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ABSTRACT
Over billions of years, natural selection has continued to select for a
framework based on (1) parallelism and (2) cooperation across var-
ious levels of organization within organisms to drive their behav-
iors and responses. We present a design for a bottom-up, reactive
controller where the agent’s response emerges from many paral-
lelized, enzymatic interactions (bottom-up) within the biologically-
inspired process of signal transduction (reactive). We use enzymes
to explore the potential for evolving simulated robot controllers for
the central-place foraging problem. The properties of the robot
and stimuli present in its environment are encoded in a digital for-
mat (“molecule”) capable of being manipulated and altered through
self-contained computational programs (“enzymes”) executing in
parallel inside each controller to produce the robot’s foraging be-
havior. Evaluation of this design in unbounded worlds reveals evolved
strategies employing one or more of the following complex behav-
iors: (1) swarming, (2) coordinated movement, (3) communication
of concepts using a primitive language based on sound and color,
(4) cooperation, and (5) division of labor.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—Prob-
lem Solving, Control Methods, and Search

General Terms
Experimentation

Keywords
Artificial life, digital evolution, digital enzyme, digital signal trans-
duction, robot controller, simulated robotics, evolution, foraging,
cooperative behavior, self-organization, division-of-labor.

1. INTRODUCTION
For many, the term “foraging” evokes images of ants racing across

the forest floor along hidden trails [19], or honeybees making vast
treks across open spaces using only a fellow hive member’s “shake”
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and their internal solar compass for navigation [18]. However, for-
aging likely established its roots in a more primitive, single-celled
era, long before the appearance of multicellular organisms such as
ants and bees. At a time predating the biocomplexity surrounding
us today, single-celled organisms effectively foraged and survived
solely through the cooperative behavior of their internal biomolec-
ular “machinery” [5]. Molecular receptors on the cell’s external
surface provided inputs that triggered a series of biochemical re-
actions inside the cell and, in turn, the cell’s response. As shown
on the left-hand side of Figure 1, a receptor on the cell’s extra-
cellular surface binds to and detects the presence of a molecule.
This molecule’s presence might indicate to the cell a necessary re-
source in the direction of the receptor. Next, a cascading of events
occurs within the cell, where secondary messengers receive the sig-
nal molecule, possibly alter its chemical structure, and produce an
output that drives the cell’s flagella, enabling it to move toward the
valuable resource [13]. (The right-hand side of Figure 1 depicts
our digital design of the “cell” that will be described in detail as the
focus of this paper.)

Figure 1: Biological signal transduction in a single-celled bac-
terium (left). Digital signal transduction within a robot con-
troller based on digital enzymes (right).

Over time, cooperation and colonization allowed single-celled
organisms to band together and may even have provided the first
steps toward multicellularity [1]. As we fast forward to the present,
the complex behaviors exhibited by ants, honeybees, hyenas, and
even human beings still emerge from a vast number of interactions
occurring across the cells in their bodies. Over billions of years,
natural selection has continued to select for a framework of concur-
rently executing entities, whether it be the cells in a multicellular
organism such as the honeybee or the enzymes and biomolecules
within each of the honeybee’s cells. These parallel executing en-
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tities cooperate to provide the honeybee’s response to its environ-
ment. Ongoing research has demonstrated that life’s “program”
arises not simply from static information encoded in a genome,
but also from complex interactions orchestrated at the cellular level
[14]. The expression of genes, production of enzymes, transfer of
biomolecules, and regulation across metabolic pathways are the re-
sult of “agents of reaction” driving the cell’s response.

In this paper, we explore parallel internal reactions of coopera-
tion and the benefits this framework might provide for evolving sys-
tems to handle unknown environments such as those found in the
foraging problem. The foraging problem is commonly defined as a
group activity in which agents cooperate to gather a resource in the
environment and return that resource to a specified location. For-
aging is not required to be a group task, however, many strategies
and behaviors in biology rely upon other members of the colony or
group to aid in gathering the resource [18][19]. Although familiar
biology examples have been discussed, many engineered applica-
tions also require solutions to the foraging problem. In deployed
robotic systems, successful foraging behaviors benefit search-and-
rescue missions where the resource is survivors being led to a loca-
tion of known safety, reconnaissance missions where the resource
is intelligence information being retrieved to a location of safe dis-
semination and transmission, and relief efforts for chemical spills
where the resource is hazardous chemical waste being returned for
containment.

This paper presents a design for a reaction-based, bottom-up
controller inspired by the biological processes of signal transduc-
tion and enzymatic catalysis, to be used by simulated robots for the
foraging problem. In biology, the combination of these two pro-
cesses provides a cell the ability to react to both the (1) presence
and (2) concentration of stimuli occurring in its external environ-
ment. We present a first step towards realizing these processes in a
digital model, shown in the right-hand side of Figure 1, with the in-
tent not only to gain insight into effective mechanisms for foraging
behavior, but also to study why parallelism has continued to persist
through natural selection.

The remainder of this paper is organized as follows: Section
2 describes the biological inspiration of this work and provides a
working vocabulary of concepts and elements that will be captured
in our digital system. We introduce the enzyme-based controller in
Section 3. The experimental setup and results are presented in Sec-
tions 4 and 5. Section 6 describes related work. Finally, we draw
conclusions and briefly describe future work in Section 7.

2. BIOLOGICAL INSPIRATION
The proposed approach is inspired by two cellular processes that

occur in nature: (1) signal transduction - the process by which ex-
ternal stimulus molecules in the cell’s environment lead to an over-
all response from the cell and (2) enzymatic catalysis - the process
by which internal cellular entities (enzymes) exhibit a specificity
towards molecules surrounding them, bind to those molecules, alter
the molecules’ chemical structures, and release the altered products
to various parts of the cell [1].

2.1 Signal Transduction
Signal transduction refers to the process by which a molecule

in the cell’s external environment triggers a specific response, of-
ten through the use of intracellular, cascading biochemical reac-
tions. As shown in Figure 2, signal transduction comprises three
key steps: (1) sensing a stimulus molecule, (2) internal interac-
tions, and (3) the generation of a response. Molecular detection
components, referred to as receptors, are embedded on the extra-
cellular surface of the cell exposed to the environment. Stimulus

molecules in the cell’s external environment can bind successfully
to a receptor and trigger subsequent reactions within the cell via
internal entities referred to as secondary messengers. In response
to an environmental stimulus, a chemical “relay” using additional
molecules can take place within the cell that may activate or de-
activate the expression of certain genes, alter metabolic pathways,
stimulate or suppress locomotion, and so on [1].

Figure 2: The three components of biological signal transduc-
tion: reception of signal, internal interactions among secondary
messengers, and a response of the cell, for example, gene ex-
pression.

2.2 Enzymes
One of the actors often found in signal transduction pathways

is the enzyme [7]. Biological enzymes are a specific class of pro-
teins that catalyze the chemical reactions occuring within a specific
cellular system [1]. As illustrated in Figure 3, molecules termed
substrate act as input and bind to the enzyme forming an enzyme-
substrate complex. The substrate molecules are then manipulated
and altered by the enzyme to produce output molecules called prod-
ucts with properties generally differing from the substrate. As all
enzymes are catalysts, the rate of chemical reaction and expression
in the cell is controlled by both (1) the concentration of substrate
molecules and (2) the amount of enzymatic participation.

Figure 3: Biological enzyme binding to a molecule, altering its
structure, and emitting the products (adapted from [10]).

3. SIMULATED ROBOT CONTROLLER
In this work, we have designed an evolutionary computation sys-

tem to evolve robotic controllers that operate using digital-based
signal transduction. In order to do so, we first had to develop the
“material” (molecules) upon which the digital signal transduction
process operated. Of course in the digital world, this material is
not composed of chemical elements (or even a simulation thereof).
Rather, digital molecules are simply bitstrings. In this study each
molecule comprises three bits to encode the various properties of
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the robot’s world. The meaning of a particular bit set within a dig-
ital molecule arises solely out of the context in which it is being
interpreted, as shown in Figure 4. This design allows the digi-
tal molecule to be a universal material that can be altered and ex-
changed throughout the different components of the system.

Figure 4: The mapping of bits within a digital molecule used
to encode properties of the robot’s environment and actuators

Digital-based signal transduction takes place within the controller
for each of the robot’s moves and comprises the following phases:
(1) sensing stimuli in the robot’s environment using digital recep-
tors, (2) interactions within the robot by executing parallel, single-
threaded processes termed digital enzymes, and (3) gathering the
digital molecule “products,” or votes, for each of the robot’s actua-
tors and translating those products into the robot’s response.

3.1 Sensing The Environment
As previously shown in Figure 2, extracellular receptors on the

surface of a biological cell can bind to and detect specific types
of molecules in the vicinity. Similarly, a robot contains many dif-
ferent hardware sensors that reside on its external surfaces and are
used to detect sound, color, and obstacles in the robot’s vicinity.
The analogue of encoding sounds, colors, and obstacles into a dig-
ital molecule form (i.e. sound-cules, color-cules, and obst-cules)
inspired the design of the digital stimulus receptor.

The first phase of each robot’s execution begins with the robot
using its sensors, referred to as digital stimulus receptors through-
out the remainder of this paper, to detect stimuli occurring in the
robot’s current surroundings. Within our two-dimensional world,
stimuli can be sensed from eight compass directions. Therefore,
each of the robot’s digital stimulus receptors is an 8-element dig-
ital molecule array, as shown in Figure 5. An element within this
array is analogous to a biological binding site storing one digital
molecule, and bits set within this molecule correspond to stimuli
that have been sensed. Stimuli occurring from the North are rep-
resented through the set bits in the digital molecule stored at index
0 and the indices increase clockwise to index 7 in the Northwest.
Using the mapping of bits shown in Figure 4 and the digital ob-
stacle receptor’s array shown in Figure 5, we see that the robot is
detecting food to the North and Northwest directions and Home
to the South and Southeast directions. Using this information, the
robot can determine that it is at a position between the two detected
stimuli.

3.2 Parallel Interactions Within the Controller
The second phase of digital signal transduction is for the robot’s

response to emerge from the interactions of many parallel-executing
digital enzymes. In this work, we implemented digital enzymes as
single-threaded processes based on the Avida virtual hardware [12],
although many other designs are possible. Figure 6 is used to guide

Figure 5: The digital stimulus receptor containing the accumu-
lation of environmental stimulus bits in a digital molecule for
each compass direction.

the discussion of each virtual hardware component found within a
digital enzyme.

Each digital enzyme executes instructions from a circular se-
quence of instructions in a Turing-complete programming language.
Two heads, or indices, are maintained by the digital enzyme for
execution: an instruction pointer (IP head) indicates the current
instruction to be executed and a flow head can be manipulated
by instructions to jump the digital enzyme’s execution to a differ-
ent point within the program. Three “molecular” registers (AX,
BX, and CX) exist within a digital enzyme; each register can store
one digital molecule. Lastly, each digital enzyme contains two
“molecular” stacks that can be used for additional storage of digital
molecules pushed from one of the enzyme’s registers.

Figure 6: Digital Enzyme: a self-contained computing entity.

A digital enzyme is considered to be an “instantiation” of the
circular sequence of instructions that it executes. For this system
to undergo evolution, a genetic material must be exposed to the
processes of mutation and inheritance. In this work, a controller
contains three programs, one for each of its sensing capabilities:
(1) obstacle, (2) color, and (3) sound. The instructions in these
three programs act as the genetic material and are subject to inser-
tion, deletion, and point mutations as well as being inherited by
offspring.

The set of virtual computer instructions supported in this sys-
tem is similar to the Avida [12] instruction set, including condition-
als, stack operations, arithmetic operations, bitwise operations, and
control flow operations. In addition, we introduced four new opera-
tions to interact with the “cellular” structures in digital signal trans-
duction. A Retrieve operation can load a digital molecule into a
register from (1) any of the digital receptor’s array cells through in-
dexing, (2) the “previous move” maintained for each of the robot’s
actuators, and (3) the current “majority vote” for an actuator’s next
behavior found in an actuator membrane discussed next in Section
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3.3. An Emit operation enables the digital enzyme to send a digital
molecule in one of its registers to a specified actuator where the bits
set within the emitted molecule represent “votes” for the actuator’s
next behavior. An If_Food conditional enables the enzymes to de-
tect whether the simulated robot is carrying food, and the Load_ID
instruction encodes the robot’s unique identifier into binary within
a digital molecule in one of the registers. The Load_ID is specif-
ically designed to provide an enzyme with a means to assess the
robot’s identity and potentially alter the robot’s behavior.

3.3 Producing the Robot’s Response
The last phase of both biological and digital signal transduc-

tion is determining the system response. The digital molecules
in a robot’s environment are manipulated by enzymes to produce
molecules to control the robot’s actuators. Each simulated robot
contains an actuator for: (1) direction to face, (2) movement to
make, (3) sound to emit, and (4) color to display.

An encapsulating “membrane” for each of the robot’s actuators,
called an actuator membrane, provides a model for aggregating
the molecules produced by the digital enzyme reactions. This data
structure within the controller represents a “persistent voting box,”
where the bits set within digital molecules stored in the actuator
membrane represent “votes” for the actuator’s next behavior. The
term “persistent” refers to how the votes within each actuator’s
membrane are maintained across executions of the robotic con-
troller during an evaluation. Once the user-defined size limit on the
actuator’s membrane has been reached, newly emitted molecules
randomly replace existing ones within the membrane. There is
no internal structure or ordering within an actuator membrane, in-
tended to capture the Brownian motion often found within the cy-
toplasm of biological cells [16]. Figure 7 depicts the robot’s color
actuator and an enzyme emitting a digital molecule product with
votes for either the Food color or Home color being displayed by
the robot in its next move. An internal tally is maintained for each
possible action of an actuator. When a molecule is emitted to the
actuator, the bits set within this molecule increment their associ-
ated action’s tally. If the actuator membrane’s size limit has been
reached, the bits set within the molecule being replaced cause their
associated action’s count to be decremented. Each actuator’s re-
sponse is decided by majority vote at the end of the controller’s
execution.

Figure 7: Actuator membrane structure aggregating “votes”
from digital molecules for color actuator’s next response.

Enzymes can produce multiple votes by either (1) setting more
than one bit within an emitted molecule or (2) emitting more than
one molecule to an actuator’s membrane box. Although democ-
racy is not enforced, the collection of enzymes within a robotic
controller is the unit of selection during evolution, imposing a se-

lection pressure on cooperation between enzymes to produce ben-
eficial response behaviors for the robot.

3.4 Summary: Executing the Controller
During simulation, a robot is permitted a user-defined number

of controller “cycles” where each cycle is one progression through
the three phases previously described: (1) sensing of the robot’s
environment, (2) digital enzyme interactions, and (3) producing the
robot’s response.

In the sensing phase, the simulated robot uses its digital re-
ceptors to detect environmental stimuli occurring within detection
range of the robot. Each stimulus detected by a receptor is (1) trans-
lated into the bit of a digital molecule based on the receptor’s type
(color, sound, or obstacle) and (2) associated to a compass direc-
tion using the angle between the position of the stimulus relative to
the robot. The direction is used to index into the receptor’s array of
digital molecules and the stimulus’s associated bit is set within the
indexed molecule. At the completion of this phase, each stimulus
receptor contains the digital molecule representations for all stimuli
currently detected by the robot.

In the digital enzyme interactions phase, each digital molecule
in the collection of receptors is “serviced” by one enzyme through-
out the robot’s evaluation. The type of receptor in which the dig-
ital molecule resides determines which program a digital enzyme
executes from. For example, the digital molecule associated with
stimuli occurring in the Northeast direction of the sound recep-
tor will be serviced by a digital enzyme executing from the sound
program. Since there are three digital receptors (color, sound, and
obstacle) and each receptor stores one molecule for each of eight
compass directions, a total of twenty-four enzymes are executing
in parallel within a controller. Prior to the beginning of a cycle,
the direction being serviced by an enzyme is encoded in a digital
molecule and loaded into the enzyme’s AX register while the digital
molecule storing all detected stimuli from that direction is loaded
into the BX register. The CX register and stacks persist across cy-
cles of the controller to give the enzymes an additional means of
storing information locally for subsequent cycles. No information
persists across generations of evolution since only the three pro-
grams (and not their state) are “reproduced.” The digital enzymes
are located on a run queue within the controller and executed in
by a fair scheduling algorithm until either (1) a halt command is
executed by the enzyme, stopping it from further executing in this
cycle or (2) a user-defined parameter for the maximum number of
instructions to be executed is reached. At the end of a cycle, each
enzyme’s IP head and Flow head are reset to the beginning of the
enzyme’s program.

Finally, in the response phase, the bits set within the digital
molecules emitted to the actuator membranes are counted. The ma-
jority bit vote according to the bit mapping in Figure 4 is used to
decide the next behavior of that membrane’s associated actuator,
with ties broken randomly. A digital molecule with none if its bits
set (zero) corresponds to a special vote of No Behavior by that
actuator.

4. EXPERIMENTAL SETUP
Figure 8 depicts the problem and context for the experimen-

tal setup. The overall objective was to determine whether a de-
sign based on interactions amongst cooperating parallel processes
within a controller was able to evolve foraging strategies. The ex-
periments in this paper address the central-place foraging prob-
lem, where the goal for a homogeneous “colony” of six simulated
robots is to find, return, and drop eight pieces of food to a 5x5
square of cells marked as “home” in the center of the world. Home
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cells emitted a color called Home (red) while food emitted a color
called Food (blue).

4.1 World Setup
A simple version of the problem was initially used as a base-

line experiment to evaluate whether successful strategies could be
evolved in a bounded world of size 26x26, where the outer cells
formed a wall. The results from these preliminary experiments re-
vealed that although successful foraging strategies did evolve, the
selective pressure for cooperative group behaviors was weakened
due to exploitation of the walls in search strategies that did not
require coordination among robots. Hence, a second unbounded
world setup is used as the basis for the results described in this
paper. The unbounded world is more akin to biological foraging
settings, where organisms that do not cooperate risk becoming lost
and facing predation or starvation.

Digital “food” was placed at varying distances from the home
region, indicating the difficulty level (and also the reward for) the
foraging task. For example, using Figure 8, the genome being eval-
uated in this world has a difficulty level of six, indicating that the
closest piece of food is six units from the edge of the home area.
Two rules are used to place the remaining pieces of food: (1) no
food can be placed closer than the specified difficulty level and (2)
all food pieces must be in a contiguous “clump.” A genome’s dif-
ficulty level increased when the simulated robots returned all eight
pieces and decreased if fewer than eight pieces were returned.

Figure 8: An unbounded world with a difficulty level of 6.

4.2 Robot Setup
In order to maintain consistency with the preliminary bounded

experiment, each robot was allowed a maximum execution of 676
cycles, equivalent to traversing each open cell in a 26x26 bounded
world. To avoid situations where the robots exploited their initial
conditions, we randomly selected the positions (and orientations)
of both the robots and food for each difficulty level. Since off-
spring inherit their parent’s difficulty level during reproduction, an
unfavorable random placement during a generation meant all indi-
viduals using an exploitative strategy did poorly.

During an evaluation, we used a fair scheduling algorithm to sim-
ulate equal operating speeds until either (1) the forage succeeded or
(2) the maximum number of cycles per robot was exceeded. Each
robot in simulation is able to sense its environment within speci-
fied ranges. Obstacle receptors extended to a distance of only 1
(adjacent to the robot), while sound and color receptors extended
to a distance of 4. A robot’s color actuator could emit the color
of Home (red), Food (blue), or a neutral color (green). No other

objects in the world aside from robots emit sound, providing one
undisturbed medium to communicate information. The direction
actuator could orient the robot in any of the eight compass direc-
tions; and the movement actuator either moved the robot forward,
in reverse, or actively dropped a piece of food it was carrying. Food
is automatically acquired when a robot drives over it, but once a
robot is in possession of food, any subsequently encountered food
becomes an obstacle that must be circumvented. The food is held
until a Drop command is given by the controller, releasing the
food in the cell the robot is facing. The Drop command provides
no movement and therefore requires judicious use to forage effec-
tively. If a piece of food is successfully dropped on a home cell,
then it is tallied and removed from the world.

4.3 Evolution Setup
A population of 300 controller genomes evolved for 1000 gen-

erations using a tournament selection protocol where the genome
with the highest fitness among 6 randomly selected genomes “re-
produced” one offspring into the next generation’s population. One
generation of evolution entailed (1) evaluating each controller genome
in a colony of six robots, (2) selecting a controller genome using
the tournament selection protocol, (3) generating an offspring from
the selected genome by exposing the offspring to insertion, dele-
tion, and point mutations, and (4) placing the offspring into the
next generation. Since each genome consisted of three genes (pro-
grams) evolving in concert with one another, mutation rates were
tested at three different rates: 0.8%, 1.0%, and 1.2%. For each mu-
tation rate, we also varied the maximum number of instructions an
enzyme could execute during one cycle at 40 and 80 instructions
for a total of 6 experimental combinations. Replicate runs for each
experiment were seeded with 10 randomly generated integers for a
total of 60 different runs.

4.4 Fitness
Fitness was assigned to each genome at the end of evaluation

in the world based on the four components shown in Figure 9. The
first component rewards for each item of food successfully returned
with its “value” (genome’s difficulty level) multiplied by the max-
imum number of cycles in a generation (676). Second, if the for-
age succeeded, then the remaining fraction of time was added to
the genome’s fitness to distinguish genomes of the same difficulty
level, rewarding those that completed more quickly. The remaining
terms account for how “close” the food was to the center of home
when the evaluation ended. A dropped item of food generated the
full reward while food still being carried generated half the reward
value. Since food was undetectable while it was being carried, we
rewarded strategies that increased the likelihood that ’lost’ mem-
bers with food could be detected in an effort to better smooth the
fitness landscape.

5. RESULTS AND DISCUSSION
The dominant genome (that with the highest fitness) was saved

and tested on 100 random food placements at increasing distances
from home, until the colony failed to bring back any food for all
100 food placements at a particular distance. The average number
of food items successfully foraged and returned to home for each
treatment combination across the 10 runs is shown in Figure 10. At
first glance, the evaluation results suggested that “good” foraging
behaviors were not present in the dominant genomes, given that for-
aging success reduced to 50% when the radius from home reached
5 units. We suspect this drop occurs for one or more reasons: (1)
higher difficulty levels increase the search area, requiring more ex-
ecution cycles before more efficient strategies can be evolved, (2)
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Figure 9: The components of a genome’s fitness determined by
a homogeneous robot colony’s forage.

more generations of evolution may be necessary, and (3) food ex-
tending (on average) 4 units further into the world raises the dif-
ficulty level of the forage if the first piece is moved. The sharp
decrease at one radius unit outside of the robot’s detection range
may also signify that additional or alternate memory structures are
necessary either within each enzyme or the controller itself to “re-
member” routes to food at further distances. More complex mem-
ory structures are a subject of our ongoing research. However, fur-
ther analysis revealed several interesting behaviors, as described
below.

Figure 10: Average fitness of the dominant genomes evaluated
using 100 random evaluations at increasing difficulty levels.

To better assess whether a foraging “strategy” was present in
the genomes, we visually inspected 100 forage attempts made by
each of the top 6 evolved genomes during the ecological period and
found the results surprising. Each of the 6 genomes evolved a sep-
arate, unique strategy that included one or more of the following
behaviors: (1) swarming, (2) coordinated movement, (3) commu-
nication of concepts using a primitive language based on sound
and/or color, (4) cooperation, (5) division of labor, and behaviors
termed as (6) “smart” behaviors. Examples of “smart” behaviors
include extending the notion of “home” through color, increasing
the detection range for food by dispersing part of the clump out-
ward, and brief dashes off home in search of lost group members.
Three of these behaviors are given a descriptive name and described
below. In the following images, an arrow represents a robot and the
direction it is facing. The color of the arrow indicates the current

color the robot is emitting, while a circle around an arrow indicates
the robot is emitting sound. Videos of these foraging strategies are
available online at: http://www.cse.msu.edu/thinktank/foraging.

Foraging Strategy I.
In the first strategy, termed “The Red-Armed Blinker,” each

robot continuously emitted Sound 1 and the Home color while
the robot did not possess food, as shown in the top-left of Figure
11. The colony then exhibited “swarm-like” behavior by remaining
within color detection range of one another and extending out into
the world as a “red arm.” Eventually, the red arm’s reach enabled
one robot to detect food. At this point, the robot that made the dis-
covery moved toward the food and out of detection range from the
retracting arm of robots. Upon acquiring a piece of food, the robot
immediately changed its behavior to remain stationary and blinked
rapidly back and forth between red and the neutral color (green)
shown in the top-right of Figure 11. Over time, the red arm of teth-
ered robots entered the detection range of the “blinker,” discovered
the individual, and detached completely from home (bottom-left).
Although one individual was left continually roaming the perimeter
making small dashes off home in search of others, its efforts were
not necessary for this particular forage. The group progressively
moved the remaining food items in the general direction of home
and completed the forage.

Figure 11: The “Red-Armed Blinker” Strategy

Foraging Strategy II.
A second evolved strategy was a variation of the first, termed

“The Green Arm, Blue Thumb.” Here, each robot constantly
emitted the neutral color (green) until a robot discovered food, at
which point it changed its behavior to emit the Food color (blue)
and remained blue until the food was dropped, as shown on the left
of Figure 12. In this strategy, rather than extending the notion of
“home” by emitting the Home color, the robots instead extended
the notion of “food.” Similar to the previous approach, the robots
swarmed in a “green arm” structure, extending out into the world
from home. The “thumb” of the green arm soon discovered food
and left the detection range of the remaining colony of robots. Sur-
prisingly, the lone explorer began foraging by picking up different
pieces of food and dispersing them to broaden the detection range
of food for the green arm to discover. The green arm quickly de-
tected the explorer emitting the Food color, detached completely
from home, and progressively moved (“shoveled”) each piece of
food in the general direction of home. Similar to the previous strat-
egy, two individuals remained roaming home’s perimeter making
quick dashes off home on “lookout” for the remainder of the group,
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as shown on the right of Figure 12. These lookouts eventually de-
tected the lost group members and led to the forage’s success.

Figure 12: The “Green-Arm, Blue Thumb” Strategy

Foraging Strategy III .
The most coordinated of the six evolved strategies, termed “The

Sink,” is depicted in Figure 13. Individuals aligned themselves in
parallel and used the neutral color to signal the initiation of con-
tinual broadening and overlapping circular sweeps. These circular
sweeps formed a “whirlpool” or “sink” pattern where the “drain” of
the sink was slightly off-center from home. When a robot collected
a piece of food, it would tighten its circle momentarily and then
broaden its path, altering which “ring” relative to home it was on.
As the robot’s circular path crossed over home, shown on the right
of Figure 13, it deposited the food and continued on its outward
circular trajectory until all the food was gathered.

Figure 13: The “Sink” Strategy

In summary, these behaviors arose by providing evolution with
only a universal material (digital molecules) and a way for reactions
to take place through the cooperation of parallel-executing entities
(digital enzymes) altering and working to produce a response. The
interactions occurring within each controller were able to (1) give
meaning to colors, sounds, and movements, (2) transmit concepts
such as the location of food to colony members, (3) maintain co-
operation within the controller and at a higher-level between indi-
viduals of a colony, and (4) provide roles to a subset of individuals
within the colony. The shortest program (gene) contained within
these three strategies consisted of 24 instructions while the longest
program contained only 133 instructions. These results support the

premise that internal, parallel entities may provide evolution with a
means of storing genetic information in complex interactions.

6. RELATED WORK
Previous approaches to the foraging problem have used a range

of techniques, such as genetic programming [2, 6, 20, 9], cellular
automata and Finite State Machines (FSMs) [4, 17, 11] and exten-
sions in P-Systems [3, 8, 15]. Our approach exploits the benefits of
complex interactions among parallel controller entities that evolve
concurrently. In contrast to previous state-based work using FSMs
or cellular automata to study foraging, the entities in our system are
dynamically executing programs containing their own virtual CPUs
and using a Turing-complete language. Of those techniques previ-
ously listed, our approach is most similar to extensions within the
domain of P-systems involving quorum [3] and X-machines [8].
Gheorghe et. al [8] has designed a computational model to ver-
ify honeybee foraging using a membrane-based architecture, where
each agent contains a state-based machine, termed an X-machine,
mapping sequences of input symbols to output symbols based on
internal functions. Each agent’s X-machine contained a predefined
set of states and rules that specify how input symbols read in are
transformed into output and the agent’s next state. In our approach,
many machines (processes) execute in parallel to interact and coop-
erate with one another to produce the agent’s response. Agents do
not have a predefined set of internal states but rather their behavior
or “state” is constantly redefined by (1) the interactions between
agents and (2) a changing internal environment. Basing our com-
putational entities on virtual CPUs and hardware defined through
operations, rather than rules, enables complex interactions and be-
havior to be explored using a minimal number of elements in the
system’s encoding. Moreover, we do not design an agent’s pro-
gram but instead take an open-ended approach to evolve solutions
where cooperation within an individual agent’s parallel machines
and among individual agents of a colony work together to provide
successful foraging strategies.

7. CONCLUSIONS
In this paper, we presented the design of a bottom-up, reactive

controller based on digital models of signal transduction and enzy-
matic parallelism. Evaluation of our results revealed the success-
ful evolution of complex behaviors including: (1) swarming, (2)
assignment of meaning to color, sound, and movement, (3) com-
munication of “concepts” via simulated actuators, (4) cooperation
both within the entities of a controller as well as among the mem-
bers of a colony, and (5) assignment of roles within a colony. These
results reveal that “genetic information” may be captured in a “hid-
den" layer of parallel interactions, in addition to the instructions
found within the genome. Future research will continue to explore
the mechanisms and models driving the complexities in this work
to (1) gain important biological insights and (2) better understand
the role of bio-inspired parallelism in real-world systems.
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[15] G. Păun and F. J. Romero-Campero. Membrane computing
as a modeling framework: cellular systems case studies. In
Proceedings of the Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM’08,
pages 168–214, Bertinoro, Italy, 2008. Springer-Verlag.

[16] P. G. Saffman and M. Delbrück. Brownian motion in
biological membranes. Proceedings of the National Academy
of Sciences of the United States of America,
72(8):3111–3113, Aug. 1975.

[17] M. Sipper. The evolution of parallel cellular machines:
toward evolware. Biosystems, 42(1):29–43, March 1997.

[18] I. Steffan-Dewenter and A. Kuhn. Honeybee foraging in
differentially structured landscapes. Proceedings of the Royal
Society of London - Biological Sciences, 270:569–575, 2003.

[19] D. J. T. Sumpter and M. Beekman. From nonlinearity to
optimality: pheromone trail foraging by ants. Animal
Behavior, 66:273–280, 2003.

[20] J. A. Walker, K. Völk, S. L. Smith, and J. F. Miller. Parallel
evolution using multi-chromosome cartesian genetic
programming. Genetic Programming and Evolvable
Machines, 10:417–445, December 2009.

250




