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ABSTRACT
An ambitious challenge in artificial life is to craft an evo-
lutionary process that discovers a wide diversity of well-
adapted virtual creatures within a single run. Unlike in na-
ture, evolving creatures in virtual worlds tend to converge
to a single morphology because selection therein greedily re-
wards the morphology that is easiest to exploit. However,
novelty search, a technique that explicitly rewards diverg-
ing, can potentially mitigate such convergence. Thus in this
paper an existing creature evolution platform is extended
with multi-objective search that balances drives for both
novelty and performance. However, there are different ways
to combine performance-driven search and novelty search.
The suggested approach is to provide evolution with both a
novelty objective that encourages diverse morphologies and
a local competition objective that rewards individuals out-
performing those most similar in morphology. The results
in an experiment evolving locomoting virtual creatures show
that novelty search with local competition discovers more
functional morphological diversity within a single run than
models with global competition, which are more predisposed
to converge. The conclusions are that novelty search with
local competition may complement recent advances in evolv-
ing virtual creatures and may in general be a principled ap-
proach to combining novelty search with pressure to achieve.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
Virtual creatures, Natural evolution, Artificial life, Novelty
search

1. INTRODUCTION
Aspiring to understand and imitate nature, researchers

have developed artificial environments that evolve virtual
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creatures [1, 2, 7, 9, 11, 18]. However, all such existing
systems fall short of the impressive benchmark set by nature.
An important question raised by this gap is what research
directions will facilitate developing environments of virtual
creatures with dynamics more like that of natural evolution.

A key factor in this problem is representation. Though the
DNA encoding is ubiquitous in nature, virtual worlds crafted
by researchers employ coarser, more abstract encodings that
are computationally tractable. There are many approaches
to representing a virtual creature, including L-systems [9],
gene regulatory networks [2], hierarchical nested graphs [11,
18], and compositional pattern producing networks [1, 7].

The motivation for such research is that improved creature
representations may be more evolvable and thereby pave a
more forgiving path for evolution to follow towards more
complex functional creatures. However, the full potential
of even the best representation may remain unachieved if
evolution is handicapped by a deficient system of rewards.
Therefore, an important goal for creature evolution systems
is to improve the evolutionary process that is at their core.

One shortcoming of traditional evolutionary algorithms
(EAs) in this context is their general tendency, irrespec-
tive of representation, to converge. EAs do not naturally
maintain diversity because most treat evolution as an opti-
mizer; they generally march towards an optimum and then
converge upon reaching it, stifling future innovation. Thus
because creature evolution experiments are built upon tra-
ditional EAs, innovation in such investigations tends even-
tually to stagnate through convergence [2, 9, 15, 18].

In contrast to traditional EAs, a technique called nov-
elty search explicitly rewards diverging from past designs
[14]. Thus by applying such novelty search to discover novel
morphologies it may be possible to combat the morphologi-
cal convergence common in creature evolution experiments.
While in previous novelty search experiments the measure
of novelty was designed to correlate at least weakly with
performance [13, 14, 17], morphology can be explored inde-
pendently of locomotion ability, which is a typical measure
of performance in virtual creature worlds [2, 9, 18]. However,
a problem with exploring only morphological novelty is that
arbitrary morphologies will almost always be non-functional.
Thus in such situations it is necessary to combine novelty
search with a complementary drive towards functionality.

Therefore, the experiment in this paper extends an exist-
ing creature evolution platform with a multi-objective search
algorithm able to balance drives for novelty [14] and perfor-
mance. However, the simple combination of novelty and
performance objectives ignores the fact that different niches
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have different capacities for fitness. For example, the mor-
phology of a cheetah is predisposed to faster travel than that
of an ant, although both locomote in interesting ways.

Thus the hypothesis in this paper is that discovering di-
verse solutions can be impeded by global competition be-
tween species; that is, in most creature evolution experi-
ments, all organisms, no matter how varied, compete di-
rectly against one another on the same benchmark (e.g. how
far the creature can travel) [1, 2, 7, 9, 11, 15].

However, in nature, grass does not preclude grass-hoppers,
nor do bacteria compete directly with bears. Instead, com-
petition is restricted and often localized within a niche or
between connected niches. Such restricted competition im-
plies an implicit reward for discovering new niches, whereby
an organism can escape competition. Because of this im-
plicit reward, nature is prone to diverge and continuously
uncover new ways of living, unlike most EAs.

Thus the suggested approach is to provide evolution with
both a novelty objective that encourages diverging from pre-
vious morphologies and a local competition objective that
restricts competition locally among individuals with simi-
lar morphologies. This local competition contrasts with the
global competition objective standard in traditional EAs in
which each individual competes with all others on the same
measure of progress. The result from such local competition
is more functional diversity within a population; interesting
behaviors are discovered by local competition in niches that
are effectively ignored when competition is global.

However, there is naturally a trade-off: The most fit in-
dividuals found by local competition are less fit than those
found by global competition. Unlike in natural evolution,
the population size in virtual worlds is nearly always fixed,
which necessarily implies that exploring new niches reallo-
cates resources away from exploiting existing niches. In this
paper, this key trade-off is demonstrated through an experi-
ment evolving creatures that are able to locomote effectively
in a three-dimensional physically realistic simulation.

The trade-off illuminates a subtle facet of what is interest-
ing about artificial life. We argue that finding the singular
most optimally fit organism is not as interesting as uncover-
ing a wide variety of creatures well-adapted to their niches.
Though ultimately such interestingness is subjective, it is
important at least to be aware that global optimality is not
the only desirable goal of an evolutionary system.

The conclusion is that novelty search with local compe-
tition, inspired by the limited interactions between niches
in nature, can help create more natural creature evolution
through encouraging both morphological diversity and per-
formance localized within morphological niches. This ad-
vance may complement recent advances in creature repre-
sentation as well as provide a good general approach to com-
bining the search for novelty with the pressure to achieve.

2. BACKGROUND
This section reviews previous attempts to evolve virtual

creatures including the Evolving Robotic Organisms (ERO;
[11]) system, and novelty search, an evolutionary technique
with which ERO is extended in the experiment in this paper.

2.1 Evolving Virtual Creatures
The most well-known example of evolving virtual crea-

tures is the seminal work of Sims [18]. In this work, an EA
evolves the morphology and control policy of virtual crea-

tures specified by an encoding able to represent hierarchical,
symmetric, and repeating structures. Creatures are simu-
lated in a realistic three-dimensional environment and learn
to locomote in different ways. The results have since been
replicated [11, 15]. A problem with Sims’ system is that a
particular run converges to a single morphology [18], con-
trasting with nature’s accumulation of diverse organisms.

Of the systems that have been designed since, most focus
on alternate ways of representing organisms, e.g. L-systems
[9] or genetic regulatory networks [2]. A recent more gran-
ular approach to representation is applying compositional
pattern producing networks (CPPNs [20]) to specify growth
patterns of three-dimensional structures [1] or density pat-
terns in three-dimensional space for soft robotics [7]. Such
systems can in theory scale indefinitely to represent crea-
tures with a large quantity of morphological parts. Though
equipped with more advanced representations, these systems
also tend to converge to single morphologies [2, 9]. That is,
convergence results more from selection than representation.

The particular system extended for the experiments in
this paper is called ERO [11], a modern re-implementation
of Sims [18] with extensions. Although newer encodings may
provide greater evolvability or potential, ERO is extensively
tested and therefore provides a good experimental platform
for the local competition approach, which can in principle be
generally applied to any creature representation to mitigate
morphological convergence. Thus the next section briefly
reviews ERO (for a full description see Krčah [11]).

2.2 Evolution of Robotic Organisms (ERO)
Krčah [11] describes the ERO system, applies ERO to

recreate the experiments of Sims [18], and tests extensions
designed to encourage diversity and enhance crossover. ERO
applies an EA to a complex encoding derived from that in
Sims [18] with extensions inspired by NEAT [19]; the encod-
ing specifies both the morphology and control policy of a
virtual creature. Fitness evaluation takes place in a realistic
three-dimensional simulation where creatures are rewarded
for their ability to effectively locomote.

ERO’s encoding unrolls an evolved genotypic graph struc-
ture into a coupled body plan and control policy; this un-
rolling process yields hierarchical and symmetric repeating
structures. In ERO, an organism’s genome is represented
as a nested graph structure that has outer nodes and in-
ner nodes (figure 1). The outer nodes and the connections
among them represent different morphological parts com-
prising a creature’s body, while the inner nodes and the
connections among them represent the artificial neural net-
work (ANN) that will control the creature.

Each outer node represents a body part of a creature,
and each directed edge between two outer nodes represents
a physical joint. Connections can be recursively applied to
generate hierarchical structures, and can also be mirrored
over different axes to generate symmetrical structures. The
idea is to provide evolution with a set of useful regularities
similar to those seen in natural evolution, which also exploits
symmetry and hierarchical structures.

ERO also encodes the control policy of a creature in the
nested graph. Each inner node represents a node in an ANN,
and each weighted directed edge between two inner nodes is
a connection in the ANN. As the genotypic graph is un-
rolled into the creature, the ANN represented by the inner
nodes and connections is unrolled as well, generating modu-
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(a) Genotype

(b) Phenotype Blueprint

Figure 1: ERO Encoding. A nested graph genotype is shown
in (a) that consists of outer nodes (i.e. the larger circles) that rep-
resent morphological parts, connections among outer nodes (e.g.
F and G) that represent joints, inner nodes (i.e. the smaller cir-
cles) that represent neurons in an ANN, and neural connections
among inner nodes (e.g. the connection between B and E). The
phenotype shown in (b) is unrolled from the genotype (a) accord-
ing to flags associated with the connections between outer nodes
that can encode symmetry (e.g. the joint F and its children are
reflected over the x-axis) and repetition (e.g. joints can be re-
peated to create articulated appendages like fingers), yielding a
hierarchical repeating structure.

lar ANNs that repeat in the same way as the morphological
nodes they are nested within. ANN nodes can represent sen-
sory organs of the creature, motors driving the joints of the
creature, or intermediate functions of sensory signals.

By applying an EA to this representation, the experiments
by Krčah [11] evolve creatures that locomote in various ways
(walking, swimming, and jumping) and that can reactively
follow a light. Even though ERO extends Sims [18] with
genotypic speciation (possible in such a graph encoding by
exploiting historical markings as in Stanley and Miikkulai-
nen [19]), which does increase performance, preliminary ex-
perimentation revealed that such diversity maintenance is
typically ineffective at preventing convergence to a single
morphology by the end of an evolutionary run, like other
related systems [2, 9, 15, 18].

Because it derives from a well-tested and validated model
of virtual creatures, ERO is an ideal system to test the hy-
pothesis advanced in this paper: Morphologically local com-
petition combined with a drive for novelty will more effec-
tively explore and exploit a diversity of morphological niches
than more traditional approaches.

The next section reviews novelty search, an evolutionary
method that accumulates diversity, which is combined with
local competition in the experiment in this paper.

2.3 Novelty Search
EAs are often applied as black-box optimization algo-

rithms designed to converge to a globally optimal fitness. In
contrast, natural evolution diverges, creating and maintain-
ing a wide variety of solutions to the problems of life. Nov-
elty search is a divergent evolutionary technique, inspired
by natural evolution’s drive to novelty, that directly rewards
novel behavior instead of progress towards a fixed objective
[12, 14]. Thus it matches well with artificial life domains
that are not motivated by a defined set of objectives.

Tracking novelty requires little change to any evolution-
ary algorithm aside from replacing the fitness function with
a novelty metric, which measures how different an individ-
ual is from other individuals, thereby creating a constant
pressure to do something new. The key idea is that instead
of rewarding performance on an objective, novelty search

rewards diverging from prior behaviors. Therefore, novelty
needs to be measured.

The novelty of a newly generated individual is computed
with respect to the behaviors of an archive of past indi-
viduals and the current population. The archive is initially
empty, and individuals’ behaviors are added to it probabilis-
tically to penalize future individuals that exhibit previously
explored behaviors [13].

The novelty metric is designed to characterize how far
away the new individual is from the rest of the popula-
tion and its predecessors in behavior space, i.e. the space of
unique behaviors. A good metric should thus compute the
sparseness at any point in the behavior space. Areas with
denser clusters of visited points are less novel and therefore
rewarded less.

A simple measure of sparseness at a point is the average
distance to the k-nearest neighbors of that point, where k
is a fixed parameter that is determined experimentally. In-
tuitively, if the average distance to a given point’s nearest
neighbors is large then it is in a sparse area; it is in a dense
region if the average distance is small. The sparseness ρ at
point x is given by

ρ(x) =
1

k

k∑
i=0

dist(x, µi), (1)

where µi is the ith-nearest neighbor of x with respect to
the distance metric dist, which is a domain-dependent mea-
sure of behavioral difference between two individuals in the
search space. The nearest neighbors calculation must take
into consideration individuals from the current population
and from the permanent archive of novel individuals. Can-
didates from more sparse regions of this behavioral search
space then receive higher novelty scores. It is important to
note that this novelty space cannot be explored purposefully,
that is, it is not known a priori how to enter areas of low
density just as it is not known a priori how to construct a
solution close to the objective. Thus, moving through the
space of novel behaviors requires exploration.

The current generation plus the archive give a compre-
hensive sample of where the search has been and where it
currently is; that way, by attempting to maximize the nov-
elty metric, the gradient of search is simply towards what is
new, with no other explicit objective.

Once objective-based fitness is replaced with novelty, the
underlying evolutionary algorithm operates as normal, se-
lecting the most novel individuals to reproduce. Over gen-
erations, the population spreads out across the space of pos-
sible behaviors, sometimes encountering an individual that
solves a given problem even though progress towards the
solution is not directly rewarded. In fact, there have been
several successful applications of novelty search in neuroevo-
lution and genetic programming [6, 13, 14, 16, 17].

Instead of rewarding novel behaviors as in prior novelty
search experiments, in this paper novelty search explores a
space of morphologies, in effect rewarding novel morpholo-
gies that exhibit characteristics different from those previ-
ously encountered.

3. APPROACH
One reason virtual creature experiments are interesting

is the morphological and functional variety that evolution
might discover in such experiments. However, in most exist-
ing systems, uncovering such diversity becomes almost pro-
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hibitively computationally expensive; though different runs
may yield varied solutions, a particular run will usually con-
verge to a single morphology [2, 9, 15, 18]. This dynamic
also departs strikingly from natural evolution, which con-
currently explores an increasing diversity of morphologies.

To remedy such morphological convergence, the idea in
this paper is to apply novelty search to reward novel mor-
phologies by defining a space of morphological niches and a
novelty metric that quantifies how different a new morphol-
ogy is from previous morphologies in this space. For exam-
ple, a two-dimensional morphology space can be constructed
by considering the height and mass of a virtual creature. A
search for novelty within this space will effectively explore
the space of morphologies spanning those that are short and
light to tall and heavy.

However, a raw search for morphological novelty does not
guarantee that any of the discovered morphologies are func-
tional. That is, rewarding pure morphological novelty does
not address the control policy of the virtual creature; all of
the creatures discovered might not move at all. Such dis-
connect between morphology and functionality differs from
prior experiments with novelty search in which the space
it explores also distinguishes behaviors of interest [14, 17].
Thus what is needed is an extension to novelty search that
encourages functionality when exploring dimensions like mor-
phology that themselves do not distinguish functionality.

The next section describes one approach to balancing com-
peting drives for diversity and functionality through a Pareto-
based Multi-objective Evolutionary Algorithm (MOEA).

3.1 Balancing Achievement with Novelty
Multi-objective optimization is a popular paradigm within

EC that addresses how to optimize more than one objec-
tive at the same time in a principled way [3]. Such multi-
objective search suggests a simple way to combine the drive
to optimize performance with the search for novelty: Reward
both performance and novelty at the same time by making
them separate objectives in a multi-objective search [16].
Yet while it is tempting simply to combine these different
objectives and novelty through an MOEA, it is important to
understand what this approach might inadvertently imply.

The concept of non-dominance is central to Pareto-based
multi-objective search; the key insight is that when compar-
ing the performance of two individuals over multiple objec-
tives, if both individuals are better on different subsets of
the objectives then there is no meaningful way to directly
rank such individuals because neither entirely dominates the
other. That is, ranking such mutually non-dominating in-
dividuals would require placing priority or weight on one
objective at the cost of another; traditionally one individ-
ual dominates another only if it is no worse than the other
over all objectives and better than the other individual on
at least one objective.

Thus the best individuals in a population are those that
are not dominated by any others. Such best individuals form
the non-dominated front, which defines a series of trade-offs
in the objective space. That is, the non-dominated front
contains individuals that specialize in various combinations
of optimizing the set of all objectives; some will maximize
one at the expense of all the rest, while some may focus
equally on all of the objectives.

Therefore if novelty and fitness are simply two separate
objectives, then at one extreme of the resulting non-domin-

ated front, maximizing novelty at the expense of perfor-
mance will be rewarded. At the other extreme of the front,
maximizing performance at the expense of novelty will be
rewarded. In between these two extremes will be various
trade-offs between performance and novelty. In effect, this
type of search is a mixture of traditional objective-based
search and novelty search; this simple combination can be
seen as an objective-based search that encourages novelty to
maintain behavioral diversity.

While this option is viable for search and may some-
times be more effective at achieving higher performance than
searching only for novelty or only for functionality, it fails
to exploit the fact that some niches may naturally support
different levels of fitness than others. For example, bacteria
reproduce dramatically faster than humans, and thus tech-
nically have higher fitness, though both are viable ways of
life in nature. Sometimes an interesting goal is not narrowly
to achieve the highest fitness, but rather to discover a wide
diversity of individuals well-adapted to their own niches, like
the diversity seen in natural evolution.

In nature, the success of one particular niche does not af-
fect the success of another unrelated niche; that is, bears
do not generally suffer from the reproductive success of bac-
teria. In contrast, in EC a global trade-off between fitness
and novelty implies that the success of one niche may render
other niches unappealing. For example, in the context of a
virtual world, a medium-size, medium-mass organism may
be more optimal for traveling quickly than a tall, low-mass
organism; a global trade-off between fitness (i.e. locomotion
speed) and novelty means that most resources will be spent
on the medium morphology even though the way that the
tall morphology would eventually perform at its best rela-
tive to nearby niches may ultimately be just as interesting.
Thus a Pareto front trading off fitness and novelty does not
really capture the spirit of the diverse set of locally-optimal
designs we might hope to emerge in an artificial world.

3.2 Local Competition
The suggested response is to limit competition among or-

ganisms locally within a niche-space (i.e. not physical local-
ity); that is, individuals compete only with other individuals
nearby in niche-space. For example, in an artificial world a
space of niches can be constructed by considering the space
of possible morphologies. Local competition within such a
space implies that individuals compete for fitness only with
other individuals in similar morphological niches.

The key change is that local competition within a niche
space transforms the fitness objective from being a global
measure to one relative to an individual’s neighbors in niche
space. In effect, the search pressure changes from managing
a global trade-off between fitness and novelty that is biased
towards particular niches to encouraging both novelty and
better performance relative to an individual’s niche.

The idea is thus to explore the merits of each niche rather
than to exploit greedily only the best niches. This strategy
reflects that what is most interesting about some domains
may not always be discovering the most optimal behavior.
That is, among the various strategies for achieving the high-
est performance score in a given domain, the factors that de-
cide which is ultimately optimal may only be an incidental
side effect of how the domain is constructed. For example,
one particular artificial world may have a physics engine in
which quadruped locomotion is optimal, and another may
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have an engine in which worm-like locomotion is optimal.
Thus the particular optimality of one strategy or another
may be uninteresting; instead, it may be more interesting
to observe the creative force of evolution exploiting a wide
variety of niches than it is to see only the optimal product
of evolution narrowly converging.

It is important to note the differences between local com-
petition and existing diversity maintenance techniques in
EC [5, 8, 10]. Some such techniques do restrict competition,
e.g. by level of fitness [10] or by age of genotype [8], but
not in a way that necessarily encourages finding and main-
taining functionally distinct solutions, i.e. genotypic age and
fitness level have no inherent link to an individual’s means
of functionality (e.g. its particular strategy or morphology).
Other methods modulate fitness based on genotypic diver-
sity [5] but generally do not change the scale of fitness itself;
though rare genotypes may have a better chance of surviv-
ing, such methods do not acknowledge that different niches
may have widely differing distributions of fitness values that
they are capable of supporting (e.g. bacterial niches support
absolute fitness values of several orders of magnitude higher
than mammalian niches).

In practice, transforming a global competition score (e.g.
the fitness function) into a local competition score requires
a comparison of an individual’s performance to that of its
nearest neighbors in niche space. The more neighbors it
outperforms, the higher its local competition score.

Therefore, it is straightforward to implement local com-
petition as an extension of novelty search, which already
calculates nearest neighbors in morphology space. When de-
termining the novelty of an individual by measuring the av-
erage distance to its nearest neighbors in morphology space,
the number of such nearest neighbors with lower fitness than
that of the individual is also counted. This number is as-
signed as the local competition objective for that individual,
which measures an individual’s performance relative to its
niche. Thus two objectives in the MOEA become novelty
and local competitiveness. The expectation is that balanc-
ing achievement and novelty in this way will lead to more
natural evolutionary dynamics through a gradual accumu-
lation of functionally-diverse well-adapted individuals.

4. EXPERIMENT
The experiment in this paper extends ERO with Pareto

multi-objective search, novelty search, and local competi-
tion. It is important to note that although this composite
system has several components, the central underlying in-
tuition motivating the system is simple: Encouraging both
morphological novelty and local competition may lead to a
greater diversity of functional creatures.

The MOEA with which ERO is extended is based on
NSGA-II, a well-known MOEA [4]. One difference is that
while NSGA-II has a mechanism to encourage diversity along
the non-dominated front, the implementation described here
replaces that mechanism with a separate objective explicitly
rewarding genotypic diversity. This departure is logical be-
cause both novelty and local competition are relative mea-
sures; two individuals with exactly the same novelty or local
competition scores that would be conflated by encouraging
diversity on the Pareto front may actually be quite different
morphologically or with respect to performance.

The characterization of morphology space has important
consequences for evolution and strongly biases the types of

creatures evolution will discover. In this paper the morpho-
logical space that novelty search explores and within which
competition is localized has three dimensions: height, mass,
and number of active joints. This space encourages crea-
tures of different sizes, with different distributions of mass,
and that exploit different means of locomotion.

In all experimental setups, the fitness function rewards
virtual creatures according to how far they are able to travel
within an evaluation. The novelty metric is the squared
Euclidean distance separating two individuals in morphology
space, and thus the novelty of a creature is proportional to
how different its morphology is from that of other creatures
currently in the population.

The genotypic diversity objective encourages elaborating
upon existing genotypes by assigning higher scores to more
novel genotypes. A rough characterization of a genotype in
ERO is the number of outer genotypic nodes it has; a genome
starts with a small number of outer genotypic nodes, more
of which can be added through mutation as evolution pro-
gresses, and the amount of which limit the maximal mor-
phological complexity a genotype can represent. Because
adding a new outer genotypic node often initially disrupts
existing functionality, it is beneficial if such innovation is
temporarily protected. Thus genotypic diversity is rewarded
inversely proportionally to how many other genotypes in the
population have the same amount of outer genotypic nodes.

Four experimental setups are tested: (1) fitness alone,
(2) novelty alone, (3) novelty search with global fit-
ness competition, and (4) novelty search with local
fitness competition. The only difference between these
setups is the choice of objectives given to the MOEA. Geno-
typic diversity is an objective in all variants.

The first setup, fitness alone, has a global fitness objec-
tive and a genotypic diversity objective. This setup is a con-
trol, roughly corresponding to the original ERO experiment,
which employed fitness-based search coupled with speciation
to encourage genotypic diversity.

The second setup, novelty alone, has a novelty objective
and a genotypic diversity objective. This setup is a second
control designed to show that without additional pressure
to adapt, a search for morphological novelty alone will not
generate creatures able to effectively locomote.

The third setup, novelty with global competition, has a
novelty objective, a global fitness objective, and a genotypic
diversity objective. This setup is much like the combination
of novelty and fitness in Mouret [16]. The idea is to extend
standard objective-based search with an additional drive for
novelty that may encourage diversity, thereby reaping some
of the benefit of novelty search while mostly maintaining the
familiar objective-based search paradigm.

The final setup, novelty with local competition, abstracts
competition between niches in nature; instead of a global
fitness objective between all morphologies, evolution is pro-
vided a local competition objective that restricts competi-
tion within the morphology space. That is, an individual
receives a local competition score relative to how many of
its nearest neighbors in morphological space it outperforms.

Additionally, in the final setup the genotypic diversity ob-
jective is also localized within the morphology space; similar
in motivation to that of local competition, local diversity en-
sures that genotypic diversity is not only exploited in those
morphological niches in which such diversity is incidentally
most easily expressed.
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In all setups, the distribution of individuals in morphol-
ogy space is recorded, as well as the final generation of the
individuals themselves and the progression of highest fitness
individuals throughout the run. The idea is to quantify how
well each morphological niche is being exploited and how
much morphological diversity is discovered and maintained
throughout a run.

4.1 Experimental Parameters
The population size for all experiments is 1, 000, and a

run consists of 500 generations. The nearest-neighbor size
for novelty search and local competition is 15. The three
morphology dimensions are rescaled so that their values fill
the range between zero and three; the height dimension orig-
inally spans between zero and 1.5 meters, the mass dimen-
sion originally spans between zero and 3.0 kilograms, and
the active joint dimension originally spans between one and
four active joints. The crossover rate was 75% and mutated
parameters would be perturbed with power 0.25. The se-
lection method was changed to tournament selection (with
tournament size two) to agree with NSGA-II [4]. Other pa-
rameters are the same as in Krčah [11].

5. RESULTS
Three metrics are described next that respectively quan-

tify the ability of each setup to discover high fitness indi-
viduals, to maintain morphological diversity, and to exploit
morphological niches. For each of the metrics, the Kruskal-
Wallis test was first applied across the four experimental se-
tups to demonstrate that the distributions are significantly
different (p < 0.001). The remainder of the statistical tests
below are Mann-Whitney U tests measuring the significance
of pair-wise differences between experimental setups.

The first metric is the maximum fitness discovered by
a particular setup. These results are shown in figure 2.
The worst-performing setup for this metric is morphologi-
cal novelty alone because it enforces no selection pressure
towards functionality (of course, another kind of novelty,
such as behavioral, might have produced better fitness, as
Lehman and Stanley [14] have shown, but would not produce
the desired morphological diversity). The global competi-
tion setup, which heavily favors morphological niches that
most easily facilitate locomotion, significantly outperforms
the other setups (p < 0.001). Fitness alone and local com-
petition do not perform significantly differently from each
other, but perform better than novelty alone (p < 0.001).

The second metric is niche coverage, which quantifies how
well a setup has encouraged and maintained morphological
diversity until the end of a run. The morphology space is
overlaid with a regularly-spaced grid. From each point in the
grid, the distance in morphology space to the nearest indi-
vidual in the final population is calculated. The more well-
covered the niche space is, the less the sum of all such nearest
distances will be; if the population has spread throughout
niche space, then on average there will be an individual near
to each point in the grid. The results are shown in figure
3. Note that the larger the niche coverage metric is, the
worse the morphological space is covered. Thus the worst-
performing setup is fitness alone, which has no direct se-
lection pressure towards discovering morphological diversity
beyond that useful in maximizing fitness (p < 0.001). The
best performing setups are novelty alone and local compe-
tition (p < 0.001), which do not perform significantly dif-
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Figure 2: Absolute Performance Comparison (larger is
better). For each setup, the maximum fitness discovered in a
particular run is shown (averaged over 15 runs). The main result
is that novelty search with global competition discovers the most
fit individuals (p < 0.001).
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Figure 3: Niche Sparsity (larger is worse). For each setup,
the average coverage of morphology space of the final population
of a particular run is shown (lower is better; averaged over 15
runs). The main result is that novelty with local competition and
novelty search alone cover the niche space the best (p < 0.001).

ferently from each other. Local competition outperforms
global competition on this metric because it allocates re-
sources more fairly among morphological niches.

The last metric is niche exploitation, which quantifies how
well on average a setup has accumulated and maintained
diverse individuals that exploit niches. The morphological
space is first divided into equal-sized bins. Next, each in-
dividual in the final population is placed into the bin that
matches its morphology. Then, for each bin the best fit-
ness among all individuals in it is recorded; these represent
the best solutions for each niche that evolution was able to
find. If all niches supported the same level of fitness, then
taking the average of these best fitnesses would be a reason-
able measure of niche exploitation. However, figure 4, which
illustrates niche capacities, demonstrates the uneven distri-
bution of solutions discovered across morphology space. In-
tuitively, some morphological niches are simply better suited
to locomotion than others; e.g. it is difficult to construct an
effective, very tall, very light creature.

Because of the uneven distribution of maximum fitnesses
across niches, which span several orders of magnitude, fit-
ness values for each niche are normalized first logarithmi-
cally, then are divided by the best fitness values for each
niche (also normalized logarithmically) over all runs; i.e.
each niche is normalized by its capacity for fitness. Finally,
these normalized fitness values are then averaged over all of
the niches, yielding the average niche exploitation; this num-
ber indicates for a particular run the average percentage of
a niche’s capacity evolution was able to exploit.

The results are shown in figure 5. This figure illustrates
the trade-off between localized and globalized competition:
While global competition is better able to find the maximum
fitness, local competition is better able to exploit all of the
morphological niches.

6. TYPICAL RUN
Typical runs of novelty alone accumulate diverse mor-

phologies, but none are functional (figure 6a). In contrast,
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Figure 5: Niche Exploitation (larger is better). For each
setup, the average niche exploitation is shown (averaged over 15
runs). The main result is that novelty with local competition ex-
ploits niches significantly better on average than the other setups
(p < 0.001).

typical runs of fitness alone (figure 6b) and novelty with
global competition (figure 6c) generally converge to a sin-
gle body plan. However, global competition stretches that
body plan further through morphology space than fitness
alone because of novelty pressure. Finally, local competition
(figure 6d) typically finds diverse functional morphologies,
often maintaining worm-like, unipedal, and quadrupedal lo-
comotion throughout a run, all at once; such diversity would
otherwise require many independent runs [2, 9, 11, 15, 18].

Images of typical such creatures discovered within a single
run are shown in figure 7, and videos of typical ones discov-
ered within a single run are available at:
http://eplex.cs.ucf.edu/ns/vc.html

7. DISCUSSION
The results support the hypothesis in this paper that local

competition combined with novelty search can better main-
tain and exploit a diversity of individuals than can global
competition between all individuals combined with novelty,
albeit at a cost in absolute performance. This result is po-
tentially important given the ubiquity of global competition
objectives throughout EC.

While this paper combines drives towards novelty and
achievement, prior successes with searching for novelty alone
[14, 17] illustrate that such a combination is not always nec-
essary. The poor relative performance of searching for novel
morphologies alone in this paper is not surprising nor does
it contradict such prior successes. That is, of course mor-
phological novelty does not distinguish competent creatures
as another type of novelty might (e.g. behavioral novelty).
Rather, the idea in this paper is that sometimes it is most

natural to express and encourage the desired outcome of evo-
lution (e.g. a morphologically diverse collection of competent
creatures) as a combination of loosely connected drives.

In the context of artificial life, it is interesting to fur-
ther consider the relationship between local competition and
niches in nature. Morphologically localized competition is
an abstraction of interacting niches in nature. However, the
abstraction is inexact: In nature, niches are not aligned in
fixed-dimensional spaces, and interactions between niches,
although restricted, may not always be localized. For exam-
ple, a large predator may impinge on the fitness of small
prey, or a small parasite may make a larger animal ill.

That is, natural niches are not fundamentally functions of
morphology but of ways of life, which are defined implicitly
and tend to grow through a process of bootstrapping. One
way of life may provide the substrate for many others. For
example, the stomach of an animal may be a novel niche,
and the same animal’s waste products can found yet an-
other niche. An interesting future research direction is to
construct a similar system wherein niches and interactions
are implicitly defined and thereby lead to indefinite open-
ended discovery of new niches.

It is important to note that lack of exact fidelity to nature
does not imply that local competition may not often be a
useful tool in encouraging functional diversity whenever a
niche space can defined. In fact, this formulation may in
general be a good way of merging novelty search with the
drive to optimize an objective. It may be particularly im-
portant in the virtual worlds of artificial life wherein the
hope is to encourage an explosion of diverse and competent
(though not necessarily globally optimal) creatures.

The idea of local competition maintaining a diversity of
interesting functional individuals aligns well with the dy-
namics of natural evolution; additionally, the results pre-
sented here may provide anecdotal evidence of a problem
in how evolutionary algorithms are nearly always applied:
Evolution may ultimately prove better suited to progres-
sively uncovering a widening interconnected web of interest-
ing, complex artifacts than it is to the constrained pursuit
of a single optimal individual.

8. CONCLUSIONS
This paper proposed a new approach to evolving virtual

creatures that is independent of and potentially complemen-
tary to different ways of representing creatures. The experi-
ments demonstrated that evolutionary algorithms may often
create and maintain a wider diversity of functional organ-
isms through a process of local competition combined with
novelty search. The conclusion is that such local competi-
tion may be a viable way in general of combining pressure
to achieve with the drive to uncover and preserve novelty.
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