
Analysing Structure in Complex Networks Using Quality
Functions Evolved by Genetic Programming

Fergal Reid
Clique Research Cluster

Complex and Adaptive Systems Laboratory
University College Dublin

Ireland
fergal.reid@gmail.com

Neil Hurley
Clique Research Cluster

Complex and Adaptive Systems Laboratory
University College Dublin

Ireland
neil.hurley@ucd.ie

ABSTRACT

When studying complex networks, we are often interested
in identifying structures within the networks. Previous work
has successfully used algorithmically identified network struc-
tures to predict functional groups; for example, where struc-
tures extracted from protein-protein interaction networks
have been predictive of functional protein complexes. One
way structures in complex networks have previously been
described is as collections of nodes that maximise a local
quality function. For a particular set of structures, we search
the space of quality functions using Genetic Programming,
to find a function that locally describes that set of struc-
tures. This technique allows us to investigate the common
network properties of defined sets of structures. We also
use this technique to classify and differentiate between dif-
ferent types of structure. We apply this method on several
synthetic benchmarks, and on a protein-protein interaction
network. Our results indicate this is a useful technique of
investigating properties that sets of network structures have
in common.

Categories and Subject Descriptors: G.2.2 [Graph The-
ory]: Network problems; I.2.8 [Problem Solving, Control
Methods, and Search]: Heuristic methods; I.5.1 [Models]:
Structural

General Terms: Algorithms, Theory

Keywords: Genetic Programming, Complex Networks, Struc-
ture

1. INTRODUCTION

1.1 Structure in Complex Systems
In the study of complex systems, it is sometimes useful

to consider the individual interacting parts of a system as a
network. By studying the properties of that network, we can
sometimes find structure latent in the system. Considering
complex systems in this way has yielded insight across many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

different disciplines. For example, in the biological domain,
the interactions of proteins may be considered as a network.
Previous work has found that higher level functional group-
ings – protein complexes – may be discovered algorithmically
by looking for network structures in the graph of interacting
proteins[1],[2],[18].

There are now many algorithms that seek to uncover struc-
tures across networks generally, across many domains. At
an abstract level, this search for higher level structure is mo-
tivated by similar principles to evolutionary computation –
higher level structure is thought likely to exist in complex
systems generally, because it is more efficient to evolve large
systems from combinations of high level subsystems, rather
than from the simplest components. A frequently cited work
discussing the connection between these ideas is that of Si-
mon[19].

In the complex networks literature, the problem of uncov-
ering higher level structures is referred to as ‘Community
Finding’. A diverse set of algorithms, optimised for differing
ideas of what specific higher level network structure should
be found – and hence what ‘community’ means – has been
developed. These algorithms operate on a network, and re-
turn a set of structures. In general, using the language of
graph theory, a network is considered as a set of nodes, or
vertices, and a set of edges which exist between pairs of
nodes. Edges may be directed or undirected, depending on
the domain; for simplicity we will consider only undirected
networks, though all methods discussed generalise. To illus-
trate the concept of a network, a subset of a protein-protein
interaction network is visualised in Figure 1.

Given a network consisting of nodes and edges, there are
many different algorithms which attempt to find different
types of embedded structure. Fortunato[7] provides a com-
prehensive review of the field. Some algorithms seek to
find certain motifs in graphs - such as cliques, or percolated
cliques; others seek to find structure that best satisfies some
generative or statistical model of community; still others de-
fine a local ‘fitness’ objective function on a set of nodes, the
function designed to be at a maximum when the nodes form
a good community. It this last family of algorithms, which
define a local community ‘fitness function’, that is then max-
imised for, that we are concerned with in this work.

1.2 Community quality functions
One method of finding communities is that of defining a

‘fitness function’ (hereafter ‘community quality function’ to
avoid confusion with the term ‘fitness function’ in evolu-
tionary computation) that operates on a set of nodes from

283



Figure 1: Visualisation of a subset of a protein-
protein interaction network[6], where the edges rep-
resent the interactions between proteins. The nodes
of a particular complex – highly interconnected – are
shown in red.

the network, and defines how good a community that set
of nodes is. Sets of nodes that locally maximise this qual-
ity function can then be found, by a variety of algorithmic
search techniques; these groups of nodes will be considered
communities. Because the search space of possible combina-
tions of nodes in any non-trivial network is very large, var-
ious optimisations and heuristics are employed to find sets
of nodes that optimise the quality function. For example,
one technique is to use simple greedy methods, which start
with some set of nodes, and then repeatedly add to the set
the connected node which would most increase the quality
of the set, until a local maximum for the quality function is
reached. More sophisticated search strategies, such as sim-
ulated annealing, or genetic search, have also been used.

The quality functions which describe the structures of in-
terest are often arrived at because they correspond to an
individual researchers intuition of what ‘community’ – i.e.
higher level structure – should be. Thus a variety of dif-
ferent local quality functions exist - examples include those
proposed in [11], [5], [15]. In order to validate the appro-
priateness of a particular quality function as a community
finding method, typically a network is chosen, for which a
known set of specific higher level structures, already exists.
Then sets of nodes which maximise the community quality
function are found algorithmically, and these sets of found
structure are then compared against the pre-defined struc-
tures. As an example of this approach, one area where im-
portant structural data is available are protein-protein in-
teraction networks, where structures found in the network
of interactions are benchmarked by evaluating their ability
to predict functional protein complexes.

While it is often intended that community finding tech-
niques be broadly applicable across diverse domains, it is
perhaps likely that no one type of structure, and hence no
one particular quality function, is optimal across every do-
main. In this research, we examined whether, when given
the ground truth communities for a set of network data, it
was possible to use a supervised approach to automatically
extract information on what an appropriate quality function
might be.

1.3 Using genetic search to find quality
functions

While previous approaches have used heuristically defined
quality functions to find particular structure relevant within
a particular domain, it isn’t clear that any specific quality
function works across all domains. Many different types of
fitness function exist, and many ways of maximising them
have been proposed. We considered whether it would be pos-
sible, given a set of ground truth communities, to search for
a quality function that describes structural properties com-
mon to those communities. Such a quality function would
ideally be at a local maximum for as many of the ground
truth communities as possible. Some existing quality func-
tions are relatively simple mathematical combinations of cer-
tain defined structural properties of the communities. One
example of this is the local quality function of Lancichinetti
et al[11], shown in Equation 1. As Lancichinetti et al. write:
“Here a community is a subgraph identified by the maxi-
mization of a property or fitness of its nodes. We have tried
several options for the form of the fitness and obtained the
best results with the simple expression”

Quality(S) =
kS

in

(kS
in + kS

out)
α

, (1)

This function is a simple function of kin, the number of edges
that exist within a given network structure S, and kout, the
number of edges that cross from that structure out into the
rest of the network. In use, the α parameter is frequently
set to 1.0, further simplifying the function.

Our goal in this work is to learn something about the
appropriate choice of quality function to describe particu-
lar structures in a network, when we have access to a set
of known ‘ground truth’ examples of those structures. We
found that genetic programming, as described by Koza[10],
provided a very natural representation to allow us to define
a search across the space of quality functions, in order to
find a quality function that best describes a known set of
structures.

1.4 Other evolutionary computation
approaches in this domain

Previous work [22] has applied genetic algorithms to find a
set of nodes from an e-mail communications database, max-
imising certain social network quality criteria, in order to
extract a useful filtered subset of a larger communications
network. Other authors [13], [8] have tackled the problem
of finding a set of nodes to maximise a particular quality
function, using genetic search. There are many ways to
find sets of nodes that maximise a given quality function,
and indeed, the search space of possible nodes to consider
is typically very large, so some optimised search method is
generally needed. However, what we are concerned with is
searching to determine which quality function we should be

284



using, given a set of training structures. We are not aware
of previous work applying evolutionary computation tech-
niques to the problem of deciding which quality function
well describes a set of structures.

2. EXPERIMENTS

2.1 Genetic Programming
As we want a very general method of finding quality func-

tions that can describe sets of known structure, and the
space of possible functions to search over is very large, this
problem seems a natural fit for the technique of genetic pro-
gramming. We must first define some space for the quality
functions to be drawn from; we choose a grammar for our
functions that contains many of the measures we currently
use to discuss structure in complex networks, and which
would be capable of generating a very general vocabulary of
simple quality functions. The structure of the grammar we
use to define the possible functions is deliberately simple in
this work, for efficiency reasons. However, it allows the gen-
eration of simple functions operating on a range of standard
network features, and is shown in Figure 2.

<expr> ::= <var> | ( <expr> <op> <expr> )

<op> ::= + | * | - | / | ^

<var> ::= InternalEdges | ExternalEdges |

Diameter | MaxDegree | NumberNodes |

LargestCliqueSize | ClusterCoefficient |

AverageShortestPathLength | 1

Figure 2: Structure quality function grammar.

The selection of which particular network features to in-
clude is somewhat arbitrary; however, we have chosen a
range of features used to generally characterise networks,
as well as features found in existing quality functions; and
there is no reason why in principle this set of features could
not be expanded or altered to include other structural fea-
tures of interest.

The features we chose to characterise structures were:

• InternalEdges is the total number of edges within the
structure under evaluation, where an internal edge con-
nects a node to another node within the structure.

• ExternalEdges is the total number of edges from nodes
within the structure that connect to nodes outside the
structure.

• The Diameter of the structure is the length of the
longest path through the structure, without cycles.

• MaxDegree of the structure is the degree of the node
with largest degree.

• NumberNodes simply describes the total number of
nodes in the structure.

• AverageShortestPathLength is the average of the length
of the shortest path between each pair of nodes in the
structure, and a famous network statistic[20].

• LargestCliqueSize is the size of the size of the largest
fully connected subgraph of the structure.

• ClusterCoefficient is the average clustering coefficient
for the structure, where the cluster coefficient quan-
tifies how interconnected the neighbourhood of each
individual node is[21].

Sentences generated from this grammar will yield vari-
ous quality functions, which can then be evaluated in the
context of each particular structure. Each sentence can be
represented as a tree, as shown in Figure 3. After Koza[10]
we define a range of genetic operations on these trees, such
as initialisation, crossover and mutation. By applying these
operations repeatedly on a large group, or ‘population’ of
trees, each of which has a certain evaluated fitness, we per-
form a genetic search.

Figure 3: Example tree from the quality function
(InternalEdges/(ExternalEdges+InternalEdges)).

2.2 Searching for locally maximum quality
functions

With no computational constraints, our ideal approach
would be to search the space of possible quality functions,
while finding exhaustively, for each quality function, all pos-
sible subsets of nodes in the network for which that qual-
ity function is a local maximum. We would then evaluate
these sets of nodes against the ground truth structures; if
the found sets were similar to the ground truths, we would
say the quality function was good. However, this exhaustive
approach is not computationally feasible in practice. Firstly,
for any non-trivial network, there are an intractable number
of possible subsets of its nodes. Algorithms which maximise
a quality function must thus search for structure in an ef-
ficient manner. Previous approaches to find sets of nodes
that maximise a given quality function have typically made
use of algorithmic optimisations particular to the quality
function in question. For example, quality functions have
been found that simple greedy methods optimise well; or,
frequently, algorithmic optimisation techniques which finely
exploit the specific properties of an individual quality func-
tion have been employed. However, when searching across
the space of possible quality functions, we do not have the
opportunity to implement optimisation algorithms tuned to
each individual quality function; furthermore, general opti-
misation methods like genetic algorithms, or simulated an-
nealing, while they work well on some specific quality func-
tions, still fail to optimise well enough in all cases to allow

285



sufficient numbers of quality functions to be evaluated to
perform search across the space of quality functions.

In light of these limits, we take measures to simplify our
problem. Bearing in mind the success of previous greedy
methods in maximising quality functions, the first assump-
tion we make is that if a quality function is a useful de-
scription of set of structures, it should be at a local max-
imum for most of those structures. By a ‘local maximum’
we mean that removing nodes from, or adding neighbour-
ing nodes to, a structure should not increase the value of
the quality function as evaluated on that structure. For ex-
ample, if the structures we are seeking to identify happen
to be unique in the graph because of their clique-like na-
ture, then we would expect that removing nodes from those
structures would decrease the size of the largest clique in
each structure – whereas adding neighbouring nodes would
be unlikely to increase the size of the largest clique. Equally,
if the distinguishing feature of the structures we are looking
at happens to be that they have a certain relationship be-
tween the number of internal and external edges – as is in
Equation 1 – we would expect that quality function to be at
a maximum for the structures, as opposed to the same struc-
tures with ‘noise’, or random neighbouring nodes added to
them. We thus will search for a quality function which will
differentiate between the training structure, and the same
structure with noise added.

Each specific training structure be somewhat unique, due
to the random attributes of the structure of the network in
which it is embedded. Finding a quality function which is
a local maximum for a single training structure, is not, in
itself, that interesting. However, if the set of training struc-
tures are generated by the same process, or have structural
properties in common for other reasons, then finding a single
quality function that is a local maximum for many of them
tells us something about what they have in common. We are
thus interested in finding a particular quality function which
is locally maximum for as many of the training structures
as possible.

With these ideas in mind, we cast our problem as follows:
Let S be a set of training structures i.e. a set of sub-

graphs of a graph G. Let Q be the space of all possible
quality functions that may be generated through the speci-
fied grammar. We can say that a function q ∈ Q identifies
the structure S ∈ S from its neighbourhood whenever q has
a local maximum at S i.e. if N (S) is the neighbourhood of
S, define

I(q, S,N ) =



1 if q(S) > q(S′), ∀S′ ∈ N (S)
0 otherwise

Then, the optimisation problem is to find a q that identifies
the most training structures i.e.

q = arg max
q′∈Q

s(q′,S,N ) (2)

where

s(q,S,N ) =
X

S∈S

I(q, S,N ) .

In order for this problem to be well-defined, it is necessary
to precisely define the neighbourhood of S, for instance, by
specifying a neighbourhood generation function. In the fol-
lowing, the neighbourhood of S is taken to be all the sub-
graphs of the network that can be obtained from S by re-
moval of a node in S, or by addition of a node incident to S

2 4 6 8 10

0
2
0

4
0

6
0

8
0

1
0
0

Fitness across generations

Generation

F
it
n

e
s
s
 (

P
e
rc

e
n

t 
C

o
rr

e
c
t)

Average Train Fitness

Average Test Fitness

Best Train Fitness

Best Test Fitness

Figure 4: Fitness across generations, for average and
best individuals, on train and test data.

(i.e. a node that is connected to a some node in S, but not
itself in S) .

In general, the neighbourhood of a structure can be very
large, and thus an exact calculation of s(q,S,N ) is time-
consuming. Thus to solve (2) by genetic programming, we
specify a fitness function that approximates s(q,S,N ). In
particular, for each training instance S, let P(S) ⊆ N (S),
such that |P(S)| = k, be a fixed set of k perturbations of
S drawn randomly from the neighbourhood. We define the
fitness of q to be

f(q) = s(q,S,P) . (3)

on the assumption that f(q) ≈ s(q,S,N ).
Genetic programming is thus applied to find the fittest q,

as follows:
Initially, for each training structure, S we generate the set

P(S). We also generate a random population of individual
quality functions, bounded within a specific tree depth. We
evaluate the fitness of an individual member of our popula-
tion using (3) by converting the quality function from a tree
representation, to a small computer program, which calcu-
lates the quality of each original training community, S and
each perturbation P ∈ P(S). Then, quality functions of
a higher fitness are selected for crossover, proportional to
their fitness, using roulette wheel selection. A small propor-
tion of individuals are randomly mutated, and this whole
process is run for multiple generations. In order to opti-
mise our implementation, we include a small percentage of
elites in our selection. We also include a slight bias whereby
shorter quality functions are preferred over otherwise equally
fit longer functions; this inductive bias is suitable in our do-
main, where we are anxious to avoid overfitting our training
data, and where we are most interested in the shortest qual-
ity function that adequately describes our data.

286



Table 1: Train and test accuracies, and found quality function with highest fitness (or a randomly chosen
one, if a tie existed), for each benchmark test.

Benchmark structure Train Accuracy Test Accuracy Found function
Full Clique 100 100 ((largestCliqueSize)-(diameter))
Near Clique 92 89 ((internalEdges)*(clusterCoefficient))
Ring 90 96 ((1.0)/(averageShortestPath))
Star 79 81 ((numberNodes)/(diameter))

2.3 Evaluation of method
In order to develop and validate our method, we cre-

ated a set of benchmark challenges, where we embed known
forms of structure into synthetic graphs. Embedding struc-
tures with known forms allows us to test the optimisation
method in controlled circumstances, and evaluate whether
it is finding quality functions that appear insightful, given
the specific structures embedded. To create these bench-
marks, we first generate a 10,000 node network using the
Barabasi-Albert preferential attachment model[4], with m =
3.1 Then, in each experiment, we embed 200 sample struc-
tures, half of which are assigned to a training dataset, and
half to a test dataset. To make it hard to overfit the struc-
tures, each individual structure is of a size drawn uniformly
at random from the range 5 – 30. For efficiency reasons, we
generate only 8 randomly perturbed versions of each origi-
nal structure, and evaluate an individual quality function as
correctly describing the individual embedded training struc-
ture if it evaluates as higher for that structure, than for all
of its perturbed versions. We would have liked to exhaus-
tively search the neighbourhood space; however, the evalua-
tion of each perturbed structure by each quality function is
an expensive operation – even after caching the values of the
per community structural metrics – which is multiplied by
the number of training communities. The size of the neigh-
bourhood space is also very large, which makes meaningful
stochastic sampling difficult. However, the small number
of perturbations appears to work well in practice, and give
good results on the test structures.

In our evaluation, we score the fitness of the quality func-
tion as the number of embedded training structures it cor-
rectly describes. By running this operation across all 100
training structures, if a quality function scores highly, it is
likely to have found a set of graph attributes which are in-
deed at a local maximum for that type of structure; and
thus describes some property the set of structures have in
common.

As training structures, we decided to use variants on the
following diverse set of network structures.

• Cliques, are fully connected subgraphs, wherein every
node is connected to every other node. Cliques were
introduced[14] as valuable measures of community in
a social context (Fig 5).

• Near-Cliques, a relaxed version of the clique structure,
where some small proportional of the edges are miss-
ing. The definition of a clique being sensitive to noise,
near-cliques, or quasi-cliques, are often considered as
approximations to them.

• Rings. A ring is defined as a set of nodes connected by

1Supporting materials and data are available at:
http://sites.google.com/site/gpnetworkstructure/

a simple cycle; that is a set of vertices connected in a
closed loop (Fig 6).

• Stars (or hubs), are defined to be high degree nodes,
connected to a set of nodes which are not in turn par-
ticularly well connected to each other (Fig7).

We provide visualisations of some of these structures as em-
bedded in a generated network. See Figures 5, 6, 7.

After evolving a quality function that is a local maximum
for as many of the training communities as possible, we eval-
uate the generality of the found quality function by scoring
it on 100 held-back embedded test structures. These are
evaluated in the same way as the training structures - if the
quality function can differentiate many of the diverse test
communities from nearby noisy versions of themselves, then
the quality function has found a structural property that
well characterises the structures.

Figure 5: Visualisation of clique benchmark struc-
ture, embedded in network. Clique nodes in red.

In our experiments, we use genetic search across 10 gen-
erations, with a typical population size of 200 quality func-
tions. These numbers are arbitrarily chosen, but seem to
work well in practice; typically the fitness plateaus early
in the evolutionary process – but sometimes the maximum
quality function is so simple it is found instantly, and some-
times the search space is more complex, and the fitness of
the best individual increases over generations. This depends

287



on the difficulty of the representing the embedded structure;
some structures are more difficult to represent well with the
provided grammar terminals than others. One example of a
run where the fitness gradually increases over successive gen-
erations is shown in Figure 4, which is taken from the search
for the Near-Clique quality function, as shown in Table 1.

From the results shown in Table 1, the fact that the qual-
ity function found differentiates a high number of the differ-
ent test structures from perturbed versions of themselves,
indicates that the quality function has found a way of de-
scribing some general property of the embedded structures,
as learned from the training structures. Importantly, the
evolved quality functions themselves appear to yield insight
on the underlying type of structure, that the training exam-
ples were generated from.

Figure 6: Visualisation of ring benchmark structure,
embedded in network. Nodes on the embedded ring
shown in red.

2.4 Using quality functions to differentiate
between structures

Having observed that, for specific types of structure, we
find quality functions that yield insight, and are near a local
maximum for many of the structures, we considered whether
it was possible to use this technique as a classifier to distin-
guish different types of embedded structure. If quality func-
tions made up of various complex network features are a use-
ful way of describing structures, then they should be a useful
way of differentiating between different types of structure.
Specifically, given two sets of different structures, a positive
and a negative class, (for example, rings and cliques), and
a set of complex network features for each individual struc-
ture, could we evolve a function that serves to distinguish
between the two classes, by always being a higher value for
the positive class? This would also be a harder test of the
power of quality functions: Table1 showed that the genetic
programming search process evolved quality functions that

Figure 7: Visualisation of star benchmark structure,
embedded in network. Nodes in the star structure
in red. Center most node is the center of the star.

were close to local maximum on the unseen structures; but
perhaps it was easy to distinguish any type of graph struc-
ture from perturbed versions of that structure? If the same
method could also be used to evolve a quality function that
distinguished between different types of benchmark struc-
ture, it would be a further validation.

In order to test this approach by evolving such a function,
we again generate random BA complex networks, of size
10,000 and embed randomly generated structures, again of
between 5 and 30 nodes in size, in them. Rather than embed-
ding a single type of structure, we embed two separate types
– for example, Stars and Cliques – which we then consider as
examples of positive and negative class. We then randomly
pair the positive and negative training structures. We assign
the fitness of a particular quality function to be equal to the
number of pairs for which the quality function evaluates the
positive class higher than the negative class, and then use
genetic programming to search the space of possible quality
functions for the function that best differentiates between
the two classes. For large numbers of training structures,
the number of instances where the quality function assigns
the positive class a higher value than the negative class is
proportional to the area under the ROC curve (AUC), be-
cause the AUC, as used generally as a measure of classifi-
cation accuracy, is equal to the probability that a randomly
chosen positive example will be ranked above a randomly
chosen negative example[3].

In order to evaluate the usefulness of this technique to dis-
tinguish between various types of structure, we performed
several experiments where quality functions were evolved
that would rate highly for the positive structure, and lowly
for the negative structure. We conducted several sets of ex-
periments using combinations of the previously mentioned

288



Table 2: Classification accuracy for each method in terms of test set Area Under ROC Curve. Also shown,
the fittest classification function, and the train and test percentage correct for the evolved function.

Structures Train% Test% AUC J48 AUC SVM AUC Function
Star vs Clique 100 100 1.0 1.0 1.0 (clusterCoefficient)
Star vs Ring 98 93 0.98 1.0 0.98 (diameter)

Clique vs Distinct 72 71 0.69 0.67 0.68 ((maxDegree)/(externalEdges))
Near-Clique vs Distinct 77 79 0.80 0.69 0.70 ((internalEdges)-(externalEdges))
Clique vs Near-Clique 100 100 1.0 1.0 1.0 (diameter)

introduced benchmark structures. We also introduced an-
other type of structure, to provide a more difficult test of
classification – that of distinguishing a ‘distinct’ clique from
an ‘indistinct’ one. In community finding, there is discus-
sion on communities which are well defined structures (for
example, cliques), but which may be well connected to the
rest of the network; as contrasted with communities which
are ‘distinct’ from the rest of the network, in that they have
few external edges (for their size; models generally provide
each node with some small probability of random connec-
tions) from them to the rest of the graph. The later view
can be seen in the quality function of Lancichinetti et al.
(Equation1), where there is a term penalising external edges;
however other definitions of community - notably other over-
lapping community finding algorithms - might not penalise
external edges as strongly.

In all experiments, the sets of structure pairs were divided
into training and test sets, and after evolving the quality
function using the training set, accuracy was evaluated on
the test set. To give some indication of how this method was
performing as a classifier, we also compared against several
standard classification algorithms running on the same set
of structure feature vectors. We used the both the decision
tree implementation, J48[17] and the default SVM[16] im-
plementation, from the standard WEKA[9] machine learning
package. We present the outcomes of the various classifica-
tion techniques in Table 2. In all cases, we use AUC – area
under the ROC curve – on the 50% held-back test dataset
as our metric of comparison. We also show our train and
test ‘percentage correct measures’, which are the percentage
of instances wherein the quality function evaluated the tar-
get class strictly higher. We have not performed any tuning
the of the SVM kernel, or decision tree parameters, for the
problem in question; we present these results merely to show
they appear to be competitive with more general classifica-
tion approaches.

From these results, this means of using genetic program-
ming to search the quality function space produces results
comparable, and sometimes in excess of, the AUC obtained
using the default SVM and decision tree methods. This is
encouraging, and appears to validate the previously known
idea that community quality functions are useful means of
describing some of the specific types of network structures
we are interested in. It is also of note that as the classi-
fication tasks got harder, more complex functions - com-
binations of the simpler primitives - begin to emerge, de-
spite there being a fitness bias for shorter functions. For
example, the function evolved to differentiate near-cliques
with many connections to the rest of the network, vs near-

This work is supported by Science Foundation Ireland un-
der grant 08/SRC/I1407: Clique: Graph and Network Anal-
ysis Cluster.

cliques with fewer connections per node, to the rest of the
work ((internalEdges) − (externalEdges)) is quite useful;
externalEdges alone will not suffice to tell them apart, as
larger distinct near-cliques, with a smaller fraction of ex-
ternal edges, may still have more external edges than small
‘indistinct’ cliques. This is not, in itself, remarkable, but
shows promise for when similar techniques are applied to
applications where the functions describing the classes to be
distinguished are not a priori known. This means of inves-
tigating and distinguishing between structures in a super-
vised manner has the advantage that the evolved function
may be easily examined and interpreted, possibly to gain in-
sight about the problem space; where as the output of other
methods is more opaque.

2.5 Biological dataset
Having obtained results indicating search for a local qual-

ity functions worked well on synthetic embedded network
structures, we examined a biological dataset. We used the
interaction data found in the Combined-AP/MS network[6]
as our network, and used the protein complexes from the
CYC dataset of known complexes as training structures.
These complexes have previously been found to be predictable
by finding ‘communities’ in the underlying protein-protein
interaction network. We selected half of these complexes,
and evolved a quality function that was a local maximum
for as many of them as possible. No single quality func-
tion was found that was a local maximum for the whole set
of complexes; in fact the best quality function was only an
approximate local maximum for 37 out of 63 test set struc-
tures, and 42 out of 63 training set. It is not surprising
that it is hard to find a single quality function that is a per-
fect local maximum across this dataset; real world biological
data is fundamentally noisy; previous benchmarking in work
by Lee et al.[12] on this dataset has found only mid range
scores (expressed as normalised mutual information) across
a range of respected community finding algorithms.

The quality function that our search found to best max-
imise the local maximum criterion was a function of the
largest clique size and the cluster-coefficient, specifically:
(largestCliqueSize * Cluster Coefficient). While we cannot
know that this particular function is objectively good, it
appears intuitively similar to the quality function used by
the method of finding communities by Greedy Clique Ex-
pansion[12], which first finds the largest maximal clique in
a network, and then maximises a local density based objec-
tive function in the surrounding graph - a method that was
found to be more effective than most on this dataset. These
results indicate that using search to find a quality function
produces sensible results, not just on synthetic benchmark
graphs, but also on noisy real world biologicl network data.

CYC complexes available: http://wodaklab.org/cyc2008/

289



3. CONCLUSION
It has previously been established that quality functions

are a good way of describing high level network structure
of interest. Given this, our work indicates that, for a set
of specific structures, we can algorithmically search for a
quality function that describes what they have in common.
We believe the idea of learning about training structures,
by searching for quality functions of their network features,
is promising. The primary advantage of supervised search
based methods such as this is that they allow us to investi-
gate commonality in identified network structures, without
having to rely on a pre-conceived notion of what exactly
defines the structure we are interested in. So long as we
have a vocabulary with which to describe network struc-
tures - a set of complex network measures - this approach
allows us to go from only having examples of interesting net-
work data, to learning something about the combinations of
network features that define them. Our results on using ge-
netic programming to search for combinations of network
features that generate rules to distinguish different struc-
tures also shows promise. On our test benchmarks, this gen-
eral method distinguishes different types of network struc-
ture, and gets classification results competitive to existing
classification methods applied on the same feature set.

4. FURTHERWORK
It would be possible to generalise this method by adding

further complex network measures. Of specific interest would
be the incorporation of motif metrics - such as counts of
particular graph motifs - and a more general grammar vo-
cabulary to search for combinations of motifs that describe
training structures. While Genetic Programming is a pow-
erful representation for this problem, we have not examined
in detail the performance of the genetic search, as contrasted
with other approaches; further work should investigate this.
We believe this type of supervised structure characterisa-
tion is an interesting direction in complex systems research;
a further step would be to attempt to apply this, or some
further development of the ideas, on a real problem set-
ting, where we have many more different types of defined
‘ground truth’ network structures than we can investigate
manually, and a domain need to distinguish between them.
Such domains might include finding signatures of fraud in
transactional networks, or further classification of structures
in more complex biological settings.

5. REFERENCES
[1] B. Adamcsek, G. Palla, I. Farkas, I. Derényi, and

T. Vicsek. CFinder: locating cliques and overlapping
modules in biological networks. Bioinformatics,
22(8):1021, 2006.

[2] M. Altaf-Ul-Amin, Y. Shinbo, K. Mihara,
K. Kurokawa, and S. Kanaya. Development and
implementation of an algorithm for detection of
protein complexes in large interaction networks. BMC
bioinformatics, 7(1):207, 2006.

[3] D. Bamber. The area above the ordinal dominance
graph and the area below the receiver operating
characteristic graph. Journal of mathematical
psychology, 12(4):387–415, 1975.

[4] A. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509, 1999.

[5] A. Clauset. Finding local community structure in
networks. Physical Review E, 72(2):26132, 2005.

[6] S. Collins, P. Kemmeren, X. Zhao, J. Greenblatt,
F. Spencer, F. Holstege, J. Weissman, and N. Krogan.
Toward a comprehensive atlas of the physical
interactome of Saccharomyces cerevisiae. Molecular &
Cellular Proteomics, 6(3):439, 2007.

[7] S. Fortunato. Community detection in graphs. Physics
Reports, 2009.

[8] A. Gog, D. Dumitrescu, and B. Hirsbrunner.
Community detection in complex networks using
collaborative evolutionary algorithms. Advances in
Artificial Life, pages 886–894, 2007.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. Witten. The WEKA data
mining software: An update. ACM SIGKDD
Explorations Newsletter, 11(1):10–18, 2009.

[10] J. Koza. Genetic programming: on the programming of
computers by means of natural selection. The MIT
press, 1992.

[11] A. Lancichinetti, S. Fortunato, and J. Kertész.
Detecting the overlapping and hierarchical community
structure in complex networks. New Journal of
Physics, 11:033015, 2009.

[12] C. Lee, F. Reid, A. McDaid, and N. Hurley. Detecting
highly overlapping community structure by greedy
clique expansion. KDD SNA 2010, 2010.

[13] X. Liu, D. Li, S. Wang, and Z. Tao. Effective
algorithm for detecting community structure in
complex networks based on GA and Clustering.
Computational Science–ICCS 2007, pages 657–664,
2007.

[14] R. Luce and A. Perry. A method of matrix analysis of
group structure. Psychometrika, 14(2):95–116, 1949.

[15] F. Luo, J. Wang, and E. Promislow. Exploring local
community structures in large networks. Web
Intelligence and Agent Systems, 6(4):387–400, 2008.

[16] J. Platt. Fast training of support vector machines
using sequential minimal optimization. In Advances in
Kernel Methods, pages 185–208. MIT press, 1999.

[17] J. Quinlan. C4. 5: programs for machine learning.
Morgan Kaufmann, 1993.

[18] R. Sharan, T. Ideker, B. Kelley, R. Shamir, and
R. Karp. Identification of protein complexes by
comparative analysis of yeast and bacterial protein
interaction data. Journal of Computational Biology,
12(6):835–846, 2005.

[19] H. Simon. The architecture of complexity. Proceedings
of the American Philosophical Society, pages 467–482,
1962.

[20] J. Travers and S. Milgram. An experimental study of
the small world problem. Sociometry, 32(4):425–443,
1969.

[21] D. Watts and S. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393(6684):440–442,
1998.

[22] G. Wilson and W. Banzhaf. Discovery of email
communication networks from the Enron corpus with
a genetic algorithm using social network analysis. In
Evolutionary Computation, 2009. CEC’09. IEEE
Congress on, pages 3256–3263. IEEE, 2009.

290




