
Agent Fitness Functions for Evolving Coordinated
Sensor Networks

Christian Roth
HS Offenburg

christian.roth@fh-offenburg.de

Matt Knudson
Carnegie Mellon University

matt.knudson@west.cmu.edu

Kagan Tumer
Oregon State University

kagan.tumer@oregonstate.edu

ABSTRACT
Distributed sensor networks are an attractive area for re-
search in agent systems. This is due primarily to the level
of information available in applications where sensing tech-
nology has improved dramatically. These include energy
systems and area coverage where it is desirable for sensor
networks to have the ability to self-organize and be robust
to changes in network structure. The challenges presented
when investigating distributed sensor networks for such ap-
plications include the need for small sensor packages that
are still capable of making good decisions to cover areas
where multiple types of information may be present. For
example in energy systems, singular areas in power plants
may produce several types of valuable information, such as
temperature, pressure, or chemical indicators.

The approach of the work presented in this paper provides
agent fitness functions for use with a neuro-evolutionary al-
gorithm to address some of these challenges. In particular,
we show that for self-organization and robustness to net-
work changes, it is more advantageous to evolve individual
policies, rather than a shared policy that all sensor units
utilize. Further, we show that using a difference objective
approach to the decomposition of system-level fitness func-
tions provides a better target for evolving these individual
policies. This is because the difference evaluation for fitness
provides a cleaner signal, while maintaining vital informa-
tion from the system level that implicitly promotes coordi-
nation among individual sensor units in the network.

Categories and Subject Descriptors
I.2.6 [AI]: Learning

General Terms
Algorithms, Experimentation

Keywords
Distributed Sensor Network, Agent Fitness, Neuro-Evolution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

1. INTRODUCTION
In large energy systems (e.g. power plants) an increasing

number of sensors is essential to achieve good control be-
havior and system safety. Sensors in these energy systems
might be temperature or pressure sensors, but it is also pos-
sible that a highly developed sensing entity is able to sense
multiple types of information from the same location. These
distributed sensor networks (DSNs) are composed of a large
number of highly cooperative sensing devices. Compared
to ad-hoc sensor networks there are advantages when deal-
ing with DSNs. While using intelligent sensor placement
strategies there might be no need for engineering the net-
work. It is possible that the sensing units are randomly de-
ployed within an unknown or inaccessible environment and
are able to change their position autonomously. This implies
self-organization capabilities of sensors. In a dynamic envi-
ronment with different types of information and capabilities
of sensors, these intelligent sensor networks are able to adapt
their individual capabilities, for example changes in sensing
range and efficiency or their control policies to achieve an
acceptable system health. A DSN is also characterized by a
dynamic structure, meaning adding or removing of sensors
after deployment.

Distributed sensor groups which communicate with a cen-
tralized controller to increase the system performance have
been largely researched. However, this approach is often in-
efficient because a lot of communication among sensors and
the controller is necessary, which affects the communication
bandwidth. Instead of using a centralized controller in a
large energy system it can be more efficient to control the
behavior of sensors with individual, non-centralized policies
for intelligent sensor units. This also leads to challenges
in dealing with the creation of DSNs. Important issues in
these networks are the problems of sensor placement strate-
gies which also include the localization of points of interest
and other sensing entities. It is also necessary to handle
cases of sensor failures, where other sensors should be able
to recover system health autonomously. In a dynamic envi-
ronment, adaptation strategies are necessary to achieve the
desired performance.

In this work, we developed a solution strategy to deal
with such challenges in distributed sensor networks. This
includes an evolutionary algorithm based on artificial neu-
ral networks for individual sensor control policies and dif-
ferent multiagent objective functions for evaluation of the
developed policy. With this approach, challenges in the sys-
tem design process and system health management can be
addressed. In a dynamic environment, meaning changes in

275

number of sensors or sources of information, adaptation of
individual control policies is possible. Simulated tests took
place under ideal network conditions where the environment
consisted of a two dimensional plane area without any ob-
stacles, only surrounded by a border where sources of in-
formation and sensor agents were distributed. Successful
demonstration of this work leads to reliable and robust sen-
sor networks which are able to self-deploy and reorganize
their distribution without the need of a centralized control
for system design and system health management.

The rest of the paper is organized as follows. In Section
2, we describe our model of the environment with sources
of information and sensor agents. Section 3 covers the sen-
sor agents including environment observation, state to ac-
tion mapping and different objective functions for evalua-
tion of agent fitness. Section 4 presents the experimental
results of this work regarding standard evolution within a
non-dynamic environment, and system robustness in case of
sensor failures and policy reconfiguration in a dynamic en-
vironment if the number of sources of information or sensor
agents changes.

1.1 Related Work
Related work in this domain addresses the description of

sensor networks [3]. This includes a definition of the term
“coverage” in such networks [15, 14, 11]. In [6], methods
for an optimal sensor coverage with a minimum number of
sensors is provided. A better strategy may be to have an
over-coverage (redundancy), to recover system performance
in case of sensor failures for a better system robustness.
Coordinating mobile sensor networks in an unknown envi-
ronment, [10] presents a potential-field-based approach to
achieve a maximum coverage. A problem in wireless sensor
networks is often a spatial localization of points of inter-
est and other sensors of the group. To solve this problem,
communication among the sensing entities is often neces-
sary because in most of the cases there is neither an a priori
knowledge of locations in a static environment nor has a
sensing entity a complete observability of the environment
[5].

Non-learning approaches to coordination, based on plan-
ning, swarms, auctions, and domain specific algorithms have
also been investigated. For example, role allocation and
plan instantiation have proven successful for large multi-
robot systems [20] and nondeterministic planning has been
applied to adjust for uncontrollable robots with goals differ-
ing from the majority of the system [4]. Several successful
applications of robot coordination include search and res-
cue [23, 24], robotic soccer [21], mobile sensor networks [9],
and mine collection [7].

The solution strategy in this work includes ideas from the
field of learning in multiagent systems. These ideas provide
different techniques for solving problems in DSNs [13, 22].
Thus, the term “agent” will be used as a synonym for a sens-
ing entity meaning an intelligent sensor unit able to sense
multiple types of information and behave autonomously by
using different control strategies. Particularly for large mul-
tiagent systems, new approaches are needed. They include
using Markov Decision Processes for online mechanism de-
sign [17], developing new reinforcement learning based al-
gorithms [2, 8], or devising agent-specific objective func-
tions [1].

2. SELF-ORGANIZING SENSOR NETWORKS
Developing control policies for a network of sensor units

requires an analogous domain in which to evaluate algorithm
and agent performance. For self-organization, the agents
must have the ability to perceive the environment surround-
ing them as well as the capability to move to a desirable
location. In this domain, we have defined a two dimensional
plane area containing information sources that are randomly
distributed. Figure 1 shows a sample distribution of sources
and agents.

Figure 1: Two dimensional plane area with ran-
domly distributed information sources and sensor
agents surrounded by a border.

2.1 Modeling Sources and Agents
The “sources of information” in the world are defined by

a type strength. For example, these sources may be tem-
perature, pressure, chemical, or a combination of all three.
The location of these sources in the environment is in fixed
locations, initialized randomly at the beginning of an exper-
iment. The sensor agents in this domain are able to observe
the sources and what type(s) of information they offer. How
well an agent can see a certain type of information is indi-
cated by the agents’ individual type efficiencies. As with
sources, sensor agents are able to relate to more than one
type of information with variable efficiencies. For example,
a sensor agent may be capable of sensing both temperature
and pressure, but due to damage or age only have half of de-
sign capability for temperature. In contrast to the sources,
the agents can move in the environment to look for good
locations, or in the case of agent failures or environment
changes, relocate to recover system performance.

Sources and agents are described by several parameters:

1. Each has a certain position in the world indicated by
Cartesian coordinates (x0, y0), where position (0, 0) is
on the left bottom corner (See Figure 1). The sources
are located on fixed positions, where agents have the
ability to move on the plane area within the boundaries
to change their locations.

276

2. Sources and agents have individual information type
characteristics. Sources can offer different types of in-
formation with an individual strength for each type
indicated by νj,t, where j indexes the source numbers
and t the information types. Similarly, the agents’
information type efficiencies given by µi,t, where i in-
dexes the agent numbers and t the information types.
As a general rule, the source strengths are greater
than the agent efficiencies, which requires that mul-
tiple agents are needed to “cover” each source.

3. The final parameter, applicable just to agents, is the
agent drop off function (See Figure 2). This func-
tion indicates how agents cover sources of informa-
tion. The closer they are to a source of information,
the better their influence regarding individual type ef-
ficiencies. As an assumption in this work, the drop
off function consists of two modified Gaussian curves,
summed together (See Equation 1). This function not
only promotes good fitness, but approximates the way
in which some real world types of information propa-
gate through an environment.

The agent drop off function is given by:

fa(x, y, x0, y0) = aηe
− (x−x0)2+(y−y0)2

λW

+a(1− η)e
− (x−x0)2+(y−y0)2

λN (1)

where a ∈ R− is the amplitude and the factor η ∈ [0, 1]
weights the two terms. One term indicates the wide region
and the other the nearby region of the intensity distribution,
where the range factors λW and λN specify their respective
extent. The current position of the agent is given by x0, y0.
As an example, Figure 2 shows the drop off function for an
agent.

0
10

20
30

40

0
10

20
30

40
−1

−0.8

−0.6

−0.4

−0.2

0

x

Drop off function

y

f(
x,

y)

Figure 2: Agent “drop off” function. Indicates how
an agents’ influence on the environment exponen-
tially diminishes with distance.

2.2 Covering a Source
The coverage of a source for a certain type of informa-

tion depends on the information type strengths νj,t and the
relationships between a source and the agents indicated by

ν′j,t ∈ R+ (See Equation 2). In this equation, fa calcu-
lates the influence of agent i to source j weighted by the
agents’ information type efficiency µi,t. The parameter ν′j,t
decreases its value as more agents are related to this source
and type. For coverage calculation, Equation 3 is used. A
coverage with a value of 0.0 means that no agent is related
to the type j of information the source offers, whereas a
value of 100.0 means that an information type is completely
covered by agents in the environment.

ν′j,t = νj,t +
∑
i

(µi,t · fa(xj , yj , xi, yi)) (2)

Cj,t =
νj,t − ν′j,t

νj,t
· 100.0 (3)

3. AGENT DESCRIPTION
The agents in this domain operate as mobile sensor units

for special types of information. As discussed in the previous
section, a sensing unit can physically sense more than one
type of information. Each agent therefore is able to observe
the location of sources, and the strengths of information
that source provides. Additionally, the agents can observe
other agents and their information type efficiencies. These
observations comprise the state of the agent, as they do not
retain knowledge of their locations to promote generalization
across multiple environment configurations.

3.1 Environment Observation

Figure 3: Agent observations of the surrounding en-
vironment, divided into other agent and informa-
tion source sensing, additionally separated into four
quadrants.

The environment around the agent is broken up into four
quadrants q. For each quadrant, the observations are sep-
arated into (1) sensing of sources Si,t(q) and (2) sensing of
other agents Ai,t(q) where t indexes the type of information
and i the agent making the observations (See Figure 3).

The measurements for Si,t(q) consist of the information
type strength νj,t of source j located in quadrant q, the max-
imum information type strength, where all source strengths
are considered, and the distance δ between the agent and
this source. Similarly, for calculating the measurements for

277

Ai,t(q), the information type efficiency µa,t of an agent a
located in quadrant q applies. For computing the distance,
the Euclidean norm is used with a constant added to prevent
singularities when an agent is close to a source or another
agent. In addition to controlling the movement of the agent,
the agents goal is to learn which type of information is inter-
esting for them to promote high system level performance.

δi,j = ||i− j||+ 1.0

Si,t(q) =
∑
j∈q

νj,t
max(ν) · δi,j

(4)

δi,a = ||i− a||+ 1.0

Ai,t(q) =
∑
a∈q

µa,t

max(µ) · δi,a
(5)

3.2 Mapping States to Actions
The two parameters Si,t(q) and Ai,t(q) describe the state

of agent i. However, the mapping of state/action combina-
tions takes place via an evolution algorithm. First, agent
i assigns a “quality” value for each quadrant q depending
on the state information. After this assignment, these qual-
ity values Qi(q) are used to select a quadrant for the agent
action. This quality represents the importance of the quad-
rant for investigation. It however is not intuitive, which is
where the evolutionary algorithm comes in. Simply choos-
ing a quadrant that has many sources and few agents does
not necessarily promote coordination in a team of many in-
dividuals. This system property is discussed further in the
experimentation section below.

The quality value for a quadrant is assigned by an artificial
neural network [19]. For this work, a two-layer, feed forward,
sigmoid activated network with (2 · TY PES) input units,
16 hidden units and 1 output unit is used. Previous experi-
mentation selected the number of hidden units and various
other parameters that produced successful behavior.

For each of the four quadrants, the neural network pro-
duces an output from the state information for that quad-
rant. This output is used as the quality value Qi(q) for the
quadrant and the quadrant with the highest quality is cho-
sen for the action. The angle of the direction to move is
in the middle of this quadrant. With this angle, the new
position of the agent is given by:

xk+1 = xk + step size · cos(
ϕ · π
180◦

)

yk+1 = yk + step size · sin(
ϕ · π
180◦

)

(6)

where the new coordinates (xk+1, yk+1) are calculated de-
pending on the current position (xk, yk), the step size and
the direction to move, indicated by ϕ. The step numbers
are indexed by k.

3.3 Agent Fitness Functions
Training the neural networks occurs with a neuro-evolution

search algorithm [12, 16]. In addition to a shared policy,
where all agents develop one control policy that they all
use, individual control policies were evolved. In this case,
each agent maintains its own population of neural networks

and develops its own policy. The evaluation of network per-
formance is done at the end of a evaluation episode. The
shared policy is evaluated only with the global objective,
whereas the individual policies are evaluated with two addi-
tional fitness functions.

The global objective function G(z) measures the full sys-
tem performance, given by Equation 7. In this equation,
the sum over all coverage values is calculated and divided
by the product of the number of sources j and types t in the
world to ensure that the values of the global objective are in
the range [0.0, 100.0] to allow for comparison of performance
across varying situations.

G(z) =

∑
j

∑
t

Cj,t

j · t , {G(z) ∈ R|0.0 ≤ G(z) ≤ 100.0} (7)

The local objective Li(z) is given by Equation 8 and ap-
plies only for ranking the fitness of an individual policy in
this multiagent system. For calculating Li(z), all the agents
except agent i are deactivated when calculating ν′j,t of the
sources. In this way, these values depend only on the rela-
tionship of agent i. After this process, all other agents are
reactivated.

Li(z) ≡ G(z+i) (8)

The difference objective Di(z) is given in Equation 9. For
calculating G(z−i), agent i is deactivated when computing
the relationship ν′j,t between all other agents and the source
j. This removes agent i’s influence on the second term,
which after the subtraction of the two terms, gives a low
noise fitness function for agent i to determine the impact it
had on system level performance.

Di(z) ≡ G(z)−G(z−i) (9)

4. EXPERIMENTATION
A large number of experiments were run to evaluate algo-

rithm and fitness function performance. The simple domains
where the agents had full observability of the surrounding
environment (had total knowledge) are excluded in this re-
port as they are unrealistic to real-world problems. They
were used as a proof of concept and demonstrate that the so-
lution strategy discussed in preceding sections was appropri-
ate [18]. The experiments discussed here are a more realistic
configuration, where the agents did not have full knowledge
of the environment, and where sources had multiple types
of information to be covered.

Several parameters dictate the experiment configuration.
Specifically:

• Plane Area

The two dimensional plane area had a size of 40.0 ×
40.0. In the beginning of each episode, the location of
sources and the starting locations of agents were ran-
domly distributed. However, the minimum distance
between sources was set to 5.0 to ensure that sources
do not have an influence on each other. In doing so,
agent behavior could be easily analyzed, and it could
be determined if an agent would select a location be-
tween sources as a possibility.

278

• Source Parameters

The information type strength values νj,t of sources
were randomly initialized in a range of 3.0 to 6.0. For
multi-type experiments it was also possible that a cer-
tain type strength was set to 0.0, meaning that the
source does not offer this type of information.

• Agent Parameters

Similarly, the information type efficiency values µi,t of
agents were randomly initialized in a range of 1.0 to
2.0. For multi-type experiments it was also possible
that a certain type efficiency was set to 0.0, meaning
that an agent is not able to measure this type of in-
formation. The agents were given a small wide range
value (Section 2.1) which meant that the agent had
very little influence on a source until it was very close.
This forced the agent to make clear decisions on where
in the environment was desirable.

• Training Configuration

The network population for evolving a shared policy
consisted of N = 50 neural networks. For individual
policies, a population of N = 20 was utilized. The
number of input units increases with the number of
possible information types in the world. Therefore, the
network had 2 · TY PES input units, 16 hidden units
and 1 output unit. The number of hidden units must
be increased if more types of information are available.
Experiments in this work showed that a number of 16
hidden units with three types of information is suffi-
cient.

• Experiment Configuration

In each training episode, the number of steps was set to
1500. With this high number of steps it is possible for
all the agents to move to a destination where the agent
can improve the system performance the most. Rank-
ing of the network under consideration for the episode
occurred once at the end of an episode. Training with
a certain configuration ended after 1500 episodes and
was repeated 30 times to average the results for analy-
sis. The standard deviation of the results is indicated
by error bars. In the last 500 episodes, the best net-
work (control policy) in the population is used exclu-
sively, meaning that evolution was turned off to ana-
lyze converged behavior.

4.1 Results
In this experiment domain, the environment contained 5

sources, each with 3 types of information. The type strengths
were randomly initialized such that each information source
had at least 2 non-zero type strengths, with the majority of
the sources containing all three types. Figure 4 shows the
fitness curves for both the single policy and individual pol-
icy as well as the objectives discussed above. With 10 sensor
units and 5 sources, the environment can not be completely
covered. This was done intentionally to determine if the
agents would learn to “do the best” that they could to cover
as much information as possible. As shown, when agents de-
velop their own individual polices, they outperform evolving
a shared policy. The exception here is using the system ob-
jective from Equation 7, where the fitness function is too

Figure 4: The result of evolution in an environment
with 10 agents and 5 information sources. Devel-
oping a shared policy is compared with individual
policies trained using the system (G), local (L), and
difference (D) objective functions.

noisy for the agents to determine their contribution to the
system as a whole.

While using the difference objective to learn individual
policies performs best, the agents trained with the local ob-
jective perform statistically similar. This is due to the lim-
ited number of agents and sources, which produces a situ-
ation that is forgiving to greedy behavior. Since the envi-
ronment can not be fully observed, the agents must simply
move toward sources that they can most efficiently cover.
This brings the difference and local objectives into alignment
regarding the level of coordination required of the agents.
Alternatively, as shown in Figure 5, as the number of sensor
units in the environment increases, the level of coordination
required also increases, and the local objective no longer
performs as well.

Figure 5: The maximum system level performance
achieved is plotted versus a varying number of
agents. Developing a shared policy is compared with
individual policies trained using the system (G), lo-
cal (L), and difference (D) objective functions.

We also show that while using the difference objective for
evolution again outperforms all others, evolving a shared

279

policy is similarly stable for an increase in the number of
agents within the system. This result indicates that coor-
dination is successful in this domain both when the agents
develop their own unique policies, and when they collec-
tively develop a single policy. Since these two approaches
are fundamentally different, and upon examining the poli-
cies learned, we can conclude that the difference objective
indeed produces a fitness signal that closely matches the sys-
tem level objective (as that is what is used when evolving
a shared policy). However, evolving a shared policy histor-
ically does not produce good behavior in stochastic coordi-
nation domains.

4.2 System Robustness
Redundancy in a sensor network is often necessary be-

cause of the possibility of sensor failures. A system recov-
ery where the agents realize failures of other agents and are
able to recover the system performance autonomously can
be applied in online system health management. In these ex-
periments, simulated sensor failures took place to all agents
located around one random selected source of information.
Agents located around other sources or distributed in the
plane area without any influence to sources should realize
the agent failures and reorganize to cover the environment
as best as is possible for the situation.

A configuration of 30 agents and 5 sources with three
types of information was chosen for this type of experiment.
First, training individual policies evaluated with the differ-
ence objective occurred until the fitness curve converged.
After this standard procedure, each agent selected the best
ranked network from its network population and used this
network within the next episode as an individual control
policy. During this episode, the agents were moving within
the environment to find a good location. However, at the
halfway point in time, agent failures on a random source
were simulated. The task of the other agents was to re-
cover the system performance by changing their locations
autonomously.

In Figure 6 the system performance for this situation is
shown. The figure shows that after approximately 200 steps
the quality of the system performance was at 100.0%. At
step 750, five agents surrounding a randomly selected source
failed. When this failure occurs, the other agents in the
system observed the failure and autonomously reconfigured
to recover as much system performance as possible.

During experimentation, it was observed that the agents
on occasion did not move or were unable to recover any
system performance. While rare, we found it important to
discuss, particularly the two reasons why this occurred:

1. Other agents were far enough from the point of failure
that they were not encouraged to move away from the
source they were currently covering. This is a realis-
tic situation in the real-world, as it is undesirable for
agents very far away from a failure to abandon their
current good location to chase after a reconfiguration
that would significantly reduce system performance.

2. The point of agent failures was too far away to be
observed by the other agents in the system. Recall
that the sensor units have only partial observability of
the environment surrounding them, and therefore the
potential exists that a suddenly uncovered source may
go unobserved. In our experiments, sensor units and

Figure 6: System Robustness: After 750 steps,
five agents surrounding a randomly selected source
failed. Remaining sensor units are shown to recon-
figure, recovering as much system performance as
possible for the situation.

sources were randomly distributed, which allowed for
a good initial network organization.

4.3 Policy Reconfiguration
In the above experiments, evolution was not done after

a change in the system, particularly the failure of sensor
units. This was done to determine if the learned policies
themselves were sufficient to promote agent reconfiguration
should such an event occur. In the forthcoming experiments,
we determine if the agents can modify their current policies
and learn to reconfigure not only to accommodate agent or
information source failures, but also to accommodate the
addition of agents or sources. This is to determine whether
the network can modify the individual control policies after
convergence without the need to retrain from scratch.

As an example, a configuration of 15 agents and 5 sources
with three different types of information was chosen. The
training of the individual policies was evaluated with the
difference, local or system objective. After 1000 evolution
episodes when fitness was converged, 5 agents were either
removed from or added to the system. Additionally an ex-
periment were instead of agents, 3 sources were added to
the system. Removing sources was found to be a trivial
event, as there was an abundance of agents remaining and
therefore little or no change occurred in the relative system
performance.

Each agent maintains its own individual network popu-
lation, which has already converged. However, the added
agents initialized their network population randomly when
added to the system. The goal of these experiments was
to achieve the same results with a new number of agents or
sources in a system like in the experiments shown before. To
achieve these results, new agents had to learn their individ-
ual policies and the other agents had to adapt their policies
in consideration of the new circumstances. For adding new
sources to the system, all agents had to adapt their policies.

The fitness curves given in Figure 7 show that agents were
able to adapt their individual policies in case of network
reconfiguration, if agents were removed from the system.
As already seen in Section 4.1, individual policies evalu-

280

Figure 7: The results of evolution where the envi-
ronment begins with 15 agents and 5 sources. After
approximate convergence, five agents are removed
from randomly selected information sources. Evolu-
tion in similar systems to the initial and final config-
urations are compared against the system (G), local
(L), and difference (D) objectives when the removal
occurs.

ated with the difference objective outperform the evalua-
tion of individual policies with the system or local objective.
Compared with the results given in Figure 5, the maximum
system level performance for these two objectives is even
slightly lower after adaptation. For comparing the differ-
ence objective, the fitness curve in a system with 10 agents
is also shown. Compared with these results, there is no drop
in system performance when the policies were trained with
a higher number of agents.

In Figure 8, the results show that the added agents were
able to develop their individual policies and preexisting agents
were able to adapt their individual policies in the case of
network reconfiguration where new agents are added to the
system. As expected, ranking the networks with the differ-
ence objective achieved the best results compared to local
and system objective. Here, the differences in system level
performance between the local and difference objectives are
greater because of a higher number of agents in the sys-
tem after adding new agents. As discussed in Section 4.1,
a higher number of agents leads to a better performance of
the difference objective compared to the local objective. To
compare the results of the difference objective, the fitness
curve of a system with 20 agents is also shown. After new
agents were added to the system, it took approximately 250
episodes to reach the same system level performance as the
system trained with 20 agents from the beginning.

Figure 9 shows the results of evolution for the situation
where new sources were added to the system. After adding
the new information sources, the system performance set-
tles slightly below that of a system with the same number of
agents and sources. This is small change is due to the agents
attempting to balance the amount of information gathered
by settling in locations between sources. Since the agents
have already settled on a source to sense, when another
source enters the environment nearby, they will move to bal-
ance the coverage between two sources, rather than move to
a single source to cover. However, we again see that allowing

Figure 8: The results of evolution where the envi-
ronment begins with 15 agents and 5 sources. After
approximate convergence, five agents are added at
random locations within the environment. Evolu-
tion in similar systems to the initial and final config-
urations are compared against the system (G), local
(L), and difference (D) objectives when the addition
occurs.

Figure 9: The results of evolution where the envi-
ronment begins with 15 agents and 5 sources. After
approximate convergence, three information sources
are added at random locations within the environ-
ment. Evolution in similar systems to the initial
and final configurations are compared against the
system (G), local (L), and difference (D) objectives
when the addition occurs.

the agents to develop their own control policies with rank-
ing done via the difference objective far outperforms using
the system or local objective. In addition, the performance
difference is slight enough to indicate tuning for a specific
domain would reduce or eliminate the disparity in system
performance.

5. CONCLUSION
In this work, we presented an evolutionary algorithm eval-

uated with difference agent fitness functions for solving prob-
lems regarding distributed sensor networks. As the results

281

show, in a complex environment with multiple types of in-
formation, individual control policy development based on
the difference objective function outperforms all the other
algorithms and objective functions. These developed con-
trol policies can be used for both the system design pro-
cess and system health management. In the case of system
design, there would be no need for a lengthly engineered
solution because intelligent sensors will be have the ability
to self-deploy and organize the network autonomously. The
experiments regarding system robustness and policy recon-
figuration showed that the sensor agents are able either to
adapt existing control policies in the case of a dynamic en-
vironment or use their policies for a system recovery in case
of sensor failures within the system.

The primary area of further research we are pursuing
is communication among sensor units. It is desirable to
get enough information about both the environment and
the properties of other sensor entities in the group. This
overcomes challenges in unit separation making portions of
the environment unobservable. For example, in a situation
where sensors are dropped by an airplane or where sensor
failures occur and a reorganization is advisable, the units
also need the ability to navigate and move within the world
to find locations for a good system performance. While the
results in this paper show that with evolutionary algorithms
based on artificial neural networks good control policies can
be developed, further work will also consider communica-
tion. As with many multiagent domains, communication
among agents can help to increase the overall system per-
formance by giving agents more information about the en-
vironment when observation capabilities are limited.

6. REFERENCES
[1] A. K. Agogino and K. Tumer. Efficient evaluation

functions for evolving coordination. Evolutionary
Computation, 16(2):257–288, 2008.

[2] M. Ahmadi and P. Stone. A multi-robot system for
continuous area sweeping tasks. In Proceedings of the
IEEE Conference on Robotics and Automation, pages
1724–1729, May 2006.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A survey on sensor networks. IEEE
Communications Magazine 40, 8, 2002.

[4] M. H. Bowling, R. M. Jensen, and M. M. Veloso.
Planning in Intelligent Systems: Aspects, Motivations
and Methods. John Wiley and Sons, Inc., 2005.

[5] N. Bulusu, D. Estrin, L. Girod, and J. Heidemann.
Scalable Coordination for Wireless Sensor Networks:
Self-Configuring Localization Systems. In Proceedings
of the Sixth International Symposium on
Communication Theory and Applications ISCTA01,
2001.

[6] S. S. Dhillon and K. Chakrabarty. Sensor Placement
for Effective Coverage and Surveillance in Distributed
Sensor Networks. In Proc. of IEEE Wireless
Communications and Networking Conference, pages
1609–1614, 2003.

[7] D. Goldberg and M. J. Mataric. Maximizing reward in
a non-stationary mobile robot environment.
Autonomous Agents and Multi-Agent Systems,
3(6):281–316, 2003.

[8] C. Guestrin, M. Lagoudakis, and R. Parr.

Coordinated reinforcement learning. In Int.
Conference on Machine Learning, pages 41–48, 2002.

[9] A. Howard, M. J. Mataric, and G. S. Sukhatme. An
incremental self-deployment algorithm for mobile
sensor networks. Autonomous Robots, 13(2):113–126,
2002.

[10] A. Howard, M. J. Matarić, and G. S. Sukhatme.
Mobile Sensor Network Deployment using Potential
Fields: A Distributed, Scalable Solution to the Area
Coverage Problem. In Proc. Int. Conf. Distributed
Autonomous Robotic Systems, 2002.

[11] C.-F. Huang and Y.-C. Tseng. The Coverage Problem
in a Wireless Sensor Network. Mobile Networks and
Applications, v.10, n.4, 2005.

[12] M. Knudson and K. Tumer. Coevolution of
heterogeneous multi-robot teams. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO), 2010.

[13] V. Lesser, C. L. O. Jr., and M. Tambe. Distributed
Sensor Networks - A Multiagent Perspective. Kluwer
Academic Publishers, 2003.

[14] B. Liu and D. Towsley. A Study of the Coverage of
Large-scale Sensor Networks. In Proceedings of the
IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS04), Fort Lauderdale, FL,
pages 475–483, 2004.

[15] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and
M. B. Srivastava. Coverage Problems in Wireless
Ad-hoc Sensor Networks. In IEEE INFOCOM, pages
1380–1387, 2001.

[16] D. Moriarty and R. Miikkulainen. Forming Neural
Networks through Efficient and Adaptive Coevolution.
Evolutionary Computation, 5, 1998.

[17] D. Parkes and S. Singh. An MDP-based approach to
online mechanism design. In NIPS 16, pages 791–798,
2004.

[18] C. Roth. Agent Objectives for Evolving Coordinated
Sensor Networks. Master’s thesis, University of
Applied Sciences Offenburg - in association with
Oregon State University, 2010.

[19] S. J. Russel and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice-Hall, Inc., 1995.

[20] P. Scerri, J. Giampapa, and K. Sycara. Techniques
and directions for building very large agent teams. In
Int. Conference on Integration of Knowledge Intensive
Multi-Agent Systems, KIMAS, pages 79–84, 2005.

[21] P. Stone, R. S. Sutton, and G. Kuhlmann.
Reinforcement learning for RoboCup-soccer keepaway.
Adaptive Behavior, 13(3):165Ű188, 2005.

[22] L. Tong, Q. Zhao, and S. Adireddy. Sensor Networks
with Mobile Agents. In Proc. 2003 Military
Communications Intl Symp, pages 688–693, 2003.

[23] J. Wang, M. Lewis, and P. Scerri. Cooperating robots
for search and rescue. In Agent Technology for
Disaster Management Workshop at AAMAS’06, 2006.

[24] X. Zheng, S. Jain, S. Koenig, and D. Kempe.
Forest-based multirobot coverage. In Proceedings of
the IEEE International Conference on Intelligent
Robots and Systems (IROS), pages 2318–2323, 2005.

282

