDN Performance with Different Choosing Neighbour Strategies

No.
Random neighbours

Nearest neighbours Nearest neighbours
in Search Space in Function Space

Mean (STD) Time (S) Mean (STD) Time (S) Mean (STD) Time (S)
f1 2.85E-16 (2.61E-16) 0.739 2.38E-16 (3.57E-16) 3.073 1.42E-15 (2.81E-15) 0.981
f2 2.32E1 (2.57E0) 0.937 2.24E1 (3.62E0) 3.296 2.51E1 (1.1E1) 1.217
f3 1.06E-7 (9.68E-8) 0.905 9.39E-8 (5.6E-8) 3.184 1.67E-7 (1.22E-7) 1.088
f4 6.99E-3 (1.02E-2) 0.937 1.04E-2 (1.06E-2) 3.174 7.49E-3 (7.08E-3) 1.046
f5 4.52E1 (1.16E1) 0.958 4.76E1 (1.14E1) 3.163 6.76E1 (1.63E1) 1.051
f6 7.35E-2 (1.85E-2) 0.757 8.08E-2 (2.03E-2) 2.959 7.59E-2 (2.48E-2) 0.860

33

Table 3: Comparisons between PSO-GIDN and other PSO Algorithms

No.
PSO-GIDN SPSO GPSO VPSO PSO-NO PSO-RDN PSO-DMS
Mean (STD) Mean (STD) Mean (STD) Mean (STD) Mean (STD) Mean (STD) Mean (STD)

f1 2.85E-16 (2.61E-16) 6.41E-9 (3.73E-9) 1.88E-21 (3.85E-21) 2.41E-12 (1.89E-12) 2.96E-21 (5.8E-21) 1.01E-10 (8.46E-11) 1.35E-8 (7.12E-9)
f2 2.32E1 (2.57E0) 2.39E1 (2.67E0) 3.35E1 (2.38E1) 2.46E1 (1.61E0) 2.26E1 (1.9E0) 2.73E1 (1.06E1) 2.53E1 (1.2E0)
f3 1.06E-7 (9.68E-8) 7.03E-4 (3E-4) 1.11E0 (8.47E-1) 8.64E-6 (4.74E-6) 8.26E-1 (7.91E-1) 5.02E-5 (1.91E-5) 7.08E-4 (2.44E-4)
f4 6.99E-3 (1.02E-2) 1.69E-3 (3.73E-3) 1.01E-2 (1.05E-2) 4.56E-3 (8.13E-3) 3.24E-2 (7.17E-2) 7.19E-3 (8.06E-3) 7.52E-4 (2.11E-3)
f5 4.52E1 (1.16E1) 4.97E1 (8.76E0) 5.34E1 (1.35E1) 4.54E1 (7.93E0) 4.94E1 (9.32E0) 4.99E1 (1.66E1) 9.37E1 (1.1E1)
f6 7.35E-2 (1.85E-2) 1.45E-1 (3.16E-2) 1.18E-1 (4.23E-2) 7.82E-2 (1.33E-2) 1.12E-1 (3.27E-2) 6.34E-2 (1.97E-2) 8.9E-2 (2.18E-2)
f7 -358.98 (91.49) 542.3 (507.22) -103.29 (394.69) -52.41 (278.48) 36.19 (561.05) -58.65 (365.46) 2397.59 (540.74)
f8 -375.68 (255.46) 30.33 (725.02) 1386.51 (2838.2) -100.6 (562.31) 1759.26 (3201.93) 984.66 (1531.7) 4784.2 (1837.98)
f9 6267643 (8517300) 7710409 (6294142) 48064757 (45618893) 6546530 (7183801) 14596032 (15094962) 11951976 (9738194) 37355691 (14378455)
f10 1745.86 (1424.34) 10967.21 (3155.72) 5909.19 (6819.21) 3283.85 (1518.82) 4203.11 (4526.62) 4106.26 (1663.76) 12454.32 (2225.33)
f11 8486.32 (1056.27) 10620.86 (1555.64) 12152.89 (2378.88) 8285.75 (984.11) 10733.54 (2195.99) 8595.76 (1379.38) 11839.66 (1299.09)
f12 1764509 (2554673) 26285911 (18942482) 7030737 (6664173) 3856860 (3088324) 4920850 (4995025) 5105230 (4205608) 88985497 (39786538)
f13 4847.81 (48.98) 4944.71 (50.8) 4969.01 (96.73) 4858.35 (32.47) 4933.28 (78.29) 4888.9 (38.34) 5101.59 (40.22)
f14 -119.12 (0.06) -119.11 (0.04) -119.07 (0.05) -119.11 (0.06) -119.1 (0.06) -119.19 (0.03) -119.06 (0.05)
f15 -265.21 (14.53) -250.15 (6.94) -255.0 (20.48) -264.38 (12.98) -263.38 (19.06) -278.94 (11.76) -247.23 (14.02)
f16 -222.16 (23.28) -201.26 (32.81) -191.69 (39.34) -244.66 (18.05) -215.78 (35.43) -186.09 (38.94) -161.09 (33.75)
f17 117.44 (2.7) 117.49 (3.17) 117.22 (4.63) 117.45 (3.16) 119.35 (2.29) 118.47 (4.52) 113.43 (3.05)
f18 9338.53 (6689.24) 9231.07 (7488.09) 22194.72 (18354.1) 15727.59 (11808.76) 20742.44 (22648.59) 24464.86 (18775.45) 23403.82 (9472.82)
f19 -126.14 (0.98) -125.26 (0.92) -125.73 (1.25) -126.31 (0.94) -126.03 (0.85) -125.42 (1.38) -122.01 (1.56)
f20 -287.56 (0.4) -287.65 (0.22) -287.61 (0.48) -287.91 (0.38) -287.79 (0.63) -287.57 (0.32) -287.39 (0.34)
f21 450.8 (140.63) 421.34 (95.91) 614.64 (146.66) 540.22 (129.92) 568.5 (144.24) 500.92 (144.62) 499.04 (93.54)
f22 251.6 (27.08) 269.05 (25.23) 393.05 (144.12) 240.93 (22.66) 281.8 (53.86) 291.04 (40.42) 324.37 (24.63)
f23 273.2 (38.58) 354.56 (22.64) 479.05 (201.08) 271.16 (29.58) 339.57 (95.16) 342.53 (34.31) 390.71 (24.15)
f24 998.33 (15.52) 1042.03 (11.97) 1049.27 (24.4) 1011.26 (10.85) 1039.65 (25.78) 1015.41 (8.79) 1043.49 (13.42)
f25 1004.86 (15.76) 1036.68 (12.96) 1044.82 (20.96) 1014.09 (11.01) 1025.61 (20.36) 1010.55 (9.43) 1047.03 (14.16)
f26 1007.03 (11.13) 1029.48 (14.2) 1069.18 (31.25) 1015.65 (12.48) 1025.53 (21.87) 1009.99 (10.55) 1041.28 (15.07)
f27 1042.45 (227.39) 1336.66 (155.14) 1420.82 (230.38) 1087.22 (166.98) 1229.7 (274.19) 1196.23 (212.13) 1438.75 (106.17)
f28 1394.24 (30.07) 1422.47 (27.7) 1468.69 (45.48) 1387.45 (17) 1441.79 (38.98) 1394.22 (27.61) 1442.71 (23.7)
f29 1024.04 (110.06) 1346.62 (139.12) 1403.86 (202.68) 1139.15 (210.43) 1394.97 (224.12) 1206.37 (208.47) 1469.97 (64.86)
f30 463.61 (4.87) 780.89 (180.16) 773.84 (407.61) 505.16 (28.43) 527.06 (202.34) 502.13 (57.36) 1058.28 (133.27)
f31 2080.97 (223.59) 2064.28 (178.45) 2216.93 (173.24) 2236.79 (120.2) 2091.93 (171.21) 2157.19 (183.79) 2229.2 (126.48)

Summary
Better 26 28 23 28 26 29
Worse 5 3 8 3 5 2

are more interested in the performance in the late stage. Therefore,
in Figure 1, we only show the convergence curves in the late stage.
From these curves, we observe that no single γ value can always
perform better on all the 6 functions. For example, PSO-GIDN
(γ = 0.5) performs better on two unimodal functions (Sphere and
Rosenbrock), while PSO-GIDN (γ = 1) performs better on Ras-
trigin. However, PSO-GIDN (γ = 2) generally performs better
on most of the multimodal functions and also performs well in the
unimodal functions. Accordingly, we recommend that γ is set to 2.

4.1.2 How to choose a neighbour?
In the PSO-GIDN, each particle dynamically increases the size

of their neighbourhood. It might be interesting to investigate the
impacts of the choosing neighbour strategies on the performance of
the PSO-GIDN. We examine three different strategies. The first one
is to choose particles randomly as their new neighbours. Another
one is to choose the particles that are nearest in the search space.
The last one is to choose nearest particles in the function space.

Table 2 shows the results obtained from different choosing strate-
gies. Here, γ is fixed to 2. The nearest neighbours in the search
space strategy has better performance on first three functions, how-
ever, it consumes much more time that the other two strategies.
While the randomly choosing neighbour strategy works better on
the last three functions that are more difficult to optimise, and it
also performs well on the first three functions. Furthermore, this
strategy consumes less time than the other two strategies. Based on

Table 5: PSO Algorithms Used in the Comparisons
Algorithm Topologies Ref.

SPSO lBest [2]
GPSO gBest [22]
VPSO von Neumann [13]

PSO-NO Neighbourhood Operator [24]
PSO-RDN Randomized Directed Neighbourhood [20]
PSO-DMS Dynamic Multi-swarm [15]

these results, we suggest choosing each particle’s new neighbours
randomly.

4.2 Comparisons with Other PSO algorithms
To validate the proposed PSO-GIDN, we compare the PSO-GIDN

with a number of existing PSO algorithms on the 31 functions. We
select the existing PSO algorithms as comparisons based on neigh-
bourhood topologies. These PSO algorithms are shown in Table 5.
The neighbourhood topologies chosen represent the state of the art
topologies. The PSO with the ring topology is known as the stan-
dard PSO (SPSO) [2]. The PSO with the gBest topology and von
Neumann (or Square) topology are denoted as GPSO and VPSO
respectively. The PSO-NO is the PSO with a neighbourhood op-
erator that was proposed by Suganthan [24]. The PSO-RDN is the

34

Table 4: T-test Results
No.

SPSO GPSO VPSO PSO-NO PSO-RDN PSO-DMS
T-value (P-value) T-value (P-value) Mean (STD) Mean (STD) Mean (STD) Mean (STD)

f1 -8.592 (0.000) 5.460 (0.000) -6.375 (0.000) 5.460 (0.000) -5.969 (0.000) -9.480 (0.000)
f2 -0.944 (0.350) -2.151 (0.037) -2.308 (0.025) 0.939 (0.353) -1.880 (0.066) -3.702 (0.001)
f3 -11.715 (0.000) -6.553 (0.000) -9.000 (0.000) -5.221 (0.000) -13.113 (0.000) -14.506 (0.000)
f4 2.440 (0.018) -1.062 (0.293) 0.931 (0.356) -1.754 (0.086) -0.077 (0.939) 2.994 (0.004)
f5 -1.548 (0.128) -2.303 (0.026) -0.071 (0.944) -1.411 (0.165) -1.160 (0.252) -15.169 (0.000)
f6 -9.763 (0.000) -4.819 (0.000) -1.031 (0.308) -5.124 (0.000) 1.869 (0.068) -2.711 (0.009)
f7 -8.743 (0.000) -3.155 (0.003) -5.229 (0.000) -3.476 (0.001) -3.986 (0.000) -25.132 (0.000)
f8 -2.641 (0.011) -3.092 (0.003) -2.227 (0.031) -3.323 (0.002) -4.380 (0.000) -13.903 (0.000)
f9 -0.681 (0.499) -4.503 (0.000) -0.125 (0.901) -2.403 (0.020) -2.197 (0.033) -9.301 (0.000)
f10 -13.317 (0.000) -2.988 (0.004) -3.693 (0.001) -2.589 (0.013) -5.389 (0.000) -20.265 (0.000)
f11 -5.676 (0.000) -7.043 (0.000) 0.695 (0.491) -4.611 (0.000) -0.315 (0.754) -10.014 (0.000)
f12 -6.415 (0.000) -3.689 (0.001) -2.610 (0.012) -2.813 (0.007) -3.395 (0.001) -10.939 (0.000)
f13 -6.866 (0.000) -5.589 (0.000) -0.897 (0.374) -4.628 (0.000) -3.303 (0.002) -20.021 (0.000)
f14 -0.693 (0.491) -3.201 (0.002) -0.589 (0.558) -1.179 (0.244) 5.217 (0.000) -3.841 (0.000)
f15 -4.676 (0.000) -2.033 (0.048) -0.213 (0.832) -0.382 (0.704) 3.673 (0.001) -4.452 (0.000)
f16 -2.598 (0.012) -3.333 (0.002) 3.819 (0.000) -0.752 (0.455) -3.975 (0.000) -7.448 (0.000)
f17 -0.060 (0.952) 0.205 (0.838) -0.012 (0.990) -2.697 (0.010) -0.978 (0.333) 4.922 (0.000)
f18 0.054 (0.958) -3.291 (0.002) -2.354 (0.023) -2.414 (0.020) -3.795 (0.000) -6.064 (0.000)
f19 -3.273 (0.002) -1.291 (0.203) 0.626 (0.534) -0.424 (0.673) -2.127 (0.039) -11.209 (0.000)
f20 0.986 (0.329) 0.400 (0.691) 3.172 (0.003) 1.541 (0.130) 0.098 (0.923) -1.619 (0.112)
f21 0.865 (0.391) -4.032 (0.000) -2.335 (0.024) -2.921 (0.005) -1.242 (0.220) -1.428 (0.160)
f22 -2.357 (0.023) -4.823 (0.000) 1.511 (0.137) -2.505 (0.016) -4.053 (0.000) -9.940 (0.000)
f23 -9.094 (0.000) -5.027 (0.000) 0.210 (0.835) -3.232 (0.002) -6.714 (0.000) -12.909 (0.000)
f24 -11.148 (0.000) -8.808 (0.000) -3.414 (0.001) -6.866 (0.000) -4.788 (0.000) -11.005 (0.000)
f25 -7.797 (0.000) -7.619 (0.000) -2.401 (0.020) -4.030 (0.000) -1.549 (0.128) -9.952 (0.000)
f26 -6.222 (0.000) -9.368 (0.000) -2.577 (0.013) -3.769 (0.000) -0.965 (0.339) -9.141 (0.000)
f27 -5.344 (0.000) -5.844 (0.000) -0.793 (0.431) -2.628 (0.011) -2.473 (0.017) -7.896 (0.000)
f28 -3.452 (0.001) -6.828 (0.000) 0.983 (0.331) -4.829 (0.000) 0.002 (0.998) -6.330 (0.000)
f29 -9.092 (0.000) -8.234 (0.000) -2.424 (0.019) -7.428 (0.000) -3.867 (0.000) -17.453 (0.000)
f30 -8.802 (0.000) -3.805 (0.000) -7.203 (0.000) -1.567 (0.124) -3.346 (0.002) -22.296 (0.000)
f31 0.292 (0.772) -2.403 (0.020) -3.069 (0.004) -0.195 (0.847) -1.317 (0.194) -2.885 (0.006)

Summary
Statistically Better 21 26 15 20 17 27
Statistically Same 9 4 14 10 12 2
Statistically Worse 1 1 2 1 2 2

PSO with randomised directed neighbourhoods and edge migra-
tions [20]. The dynamic multi-swarm PSO (PSO-DMS) uses many
small swarms and regroups these swarms frequently [15]. In these
6 topologies, lBest, gBest and von Neumann topologies are static
while the rest are dynamic topologies. In order to compare the ef-
fects of neighbourhood topologies purely, all these PSO algorithms
employ Equations (1) and (2) to update each particle’s velocity and
position. This setting is different with the original settings in the
PSO-DMS and GPSO. The parameters χ, c1 and c2 are set as stated
earlier. For the PSO-RDN, the neighbourhood size for each parti-
cle is generated randomly between 1 and 4, and the migration rate
of 1 per iteration is used. For the PSO-DMS, each swarm has 3
particles, and the regroup period is set to 10. For the PSO-GIDN,
the γ is set to 2, and the randomly choosing neighbour strategy is
applied.

Table 3 shows the mean value and standard deviation over 25
individual trials for these PSO algorithms. We find that the PSO-
GIDN performs better than the other PSO algorithms on almost of
all the 31 functions. Specifically, the PSO-GIDN performs better
than the SPSO on 26 functions, better than the GPSO on 28 func-
tions, better than the VPSO on 23 functions, better than the PSO-
NO on 28 functions, better than the PSO-RDN on 26 functions, and
better than the PSO-DMS on 29 functions. Furthermore, in order
to verify whether the performance differences are statistically sig-
nificant, a t-test was conducted. We use the conventional criteria
to determine whether differences are significant. That is if the two
tailed p value is less than 5%, the difference is statistically signifi-

cant, or else, it is not. The t-test results are shown in Table 4. From
the summary in Table 4, there are only a very few cases that the
PSO-GIDN performs statistically significant worse than the other
PSO algorithms. In contrast, the PSO-GIDN performs statistically
significant better over the SPSO, GPSO, PSO-NO, PSO-RDN and
PSO-DMS on the majority of the functions. Overall the PSO-GIDN
also performs better than the VPSO as it performs statistically sig-
nificant better on 15 functions and statistically same on 14 func-
tions. From these results, we can conclude that the PSO-GIDN
provides a better topology and generally performs better than the
existing PSO algorithms.

5. CONCLUSIONS
Like many other population-based algorithms, the performance

of the PSO depends on its ability to balance exploration and ex-
ploitation of the search space. In this paper, we aim to improve this
trade-off through the neighbourhood structure design. Our study
suggests that a productive balance between exploration and ex-
ploitation can be achieved by a gradually increasing directed neigh-
bourhood topology. This dynamic topology can support the explo-
ration of promising regions in the search space, while gradually
improve the ability of exploitation.

Although our results are promising, future research should con-
tinue to test the current topology on more problems and explore
other alternative topologies, and we hope that the work we present
here represents an important stepping stone to uncovering more nu-

35

anced underpinnings between neighbourhood topologies and per-
formance.

6. ACKNOWLEDGMENT
The authors would like to gratefully acknowledge the continued

support of Science Foundation Ireland.

7. REFERENCES

[1] M. AlRashidi and M. El-Hawary. A survey of particle swarm
optimization applications in electric power systems.
Evolutionary Computation, IEEE Transactions on, 13(4):913
–918, 2009.

[2] D. Bratton and J. Kennedy. Defining a standard for particle
swarm optimization. In IEEE Swarm Intelligence
Symposium, pages 120 –127, Apr. 2007.

[3] Z. Chen, Z. He, and C. Zhang. Particle swarm optimizer with
self-adjusting neighborhoods. In Proceedings of the 12th
annual conference on Genetic and evolutionary computation
(GECCO-2010), pages 9–14, New York, NY, USA, 2010.
ACM.

[4] M. Clerc and J. Kennedy. The particle swarm - explosion,
stability, and convergence in a multidimensional complex
space. IEEE Transactions on Evolutionary Computation,
6(1):58–73, Feb. 2002.

[5] R. Eberhart and J. Kennedy. A new optimizer using particle
swarm theory. In Proceedings of the Sixth International
Symposium on Micro Machine and Human Science, pages
39–43, Oct. 1995.

[6] R. Eberhart and Y. Shi. Particle swarm optimization:
developments, applications and resources. volume 1, pages
81 –86, 2001.

[7] S. P. K. Eberhart, R. C. and R. W. Dobbins. Computational
Intelligence PC Tools. Boston, MA: Academic Press
Professional, 1996.

[8] A. Godoy and F. J. Von Zuben. A complex neighborhood
based particle swarm optimization. In Proceedings of the
Eleventh conference on Congress on Evolutionary
Computation (CEC 2009), pages 720–727, Piscataway, NJ,
USA, 2009. IEEE Press.

[9] J. Jordan, S. Helwig, and R. Wanka. Social interaction in
particle swarm optimization, the ranked fips, and adaptive
multi-swarms. In Proceedings of the 10th annual conference
on Genetic and evolutionary computation (GECCO 2008),
pages 49–56, New York, NY, USA, 2008. ACM.

[10] J. Kennedy. Small worlds and mega-minds: effects of
neighborhood topology on particle swarm performance. In
Proceedings of the 1999 Congress on Evolutionary
Computation, volume 3, pages 1931–1938, 1999.

[11] J. Kennedy. Stereotyping: improving particle swarm
performance with cluster analysis. In Proceedings of the
2000 Congress on Evolutionary Computation (CEC 2000),
2000.

[12] J. Kennedy and R. Eberhart. Particle swarm optimization. In
Proceedings of IEEE International Conference on Neural
Networks, volume 4, pages 1942–1948. IEEE Press,
Nov./Dec. 1995.

[13] J. Kennedy and R. Mendes. Population structure and particle
swarm performance. In Proceedings of the 2002 Congress on
Evolutionary Computation (CEC 2002), pages 1671–1676,
Washington, DC, USA, 2002. IEEE Computer Society.

[14] J. Kennedy and R. Mendes. Neighborhood topologies in
fully informed and best-of-neighborhood particle swarms.
IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 36(4):515 –519, Jul. 2006.

[15] J. Liang and P. Suganthan. Dynamic multi-swarm particle
swarm optimizer. In Proceedings of the 2005 IEEE Swarm
Intelligence Symposium, pages 124 – 129, Jun. 2005.

[16] A. McNabb, M. Gardner, and K. Seppi. An exploration of
topologies and communication in large particle swarms. In
Proceedings of the Eleventh conference on Congress on
Evolutionary Computation (CEC 2009), pages 712–719,
Piscataway, NJ, USA, 2009. IEEE Press.

[17] R. Mendes. Population Topologies and Their Influence in
Particle Swarm Performance. PhD thesis, Escola de
Engenharia, Universidade do Minho, 2004.

[18] R. Mendes, J. Kennedy, and J. Neves. The fully informed
particle swarm: simpler, maybe better. Evolutionary
Computation, IEEE Transactions on, 8(3):204 – 210, 2004.

[19] A. Mohais, R. Mendes, C. Ward, and C. Posthoff.
Neighborhood re-structuring in particle swarm optimization.
In S. Zhang and R. Jarvis, editors, AI 2005: Advances in
Artificial Intelligence, volume 3809 of Lecture Notes in
Computer Science, pages 776–785. Springer Berlin /
Heidelberg, 2005.

[20] A. Mohais, C. Ward, and C. Posthoff. Randomized directed
neighborhoods with edge migration in particle swarm
optimization. In Proceedings of the IEEE International
Conference on Evolutionary Computation (CEC 2004),
volume 1, pages 548 – 555 Vol.1, 2004.

[21] A. E. Muñoz Zavala, A. Hernández Aguirre, and E. R.
Villa Diharce. The singly-linked ring topology for the
particle swarm optimization algorithm. In Proceedings of the
11th Annual conference on Genetic and evolutionary
computation (GECCO 2009), pages 65–72, New York, NY,
USA, 2009. ACM.

[22] Y. Shi and R. Eberhart. A modified particle swarm optimizer.
In Proceedings of the IEEE International Conference on
Evolutionary Computation (CEC 1998), pages 69–73,
Piscataway, NJ, May 1998. IEEE Press.

[23] H. N. e. a. Suganthan, P. N. Problem definitions and
evaluation criteria for the cec 2005 special session on
real-parameter optimization. Technical report, Nanyang
Technological University, Singapore and KanGAL Report
Number 2005005, 2005.

[24] P. Suganthan. Particle swarm optimiser with neighbourhood
operator. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 1999), 1999.

36

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

