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ABSTRACT

Body morphology is thought to have heavily influenced the evolu-
tion of neural architecture. However, the extent of this interaction
and its underlying principles are largely unclear. To help us eluci-
date these principles, we examine the artificial evolution of a hy-
pothetical nervous system embedded in a fish-inspired animat. The
aim is to observe the evolution of neural structures in relation to
both body morphology and required motor primitives. Our investi-
gations reveal that increasing the pressure to evolve a wider range
of movements also results in higher levels of neural symmetry. We
further examine how different body shapes affect the evolution of
neural structure; we find that, in order to achieve optimal move-
ments, the neural structure integrates and compensates for asym-
metrical body morphology. Our study clearly indicates that differ-
ent parts of the animat – specifically, nervous system and body plan
– evolve in concert with and become highly functional with respect
to the other parts. The autonomous emergence of morphological
and neural computation in this model contributes to unveiling the
surprisingly strong coupling of such systems in nature.

Categories and Subject Descriptors

I.2.6 [Learning]: Metrics—Connectionism and Neural Nets

General Terms

Algorithms

Keywords

Neuroevolution, Body Symmetry, Morphology, Motor Primitives,
Artificial Life, Soft Robotics

1. INTRODUCTION
Genetic evidence reveals that animals having distinctive types

of body symmetry are in many ways related [17, 18]. An abun-
dance of common genetic markers (certain homeobox genes [24,
8]) present in both the Hydra, a very primitive radially symmetric
jellyfish, and the more advanced Bilateria have been identified as
being associated with pattern formation. It is conjectured that di-
versity arose from a common ancestor [15, 10, 16] with a nervous
system that evolved in concert with the body plan [9].

Over the years, several bodies of research have attempted to elu-
cidate the mechanisms of nervous system evolution in relation to
the neurological basis of behaviour. Ghysen [10] asks how func-
tional coherence can arise in many different lifeforms even though
their respective lifestyles and habitats are richly diverse. Holland
[11] explores the genetic basis of functional components within the
central nervous system by searching for common genetic homo-
logues. Murakami et al. [19] considers the lamprey while explor-
ing how the developmental plan has evolved and arisen in more
advanced vertebrates.

Seemingly complex behaviour can also originate from relatively
simple neural structures. As first shown in ‘Vehicles: Experiments
in Synthetic Psychology’, Braitenberg [7] posited several thought-
experiments in which the mechanistic and behavioural properties
of a simple agent were progressively complexified. Whilst these
mechanisms were grounded in simplistic sensory-motor pathways,
they were nevertheless able to result in a complex behavioural reper-
toire. In such a spirit of simplicity, yet with the aim of biological
relevancy, models have become progressively centric to biophysi-
cally realistic behaviour. The work of Karl Sims [25], who explored
how abstract neural control systems could implement a rich set of
animal-like behaviours in several artificial creatures, is a good ex-
ample. Others (e.g. [5, 4]) have further asked how brain and body
can evolve in a coupled fashion. Together with neural control, the
body and environment are also argued to be core to the evolutionary
process in so-called “embodied intelligence”, see e.g. [28].

The model of Schramm et al. [22] addresses body morphology
and control as a coupled process. Their model employs an evolved
genetic regulatory network (GRN) that controls cell growth. Cells,
which in the model are physical point masses, are grown and con-
nected together with springs. Actuation of lateral springs then pro-
vides movement. A variety of body morphologies, coupled to the
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control mechanism, are then demonstrated to yield different types
of movement. The work of Jones et al. [13] studies how motor
neuron configurations evolve to become bilaterally symmetric. In
an elongated animat, motors are distributed around the length of
the body and can evolve into both radial and bilateral configura-
tions. In the swimming task of that study, evolution led motor pairs
to assume bilateral configurations. The efficiency of bilateral mor-
phology in directional movement is further stressed in [6]. More
recently, Bongard [3] examined the evolution of body plan mor-
phogenesis finding that when lifetime developmental changes are
permitted, greater robustness pervades behaviour generation.

In this paper, we address how neural structure evolves to control
an anguilliform agent required to perform a set of different mo-
tor skills. Under such enhanced and realistic scenarios, symmetri-
cal properties and the integration with body morphology have been
subject to analysis. During evolution, neural structure changes due
to the genetically determined positions of connections and neurons.
Connection weights are computed as a function of interneuronal
Euclidean distance. The large search space of all possible neural
structures has enabled us to observe the autonomous and unbiased
evolution of the coupled control system.

A major point in this study is how the need to evolve different
motor skills affects the structural distribution and symmetry of the
neural control system. In a first scenario the agent is required to
undertake fast, efficient forward motion: this task elicits the evo-
lution of only one oscillatory-type motor primitive. In a second
scenario, the agent is required to perform left and right turns while
maintaining forward motion. This task is more complex and re-
quires a correct synergy between motor primitives. In a third sce-
nario, we then impose asymmetry onto the body plan and again
investigate how this affects the evolution of neural structure. The
main finding is that an increased number of motor primitives pro-
motes the evolution of highly symmetrical neural structures. We
hypothesize that higher movement requirements lead evolution to
fine-tuning the underlying movement mechanism. However, when
the body morphology is further asymmetrically structured, the neu-
ral architecture adapts and compensates to achieve optimality in the
required set of movements.

The rest of this paper is laid out as follows. In Section 2, the
model and encompassing simulation environment are described.
Section 3 then outlines the experimental setup. Results are pre-
sented in Section 4. We conclude in Section 5.

2. MODEL
A fish-like animat with a neural controller inspired by primitive

neural organisation has been implemented. The animat’s body mor-
phology is three dimensional and is composed of springs as shown
in Fig. 1(upper). The width of the animat is 1.26 and the length
of a body segment is 3.525; the animat is composed of 15 body
segments meaning that the length of the whole animat is 52.875.
These values are not those of a particular animal, nor do they rep-
resent particular units, nevertheless, they approximately reproduce
the proportions of an elongated swimming animal. An abstract
model of water force as described in [12, 23] is further modelled
to allow simulated movement through a liquid environment.

2.1 Motor system
Fig. 1 shows how bilaterally arranged pairs of motor neurons

actuate triplets of body segments. This arrangement allows a single
motor to induce a degree of curvature in the body, see Fig. 1(lower).
The level of compression applied during this actuation process is
proportional to the output activation of the respective motor neuron.

Figure 1: Upper: Visualisation of the model agent used in the

study. The lateral circles depict the positions of motor neurons

which serve to actuate sets of lateral springs. Lower: A diagram

showing how motor pairs actuate a triplet of body segments. A

pair of motors per triplet allows for a natural generation of

body curvature when one of those motors becomes active.

When particular springs are compressed, geometry is altered and
movement is generated.

2.2 Computational neural system
The neural dynamics are modelled with leaky integrators. The

membrane potential uj of a neuron is [2]:

duj

dt
=

1

τj

(

−uj +

C
∑

i=1

wjiai + Ij

)

(1)

where τj is the neuron discharge time constant, w is a vector of
presynaptic connection weights and Ij is an external input current.
The activity ai of a neuron is computed as tanh(ui). If a neuron is
inhibitory then all of its outgoing connection weights are negative.
Motor neurons are excitatory and have a time constant value of
1. This is to model biological muscles that have only periods of
contraction (excitation) or relaxation. The output of a given motor
m is computed as 1/1 + exp(−um − 1). This yields a positive
value which is then used in driving the compression levels of the
associated springs.

2.3 Architectural neural system
The neural system consists of 22 neurons: 10 motor neurons,

i.e. two for each triplet of body segments, an equal number of de-
scending neurons and 2 head-CPG neurons as shown in Fig. 2. This
setting was found to be sufficient for generating the required set
of movements whilst maintaining at the same time a minimalistic
approach. Connectivity is established according to boolean genes
except for those connections within the head-CPG structure which
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Figure 2: A schematic of the agent’s neural control system.

LM, LDN, RDN and RM refer to Left Motors, Left Descending

Neurons, Right Descending Neurons and Right Motors respec-

tively. Dotted lines signify evolved connections. The HEAD-

CPG is further considered a single functional module – includ-

ing both neurons and connections; its presence in the pheno-

type is determined by a single boolean gene.

is considered a whole functional module. Connections between the
descending neurons are determined as follows: a connection from
a left descending neuron (LDNi) to the equivalent right descend-
ing neuron (RDNi) is mirrored with a connection from RDNi to
LDNi. This permits the formation of coupled oscillators. The pres-
ence of individual descending connections is determined by a set
of boolean genes.

2.3.1 Synaptic connectivity

An important aspect of this model is the effect that neural struc-
ture has on synaptic efficacy. Specifically, weight connections are
derived from the interneuronal Euclidean distance. The closer two
neurons are together, the higher the weight value between them,

wij = ξ/dij (2)

where ξ has been empirically set to 20.0 to ensure that a suitable
range of weights can be generated. Accordingly, the position of
a neuron is changed through a process of simulated evolution. In
other words, the weight values are implicitly represented. Only the
positions of the descending and head-CPG neurons are evolved.
The positions of the motor neurons remain fixed. The distance
of a given descending neuron from the centre of the animat (i.e.
in the horizontal x-plane) and the positions of the head-CPG neu-
rons along the vertical y-dimension are determined by evolution.

This mechanism for the head triplet of body segments is depicted
in Fig. 3.

Central axis

head-CPG

neurons

LM RM

LD RD

Body

segment

triplet

Figure 3: The manner in which neuron positions are evolved as

shown for the first triplet of body segments. The x-dimensions

of the descending neurons (LD and RD) can move closer or fur-

ther from their respective motor neurons (LM and RM). The

head-CPG neurons, which are only present within the head

triplet, move towards or away from each other along the y-

dimension. Interneuronal distances are used in deriving weight

connection values.

2.3.2 Turning mechanism

The agent is endowed with a pair of sensors located at the top
of the head segment. The sensor that is found to be closest to an
environmental target is designated the winner and becomes active
whilst the other is designated the loser and remains dormant. In
order for the animat to turn, one of its sides needs to be actuated
more strongly. To do this, the winning sensor affects a ratio of
left and right force magnitudes LF:RF that are applied to the left
and right actuated springs respectively. When the ratio is biased
towards either LF or RF, as determined by the winning sensor, the
body geometry is altered. The ratio is initialised to 1:1 meaning
that initially there is no bias towards the left or right. Throughout
a simulation, this ratio changes according to the above described
winner-takes-all strategy, as shown:

f (δl, δr) =

{

δr = 0.01 · nr; δl = −0.01 · nl RS

δr = −0.01 · nr; δl = 0.01 · nl LS
(3)

where δl and δr are the updates to LF and RF respectively and nl

and nr are the outputs of the left and right motor neurons respec-
tively. Thus the force magnitude is increased for the winning side
of the animat and decreased for the losing side. This ratio changes
smoothly due to the effect of the factor 0.01 in Eq. 3. The agent
can turn smoothly without hindrance to the stability of the physics
model; during testing, it was found that too sharp a turn could cause
the animat to fold in on itself. A visualisation of the turning mech-
anism is presented later in the results section.
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3. EXPERIMENTAL SETUP
The motivation of these experiments is to study the effect that

body morphology has on the evolution of neural structure and more-
over, how a requirement for different motor primitives can affect
such structure. In order to do this, the following three sets of ex-
periments were performed:

(a) the agent is required to undertake fast, efficient forward lo-
comotion.

(b) the agent is additionally required to undertake turning be-
haviour.

(c) as in (a) but with an asymmetric body plan as in Fig. 4.

The first two scenarios, (a) and (b), examine how neural structure
evolves in relation to a symmetric body morphology. A natural
extension of this is then to ask how an asymmetrical body mor-
phology affects neural structure, i.e. Scenario (c).

The animat is evaluated in a two dimensional plane such that
only movements generated by the left and right halves of the agent,
as partitioned by the sagittal plane, are evaluated. In Scenarios (a)
and (c) the fitness of an agent is determined by how far it can swim
in a forwards direction. For Scenario (b), the animat is evaluated
three times. For each evaluation, the agent is required to swim
towards a target in one of three different locations (0π, 3/2π, π/2
or north, west and east w.r.t. the starting orientation of the animat)
and at a distance that is sufficiently far enough that the animat can
never reach it. The sum of these distances is then taken as the fitness
measure.

In order to observe the evolution of symmetrical patterns, a mea-
sure of neural symmetry was introduced:

sym =
1

5

5
∑

i=1

|d (LDNi, ci)− d (RDNi, ci)| (4)

where the function di is a measure of Euclidean distance. LDNi

and RDNi represent the positions of the left and right descending
neurons respectively; ci represents the position of the centre point
along the sagittal plane. An advantage of using this measure is that
we are able to observe the process by which symmetry within the
neural structure changes during evolution. High levels of neural
symmetry will thus have a minimal sym value.

Figure 4: Asymmetric body morphologies: in Scenario (c), the

body plan is constrained to adopt one of two body curvatures

(curved right or curved left).

3.1 Evolutionary process
Artificial evolution is used to evolve a population of 40 individu-

als. For each scenario, we conducted 50 independently seeded runs
except for Scenario (c) in which the number was doubled to include
both a left-biased and a right-biased body asymmetry. The geno-
type and the constraints of the search space are shown in Fig. 5.
Note that the value ranges given for NRAD and HY are actually
bounded by the geometrical constraints of the animat (refer to Sec-
tion 2). A maximum of 2200 generations is permitted for each
evolutionary run. This number of generations was found during
preliminary runs to be sufficient for the fitness to reach a plateau.

10/12

NI

10/12

BOOL [0,10.58]

HY

0/2

NRAD

10

[0, 0.63]

DES

8

BOOL

DCOP

5

BOOLBOOL

CPG
head−

1

[10, 50]

NTC

Figure 5: The agent’s genotype. Each box holds the following

information: gene type (top); gene count (middle); initialisa-

tion range or BOOL if boolean valued (lower). The gene types

are: NI (neuron is inhibitory); NTC (neuronal time constants);

head-CPG (presence of head-CPG structure); DCOP (coupled

connections between descending pairs of neurons); DES (pres-

ence of descending connections); NRAD (radius position of de-

scending neuron, that is, the distance of the neuron from the

central midline of the animat); HY (y-coordinate position of

neuron in head-CPG, if head-CPG structure is present). For

NI and NTC, it is possible for there to be 10 or 12 genes; 12 if

a head-CPG structure exists. For the same reason, it is further

possible for there to be 0 or 2 HY genes.

3.1.1 Selection mechanism

The evolutionary process uses a local selection mechanism as
described in [21]. The population is placed into a circular array. A
tournament scheme is applied to contiguous sub-population neigh-
bourhoods of size 4. For example, suppose we have a population of
size 8 with members [a,b,c,d,e,f,g,h] and the fittest member in the
first subset of 4 members ([a,b,c,d]) is found to be individual c and
the fittest member in the second subset of 4 members ([e,f,g,h])
is found to be individual h, then the resulting selectees become
[c,c,c,c,h,h,h,h]. An offset of size 4 is further used to determine
where at the beginning of the array the selection process begins.
This ensures a spread in the gene pool, i.e. it enhances diversity.

3.1.2 Mutation and crossover

The selectees are then subject to mutation and cross-over op-
erators. The resulting genomes become the offspring members.
These offspring members then replace the population members for
the subsequent evolutionary generation. In order to create the off-
spring pool of chromosomes, two population members are chosen
at random from the selectee chromosome pool. The evolutionary
operators are then applied to these two members and the process
repeats until the size of the offspring vector matches the population
size. For a given selected pair of chromosomes, genes are proba-
bilistically selected at a rate of 0.01 to be mutated. If they are real-
valued, the Gaussian operator g(0, σ) is used; each σ parameter is
self-adapted in the manner described in [1]. If it is boolean-valued,
it is simply flipped. Genes are also probabilistically exchanged at a
rate of 0.1.
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Figure 6: A visualisation of an evolved undulatory agent undertaking a 180o turn together with a raster plot indicating greater levels

of spring compression on the side ipsilateral to turning. Greater levels of compression are marked by deeper levels of ‘red’ or more

negative value. Left-right spring compressions are further shown to occur in ‘descending waves’, as highlighted by the two diagonal

arrows. The two waves are out of phase and correspond to the underlying undulatory movement process.
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Figure 7: A visualisation showing an evolved agent tracking a

target moving in a figure-of-8 pattern. The upper-right circular

loop highlights how the agent which has no mechanism to slow

down overtook and circled around the target.

4. RESULTS
Results from Scenarios (a) and (b) in which the animat had a

symmetric body morphology are presented in Section 4.1. Results
for Scenario (c) in which the agent had an asymmetrical body mor-
phology are presented in Section 4.2.

4.1 Scenarios (a) and (b)
At the end of evolution in Scenario (a), the best performing indi-

viduals could undertake efficient forward motion by swimming an
average of 3.494 body lengths in 1600 simulation steps as opposed
to an average of 0.5898 body lengths before any evolution com-
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Figure 8: Medians together with upper and lower quartiles of

neural symmetry throughout evolution (see Eq. 4 for defini-

tion). Symmetry evolves to greater levels (smaller values) in

Scenario (b) (forward motion plus turning behaviour) than in

Scenario (a) (forward motion only).

menced. This means that the animats which initially moved only
marginally evolved the capability of propelling themselves signifi-
cantly forward.

In Scenario (b), the best performing individuals were further able
to turn successfully. An example of this is illustrated in Fig. 6
where an evolved animat is visualised performing a complete u-
turn. The turning skills of the animat are further demonstrated in
Fig. 7 where it is shown tracking a moving target.

The metric defined in Eq. 4 was used to compare neural symme-

239



Figure 9: Example of an evolving neural structure: a visualisation showing how the spatial distribution of neurons evolved to become

bilaterally symmetric for the fittest individual of a given Scenario (a) experiment. The blue ‘ladder-like’ structure represents the seg-

mented body morphology. In each visual, the top-right number indicates the current evolutionary generation. Red spheres represent

excitatory neurons, yellow spheres inhibitory and grey lines are interneuronal connections. As shown, evolution has resulted in zero

coupled connections between the descending neurons, a head-CPG structure and left-right descending pathways that extend through

the whole length of the animat.
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Figure 10: Plots showing the average left/right descending connectivity emergence for left and right biased body asymmetries. As

shown, in each case fewer descending connections evolve on the convex side of the body asymmetry. Statistically, differences in

left/right DES connectivity in the left plot have a p-value of 0.04, in the right plot 0.07.

try between both scenarios. The analysis reveals that when the an-
imat is required to turn as well as locomote forwards, neural struc-
tures evolve to be more symmetrical, as shown in Fig. 8. In both
scenarios, both full descending neural connectivity and a head-CPG
structure were observed to evolve and become part of the pheno-
type. Moreover, Fig. 9 shows that the best individuals evolve to

have no coupled connections between descending neurons. This
suggests that the required neural dynamics evolved purely from
the head-CPG structure. This generates driving oscillatory cur-
rent through the left and right descending pathways, resulting in
a wave of activation propagating through the animat’s motor sys-
tem. This type of architecture in which control becomes regulated
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by a higher-level structure (i.e. the head-CPG unit) and distributed
by lower-level components (i.e. descending neuronal pathways) is
also shown to be advantageous in a mobile robot platform [20]. An
example of an evolving architecture from Scenario (a) is visualised
in Fig. 9.

4.2 Scenario (c)
With the introduction of a resting body asymmetry, neural ar-

chitecture evolves in a way that can still endow the agent with
functional bilateral control. Statistical analysis indicates that the
evolved architectures are biased to compensate the asymmetry of
the body plan. Neurons arrange themselves on the concave side of
this asymmetry. Moreover, descending connectivity evolves such
that there are fewer descending connections on the convex side.
These differences in descending connectivity are significant at the
p-value levels of 0.04 and 0.07 for the left and right biased body
asymmetries respectively as shown in Fig. 10. Two evolved archi-
tectures shown in Fig. 11 indicate that this difference in descending
connectivity stems from a breakage in the pathway from the head-
CPG unit on the convex side. This means that propagating oscilla-
tions from the head-CPG on this side are prevented from reaching
subsequent motors. Further analysis reveals that these motors (en-
closed with dashed rectangles in Fig. 11) enter a tonically active
state which has the effect of continuously straightening the ani-
mat into an upright orientation. On the concave side of the body,
the pathway from the head-CPG is intact and activation propagates
downwards. The combined effect of propagating oscillations in
the concave half and tonic activation in the convex half ultimately
enables the animat to maintain a level of forwards locomotive func-
tioning as visualised in Fig. 12.
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Figure 11: Examples of asymmetrical neural structures for

left- and right- biased body asymmetries. The ellipses high-

light how descending connectivity from the head-CPG struc-

ture is broken on the convex side of the body asymmetry. This

largely reflects differences in descending connectivity as plot-

ted in Fig. 10. This results in a lack of oscillatory input cur-

rent from the head-CPG structure meaning that motor neurons

(dashed rectangular regions) yield tonic output. Asymmetrical

body morphologies are shown in a straight posture for ease of

visualisation.
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Figure 12: Upper: movement of body: a visualisation showing

how for an agent with a left-biased body asymmetry, movement

proceeds by initially straightening the animat before it under-

takes movement in a forwards direction; arrow indicates time.

Lower: the corresponding left/right motor outputs. As shown,

the right motors become tonically activated while the left mo-

tors oscillate.

5. CONCLUSIONS
Our experimental results reveal that neural geometry becomes

aligned to body morphology in order to facilitate the generation of
motor primitives. The results indicate the following.

1. Artificial evolution favours a symmetrical layout in the neu-
ral structure, which appears to improve swimming efficiency.

2. The following simulations in which turning behaviour was
additionally required interestingly indicate that, as the motor
task becomes richer, an even higher level of symmetry be-
comes advantageous. This is possibly due to the need for
better exploitation of muscle synergies during the turning
process.

3. The third experiment, in which the body plan was asymmet-
rical, demonstrated how the nervous system places itself to
compensate for the asymmetrical body. By doing so, forward
swimming efficiency is maximised.

Thus the neural structure evolves to exploit both the regularities
of the body and the functionality required to achieve locomotion.
When the body morphology is symmetrical, the neural geometry
exploits the morphological fitness that this can provide in a swim-
ming task; when the body plan is asymmetrical, the neural geom-
etry compensates to achieve the required movements. Our results
suggest that, at the evolutionary level, the interplay between neural
architecture and body morphology is a fundamental driving mech-
anism, even at the basic level of these simulations.

In summary, this study addressed the importance of coupling be-
tween neural structure and body plan morphology. We have shown
this in the context of an artificially evolved fish-inspired animat.
Importantly, neural geometry, which is traditionally ignored in the
Neuroevolutionary literature, has been shown to be of key impor-
tance in terms of how it evolves to relate functionally to body mor-
phology. A model in which the neural structure is embedded within
the substrate or body has allowed us to examine the coupling be-
tween both. We can sensibly postulate that in animal organisation,
the combined evolution of both allows for the exploitation of as-
pects of morphology and aspects of control; we infer that this strong
coupling allows evolution to hone in on a richness of behaviour
generation.

Extensions of the model include movements in the coronal plane
which can further be evolved in addition to movements in the sagit-
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tal plane. The introduction of energy metrics has also the potential
to reveal more efficient neural structures as in [14]. A more ad-
vanced neural structural representation might also be adopted, for
example, HyperNEAT [27] which – like the model presented in
this paper – uses structural information to encode neural connec-
tivity. An advantage of using HyperNEAT is its capacity to yield
several plausible emergent properties including symmetry and rep-
etition. At a behavioural level, the simulations can be made to elicit
a richer variety of behaviours like variation in speed or simple cog-
nitive tasks. Finally, the modelling of plastic neural connectivity,
as those proposed in [26], could reveal more subtle interactions be-
tween plastic neural architectures and body morphologies.
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