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ABSTRACT

This work provides a further study on the difference between
synchronous and asynchronous updates in Particle Swarm
Optimization with different neighborhood sizes ranging from
local best to global best. Ten well-known functions are used
as benchmarks on both variants. Statistical tests performed
on the results provide strong evidence to claim that syn-
chronous updates yield in general better results with similar
or even faster speed of convergence than its asynchronous
counterpart, contrary to observations and conclusions of pre-
vious studies based solely on descriptive statistics.
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1. INTRODUCTION
Ever since the first appearance of Particle Swarm Opti-

mization (PSO) [3, 6], several variants and modifications
have been proposed in order to improve quality of results,
speed of convergence, or even just to adapt it to a given
problem (see [4] for detailed examples).

Particles in the original PSO algorithm perform synchronous
updates, that is, the best particle in each neighborhood is
located and then used by the other particles to update their
positions. Conversely, there also exists a variant using asyn-
chronous updates, first mentioned in [2]. Each particle in
this variant updates its position knowing the current best
position found by half of its neighborhood and the previous
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best one found by the other half of it. These algorithms are
referred to as Synchronous PSO (SPSO) and Asynchronous
PSO (APSO), and can be regarded as situations of perfect
and imperfect information, respectively.

In terms of performance, previous works have suggested
that APSO generally yields better results than SPSO [2, 8,
9, 11, 12]. However, most of these works have based their
observations and conclusions on the best result obtained af-
ter several independent runs. Furthermore, if we perform
a Wilcoxon test on the results presented by Carlisle and
Dozier [2], we realize that the differences are not statisti-
cally significant. This scenario leads to question whether
APSO actually yields better results than SPSO, especially
since the article of Carlisle and Dozier [2] is the reference by
default when referring to comparisons between SPSO and
APSO (cited in [8, 9, 11, 12, 15], and according to Google
Scholar at the time of writing, cited by 300 articles from
which 60 include the word asynchronous).

At the moment of writing this article, we have no knowl-
edge of any previous works providing strong evidence that
APSO actually outperforms SPSO. Consequently and fac-
ing this scenario, we decided to perform further compar-
isons between both variants with different social structures
in ten well-known benchmark functions. Most importantly,
we support our observations using boxplots and our conclu-
sions using statistical tests on the quality of results and on
the speed of convergence in all independent runs.

The overall goal of this paper is to investigate whether
the claim on SPSO and APSO can still be supported by
statistical significance tests. Specifically, we will focus on
the following objectives:

1. Compare the performance of SPSO and APSO with
different social network structures in terms of quality
of results and speed of convergence on ten well-known
benchmark functions.

2. Perform a statistical significance test to measure the
importance of the differences in quality and in speed
of convergence between SPSO and APSO.

3. Assess the effect of different social network structures
on SPSO and APSO in terms of quality of results and
speed of convergence.

This article is structured as follows. In Section 2 we
present the theoretical background of SPSO and APSO, as
well as the most relevant works to our research. In Section 3
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we present the experimental design to achieve the goals pro-
posed and introduce the indicator to measure the speed of
convergence. In Section 4 we present and discuss the re-
sults obtained. In Section 5 we present our conclusions and
suggestions for further research.

2. PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization was invented by Eberhart

and Kennedy in 1995 [3, 6] with inspiration on social mod-
els (e.g. bird flocking, fish schooling) and swarming the-
ory. It is a population-based algorithm in which its indi-
viduals (known as particles) encode potential solutions to
n-dimensional optimization problems and explore the search
space through cooperation with other particles by commu-
nicating the best solutions found so far and moving stochas-
tically towards them.

More concretely, particles have a position vector x(t) that
encodes a potential solution to the problem, and a veloc-
ity vector v(t) that determines the change in the position
according to

x(t+ 1) = x(t) + v(t+ 1) (1)

It can be seen that the velocity vector balances the trade-
off between exploration and intensification of the search pro-
cess: high velocities imply large changes in the positions of
the particle and hence favoring exploration, whereas low ve-
locities imply small changes and hence providing intensifica-
tion. The velocity vector is computed for each dimension i
as follows

vi(t+ 1) = wvi(t) + c1r1(t)[yi(t)− xi(t)]

+ c2r2(t)[ŷi(t)− xi(t)]
(2)

where w is the inertia of the particle [13], c1 and c2 are
positive acceleration coefficients (a.k.a. cognitive and social
components) that weigh the importance of the personal and
neighborhood knowledge, r1(t) and r2(t) are random values
sampled from a uniform distribution, yi(t) is the best po-
sition found in dimension i (from t = [0, t]) by the particle
itself, and ŷi(t) is the best one found (from t = [0, t]) by its
neighborhood.

2.1 Social network structure
The social network structure of the swarm defines the

neighborhood of each particle and hence how they inter-
act with each other. Several social structures have been
proposed in the literature (see [4] for a survey review), but
we are only interested in the ring and star social network
structures.

The ring social structure defines the neighborhood of each
particle pi according to Equation 3,

Ni =
i+m

∪
j=i−m

pj with m =
⌊n

2

⌋

mod |S| (3)

where mod refers to the modulo operator using the Eu-
clidean definition (for a convenient handling of negative j-
values), n is the number of neighbors, and S refers to the
swarm. Notice that each particle belongs to its own neigh-
borhood and to those of the ⌊n

2
⌋ adjacent particles (neigh-

borhoods overlap). Also notice that we consider neighbor-
hoods to be symmetrical, that is, each particle has the same
number of neighbors on both sides.

A particular case of the ring social structure is when the
neighborhood of each particle is the whole swarm (n = |S|),
and then the social structure is known as star. The star so-
cial structure makes the whole swarm to be fully connected
and hence all particles stochastically follow one particle on
each iteration. PSO algorithms using the star social struc-
ture are often referred to as the gbest or Global Best PSO,
and when the ring social structure is used instead with
n = 2, the PSO algorithms are then referred to as lbest

or Local Best PSO [4].
The ring and star social structures are represented in

Figure 1, where particles (represented as circles) transmit
their position and fitness to their neighbors and receive their
respective information.

0 1

5 2

4 3

(a) n = 2

0 1

5 2

4 3

(b) n = |S|

Figure 1: Ring and Star social structures.

The size of the neighborhoods affects the speed of con-
vergence of the swarm. In large neighborhoods, the best
solution found in it is used by more particles to update their
positions and hence the change is greater than that in small
neighborhoods. Conversely, in small neighborhoods the best
solution does not propagate as fast, causing the magnitude
of change in position of the particles to be more subtle.

The size of the neighborhoods is inversely correlated to
the diversity of the swarm. Since the best solution is more
widely propagated in large neighborhoods, more particles
are going to be attracted to such a solution and hence the
diversity of the swarm decreases rapidly across iterations.
Contrarily, in small neighborhoods particles are attracted
towards different solutions (i.e. the best within each neigh-
borhood), and hence the swarm converges more slowly but
providing a greater diversity.

In summary, the implications of using small or large neigh-
borhoods come down to: a) small neighborhoods make the
swarm to be more resilient to stagnation in local optima, but
at the cost of a slow convergence, and b) large neighborhoods
make the swarm to converge faster, but also more prone to
stagnation in local optima. These implications make the
choice of neighborhood size to be problem-dependent: in
complex problems (i.e. multimodal functions) the swarm
may benefit from small neighborhood sizes, whereas in sim-
pler problems (i.e. unimodal functions) a large neighbor-
hood size might be preferred. Experiments increasing and
decreasing the neighborhood size have also been performed
in the past [14, 10].

2.2 Synchronous updates
In the original PSO algorithm, all particles have perfect

information about the neighborhood: the fitness of all par-
ticles is computed and shared within their respective neigh-
borhoods. Only then, particles update their velocities con-
sidering the current best position found so far by their neigh-
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bors. We refer to this algorithm as the Synchronous PSO
(SPSO), and it is summarized in Algorithm 1.

while not stopping condition do

foreach Particle p in Swarm do
p.evaluate();

end

foreach Particle p in Swarm do
p.update();

end

end

Algorithm 1: Synchronous PSO (SPSO).

It is important to remark that the action evaluate of each
particle computes the fitness of its current position and, if it
is better than the fitness of its best personal position, then
the particle updates it and sends a message to the neighbor-
hood communicating the discovery of such position and its
respective fitness. Otherwise, no message is sent since either
way all particles in the neighborhood will still use the best
position previously found in their respective neighborhood.
Regarding the action update, it performs the velocity and
the position updates of the particle according to Equations 2
and 1, respectively.

2.3 Asynchronous updates
In this variant of the PSO algorithm, particles update

their velocity immediately after computing their fitness and,
as a consequence, they update it having imperfect informa-
tion about the neighborhood. We refer to this algorithm
as the Asynchronous PSO (APSO), and it is summarized
in Algorithm 2.

while not stopping condition do

foreach Particle p in Swarm do
p.evaluate();
p.update();

end

end

Algorithm 2: Asynchronous PSO (APSO).

In this algorithm, a particle performs the action evaluate

and updates immediately after. At this point, the particle
uses the current best position found so far by the neighbors
previously evaluated but not knowing that of the neighbors
next to evaluate, instead, all they know about them is the
best position found until the previous iteration (hence the
term asynchronous). In other words, each particle knows the
best solution found by half of its neighbors in the current
iteration and the best solution found by the other half in the
previous iteration.

2.4 Related work
Carlisle and Dozier [2] observed that APSO generally finds

the best solution to the benchmark functions considered
(two unimodal and three multimodal) faster than SPSO re-
gardless of the neighborhood size, and they concluded that
APSO is generally less costly. Their observations and con-
clusions are based on the median number of iterations in 20

independent runs with an upper-limit of 100,000 iterations
each.1

Shortly after, Schutte [12] performed further comparisons
between SPSO and APSO with different variations: con-
stant inertia (CI), linear inertia with and without velocity
clamping (LIV, LI), constriction factor (C), and dynamic
inertia plus velocity clamping (DIV). His observations and
conclusions, which are based on the results obtained from
the best run over 50 independent runs, found that syn-
chronous updates are less costly and more reliable in 12
benchmark functions (unimodal and multimodal). It is there-
fore unclear why he claims that the results support the find-
ings in Carlisle and Dozier [2] since both sets of results are
contradictory in this aspect.2

Luo and Zhang [9] compared SPSO and APSO on the
Rosenbrock (unimodal) and Griewank (multimodal) bench-
mark functions. They observed and concluded from the best
result found (and its respective evolutionary curve) in 25 in-
dependent runs of 8000 iterations each that APSO yields
better results and with a faster convergence than SPSO. No
statistical test was performed on the results.

Perez and Basterrechea [11] compared SPSO and APSO
on five benchmark functions (Griewank, Rosenbrock, Sphere,
Rastrigin and Schaffer’s f6) and on an electromagnetic
problem entitled Antenna far-field pattern reconstruction.
They performed 20 independent runs with an upper-limit of
10000 iterations each on the benchmark functions, and dif-
ferent configurations on the electromagnetic problem. They
observed from their results on the benchmark functions that
APSO is able to find solutions faster and with a similar ac-
curacy as SPSO. They based such observations on the mean
number of iterations for each algorithm to find the optimal
solution and on the success rate. They finally conclude that
APSO offers the best trade-off between accuracy and com-
putational time.

These are the most relevant works to this research. All
of them have compared favorably APSO to SPSO using de-
scriptive statistics, but none of them has provided strong
evidence to support their observations and conclusions.

3. EXPERIMENTAL DESIGN

3.1 Benchmark functions
Ten well-known benchmark functions [4] (unimodal and

multimodal) are used for testing both variants in different
scenarios. All functions are minimization problems and are
detailed below:

1. The Quadric function (unimodal)

f1(x) =
∑n

i=1

(

∑i

j=1
xj

)2

where −100 ≤ xj ≤ 100.

1We performed a Wilcoxon test using paired samples on
their results and we could not find strong evidence at a sig-
nificance level α = 0.95 to support their conclusions and
observations (i.e. the differences are not statistically signif-
icant).
2We performed a Wilcoxon test with paired samples on their
results at a confidence level α = 0.95, and we found no
significant differences between APSO and SPSO in terms
of cost and reliability with most variations: CI, CIV, C (in
cost), and CIV, LI, LIV, C (in reliability). We only found
strong evidence of APSO being more reliable with CI and
DIV, and also more costly with LI, LIV, and DIV.
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2. The Quartic function (unimodal)
f2(x) =

∑n

i=1
ix4

i where −1.28 ≤ xi ≤ 1.28.

3. The Rosenbrock function (unimodal)

f3(x) =
∑n−1

i=1
100

(

x2
i − xi+1

)2
+ (xi − 1)2

where −2.048 ≤ xi ≤ 2.048.

4. The Spherical function (unimodal)
f4(x) =

∑n

i=1
x2
i where −5.12 ≤ xi ≤ 5.12.

5. The HyperEllipsoid function (unimodal)
f5(x) =

∑n

i=1
ix2

i where −5.12 ≤ xi ≤ 5.12.

6. The Ackley function (multimodal)

f6(x) = 20 + e− 20 exp
[

−0.2
√

1

n

∑n

i=1
x2
i

]

− exp
[

1

n

∑n

i=1
cos (2πxi)

]

where −32.768 ≤ xi ≤ 32.768.

7. The Griewank function (multimodal)

f7(x) = 1 + 1

4000

∑n

i=1
x2
i −

∏n

i=1
cos

(

xi√
i

)

where −600 ≤ xi ≤ 600.

8. The Rastrigin function (multimodal)
f8(x) = 10n+

∑n

i=1
x2
i − 10 cos (2πxi)

where −5.12 ≤ xi ≤ 5.12.

9. The Salomon function (multimodal)

f9(x) = 1− cos
(

2π
√

∑n

i=1
x2
i

)

+ 0.1
√

∑n

i=1
x2
i

where −600 ≤ xi ≤ 600.

10. The EggHolder function (multimodal)

f10(x) =
∑n−1

i=1
− (xi+1 + 47) sin

(√

∣

∣xi+1 +
xi

2
+ 47

∣

∣

)

−xi sin
(

√

|xi − (xi+1 + 47)|
)

where −512 ≤ xi ≤ 512.

Figure 2 shows the complexity of these functions in two
dimensions. These functions are plotted using the range
previously defined in each for coordinates x and y of the
image, and the result of f(x, y) is represented in grayscale
where darker tones mean lower values and lighter tones mean
higher values. The coordinate (0, 0) is located in the middle
of the image, and it represents the global minima in all func-
tions except for EggHolder which global minimum is located
approximately at f(512, 404) = −959.57 (near the upper-
right corner). Notice that Ackley, Griewank and Salomon

look unimodal in the figure due to the resolution of the im-
age, but in proper resolution the multimodality caused by
the cosine functions can be noticed.

3.2 Experimental setup
In both PSO variants we consider the ring social structure

with different neighborhoods ranging from n = 2 to n = 30.
The swarms in all configurations have 30 particles with 30
dimensions each, and the initial position of the particles is
randomly chosen from a uniform distribution. The velocity
of the particles is constrained using the hyperbolic tangent
function [4]. The values regarding acceleration coefficients
and inertia are chosen according to the guidelines in [16].
Table 1 summarizes the parameters used in all independent
runs.

We designed the experimental study based on two perfor-
mance metrics: quality of results and speed of convergence.

Unimodal functions

(a) Quad (b) Quar (c) Rose (d) Sphe (e) Hype

Multimodal functions

(f) Ackl (g) Grie (h) Rast (i) Salo (j) EggH

Figure 2: Benchmark functions in two dimensions.

Table 1: Algorithm parameters.

Parameter Value

Iterations 300
Independent runs 50

Number of particles 30
Number of dimensions 30

Social structure Ring with n = {2, 6, 14, 22, 30}
Acceleration Static with c1 = c2 = 1.49618

Inertia Static with w = 0.729844
Velocity clamping hyperbolic tangent
Maximum velocity 0.25 · |xmax − xmin|

3.2.1 Quality of results

In order to assess the quality of results each variant is
capable of delivering, we record the best result (i.e. best fit-
ness) obtained in each independent run on each benchmark
function. Then, we use boxplots to display the distribution
of the recorded results and observe which configuration is
more likely to yield better results. Finally, we perform a
statistical test on the results between the variants to deter-
mine the significance of the differences.

3.2.2 Speed of convergence

The speed of convergence between two evolutionary curves
can be easily assessed when one curve strictly dominates
the other, however, this is not always the case since these
curves can intersect each other in different iterations and
even converge to different values, thus, there can be many
criteria to measure the speed of convergence.

In this paper we introduce the Area Under the Curve
(AUC) as an indicator of speed of convergence. This in-
dicator considers the descent of the evolutionary curve and
the final result as equally important factors. Thus, in mini-
mization problems, the smaller the AUC the faster the con-
vergence. Notice that the AUC indicator is equivalent to the
hypervolume indicator [1] in two dimensions and, as such,
it is important to choose an adequate point of reference in
order to avoid unexpected values as was shown in [7] when
arbitrary points were chosen.

Now, to measure the speed of convergence in each vari-
ant, we record the evolutionary curve depicted by the best
particle over the iterations during each run. Thus, we have
50 evolutionary curves for each algorithm on each bench-
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mark function. Then, we proceed to compute the AUC on
all evolutionary curves using (0, 0) as the point of reference
and, in order to increase the accuracy of the indicator, for
each benchmark function we translate all the evolutionary
curves by subtracting the minimum fitness found with any
algorithm. This way we minimize the AUC of all evolu-
tionary curves but we preserve the relation between them.
Afterwards, we display in boxplots the distribution of the
indicator to observe which configuration is more likely to
deliver a faster speed of convergence. Finally, we perform a
statistical test on the results to determine the significance
of the differences.

3.2.3 Statistical test

The statistical test we use to measure the significance of
the differences between both variants on the quality of re-
sults and on the speed of convergence is the Wilcoxon test.
The reasons for such choice are that 1) it does not assume
the normality of the samples, and 2) it has already demon-
strated to be helpful analyzing the behavior of evolutionary
algorithms [5].

On the quality of results, we perform the Wilcoxon test
between variants in each configuration. That is, we use the
50 results of one SPSO configuration and the 50 results of
the APSO respective configuration. A similar approach is
used regarding the speed of convergence.

Finally, the significance level we use is α = 0.95.

4. RESULTS AND DISCUSSION

4.1 Quality of results

4.1.1 Observations

The quality of results of both variants is shown as boxplots
in Figure 3. Each boxplot represents the distribution of the
50 results (best result in each independent run) obtained
by each algorithm. Notice that by best result we mean the
fitness of the best particle, i.e. the minimum function value
obtained by the swarm.

Notice that the variants are denoted by letters from a
to e according to the neighborhood size (na = 2, nb = 6,
nc = 14, nd = 22, ne = 30) and when the letter is starred
(∗) it refers to the APSO variant. These boxplots do not
include the outliers to allow a better visualization, and also
the results from boxplots with gray background were scaled
down to better visualize the other boxplots. The following
scale factors were applied to both variants: ȧ = 1

500
and

ḃ = 1

20
in Quartic, ȧ = 1

20
and ḃ = 1

5
in Spherical, and

ȧ = 1

10
in HyperEllipsoid.

Figure 3 shows that the SPSO yields better results than
the APSO in most of the functions, being the differences
more marked in unimodal than in multimodal functions.

In unimodal functions we observe that results improve as
larger neighborhoods are considered. This behavior is ex-
pected because unimodal functions have no local minima
but just one global minimum. Hence, once a particle com-
pares to any other particle with better or worse fitness, the
sign of the difference between their positions will determine
the direction towards the global minimum, and from then on
the particle will start to continuously increase the velocity to
achieve it. Now, what makes larger neighborhoods yield bet-
ter results in these functions is that particles have a better

chance of finding a better neighbor in larger neighborhoods,
and hence their velocity will be higher. This behavior is
problem-dependent in multimodal problems given the risk
of stagnation in local minima.

In multimodal problems, particularly in Ackley, Rastri-
gin and EggHolder, we observe that results do not improve
much by increasing the neighborhood size, in fact, results are
sometimes worse. This behavior is expected given the com-
plexity of such functions (see Figure 2) and especially consid-
ering that larger neighborhoods are more prone to stagnate
in local minima. The other functions do not present such
complexity and the behavior of both variants is similar as
that in unimodal problems.

4.1.2 Significance of the results

Tables 2 and 3 show the significance of the difference be-
tween the best results obtained with both variants in the
unimodal and multimodal functions. The symbol = indi-
cates that the results obtained are not significantly different,
whereas symbols + and − indicate that results are signifi-
cantly greater or less, respectively. Notice that since the
functions are to be minimized, the symbol − indicates bet-
ter results.

Table 2 shows that SPSO achieved significantly better re-
sults than APSO in most unimodal functions: in Quartic

and Spherical regardless of the neighborhood size, in Hy-

perEllipsoid for all neighborhood sizes except for n = 30,
and in Rosenbrock except for n = {22, 30}. The differences
were not statistically significant in Quadric for all neighbor-
hood sizes.

In Table 3 we are particularly interested in the significance
of the differences in multimodal problems where the boxplots
in Figure 3 suggest that the results from APSO are better
than the those from SPSO: when n = {22, 30} in Ackley,
when n = {14, 22, 30} in Rastrigin, and when n = {14}
in EggHolder. In these cases, Table 3 shows that APSO
is significantly better only when n = 30 in Rastrigin and
when n = 14 in EggHolder, otherwise the differences are not
statistically significant. However, notice that Rastrigin and
EggHolder have a more complex search space than the other
functions (see Figure 2).

Now, in general, the differences are either favorable to
SPSO (Griewank regardless of the neighborhood size, Sa-
lomon when n = {6, 14, 22}, and Ackley when n = 2) or
just not statistically significant.

4.1.3 Average results

We decided to include the average of the best results of
each algorithm on each benchmark function to show how
counterintuitive the results from this statistic might be, and
how its sensitivity to outliers may lead to incorrect assump-
tions about the general behavior of the algorithm. Consider
the following cases in Tables 4 and 5 where APSO is bet-
ter than SPSO but their respective differences (in Tables 2
and 3) are not statistically significant

• In Quadric: {ā/ā∗, b̄/b̄∗, ē/ē∗}

• In HyperEllipsoid: {ē/ē∗}

• In Ackley: {c̄/c̄∗, d̄/d̄∗, ē/ē∗}

• In Rastrigin: {ā/ā∗, b̄/b̄∗, d̄/d̄∗}

• In EggHolder: {ā/ā∗, b̄/b̄∗, d̄/d̄∗, ē/ē∗}

Now, consider the case of c̄/c̄∗ in EggHolder (Table 3)
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Quadric

a a* b b* c c* d d* e e*

Ackley

a a* b b* c c* d d* e e*

Quartic

a a* b b* c c* d d* e e*

Griewank

a a* b b* c c* d d* e e*

Rosenbrock

a a* b b* c c* d d* e e*

Rastrigin

a a* b b* c c* d d* e e*

Spherical

a a* b b* c c* d d* e e*

Salomon

a a* b b* c c* d d* e e*

HyperEllipsoid

a a* b b* c c* d d* e e*

EggHolder

a a* b b* c c* d d* e e*

Unimodal functions Multimodal functions

Figure 3: Quality of results in benchmark functions.

where APSO is significantly better than SPSO. If we exam-
ine the average result in Table 5 we see that the average
result from APSO is worse than that of SPSO.

Other examples include the cases where the average result
of SPSO is slightly better (e.g. Rosenbrock or HyperEllip-
soid, and most multimodal functions) and the significance
test shows that such difference in results is actually statis-
tically significant in most cases favoring SPSO. All these
comparisons show how disrupting the effect of outliers may
be when using the mean as a statistic indicator on results
from evolutionary algorithms such as PSO, leading to po-

Table 2: Significance on unimodal functions.

Quad Quar Rose Sphe Hype n
a/a∗ =/= −/+ −/+ −/+ −/+ 2

b/b∗ =/= −/+ −/+ −/+ −/+ 6

c/c∗ =/= −/+ −/+ −/+ −/+ 14

d/d∗ =/= −/+ =/= −/+ −/+ 22

e/e∗ =/= −/+ =/= −/+ =/= 30

Table 3: Significance on multimodal functions.

Ackl Grie Rast Salo EggH n
a/a∗ −/+ −/+ =/= =/= =/= 2

b/b∗ =/= −/+ =/= −/+ =/= 6

c/c∗ =/= −/+ =/= −/+ +/− 14

d/d∗ =/= −/+ =/= −/+ =/= 22

e/e∗ =/= −/+ +/− =/= =/= 30

Table 4: Averaged best results on unimodal functions.

Quad Quar Rose Sphe Hype

ā/ā∗ 2.57/2.53 2.85/5.86 2.75/2.82 5.04/7.58 0.14/0.18
b̄/b̄∗ 1.39/1.37 0.97/3.07 2.70/2.74 1.39/2.44 0.08/0.15
c̄/c̄∗ 1.02/1.09 1.71/4.97 2.72/2.74 1.22/2.49 0.02/0.03
d̄/d̄∗ 0.94/1.14 0.60/1.98 2.68/2.83 0.76/1.88 0.01/0.02
ē/ē∗ 1.42/1.32 0.51/1.77 2.87/3.01 0.58/0.89 5.26/0.01

×103 ×10−8 ×10−1 ×10−4 ×10−1

Table 5: Averaged best results on multimodal functions.

Ackl Grie Rast Salo EggH

ā/ā∗ 1.77/2.01 1.02/1.05 6.43/6.42 3.91/4.08 1.19/1.18
b̄/b̄∗ 0.45/0.47 0.36/0.52 4.80/4.63 1.89/2.03 1.27/1.25
c̄/c̄∗ 0.65/0.58 0.10/0.16 4.91/4.99 1.39/1.51 1.21/1.29
d̄/d̄∗ 0.96/0.75 0.06/0.10 5.48/5.13 1.30/1.45 1.27/1.23
ē/ē∗ 1.56/1.40 0.06/0.09 6.95/5.71 1.44/1.50 1.22/1.20

×1 ×1 ×10
−1 ×1 ×−10

4

tentially false assumptions about the general behavior of the
algorithm.

4.1.4 Key findings

We have provided strong evidence to show that SPSO gen-
erally yields better results than APSO in unimodal func-
tions. Regarding the multimodal functions, SPSO yields
similar or even better results than APSO. In both cases,
our key findings contradict the observations and conclusions
from previous works [2, 8, 9, 11, 12, 15].

4.2 Speed of convergence

4.2.1 Observations

The results of the AUC indicator for all evolutionary curves
are shown as boxplots in Figure 4. Similar to the quality of
results, each boxplot represents the distribution of the AUC
indicator on the evolutionary curves depicted by the best
particle in all 50 independent runs.

Notice that the median and quartiles in the boxplots re-
garding SPSO tend to be lower than their respective APSO,
showing a similar behavior as the boxplots on the best re-
sults in Figure 3 but with less marked differences. These
boxplots suggests that SPSO has a faster speed of conver-
gence according to the AUC indicator.
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The differences in speed of convergence are more marked
for neighborhoods with n = {2, 6}, but they become less
clear as the neighborhood size increases. In fact, it seems
that for n = {22, 30} the speed of convergence is not as fast
since the respective boxplots show the median slightly above
the median of neighborhoods with n = 14. This might be
due to the fact that particles in larger neighborhoods tend
to achieve a higher velocity which allows them to have a fast
descent, but it also causes a slower convergence due to their
accumulated velocity.

4.2.2 Significance of the results

Results from the Wilcoxon test on the AUC indicators
are shown in Tables 6 and 7. The parentheses in some of
these results mean that the significance regarding the speed
of convergence between both variants is different to the sig-
nificance in quality of results between the same variants in
Tables 2 and 3, respectively.

In unimodal functions we find that SPSO is significantly
better in Quartic and Rosenbrock for neighborhood sizes
n = {2, 6, 14}, in Spherical for n = {2, 6, 14, 22}, and in
HyperEllipsoid for n = {2, 6}. The speed of convergence
was not significantly different for the rest of neighborhood
sizes, especially in Quadric where both variants had a similar
speed of convergence for all neighborhood sizes.

In multimodal functions SPSO was significantly better in
Ackley for n = {2, 6, 14}, in Griewank for n = {2, 6}, in
Salomon for n = {2, 6, 14, 22}, and in EggHolder for n =
{6, 22}. There were no significant differences regarding the
rest of the neighborhood sizes and functions except for two
cases where APSO was significantly better: in Rastrigin

for n = 30 and in EggHolder for n = 14.
Notice that the significance of the difference between SPSO

and APSO regarding the speed of convergence coincides, in
most cases, with the significance of the quality of results
(there are few results in parentheses). This is also true when
APSO outperforms SPSO: in Rastrigin when n = 30, and
in EggHolder when n = 14.

Table 6: Significance of AUC on unimodal functions.

Quad Quar Rose Sphe Hype n

a/a∗ =/= −/+ −/+ −/+ −/+ 2

b/b∗ =/= −/+ −/+ −/+ −/+ 6

c/c∗ =/= −/+ −/+ −/+ (=/=) 14

d/d∗ =/= (=/=) =/= −/+ (=/=) 22

e/e∗ =/= (=/=) =/= (=/=) =/= 30

Table 7: Significance of AUC on multimodal functions.

Ackl Grie Rast Salo EggH n

a/a∗ −/+ −/+ =/= (−/+) =/= 2

b/b∗ (−/+) −/+ =/= −/+ (−/+) 6

c/c∗ (−/+) (=/=) =/= −/+ +/− 14

d/d∗ =/= (=/=) =/= −/+ (−/+) 22

e/e∗ =/= (=/=) +/− =/= =/= 30

4.2.3 Key findings

From our results we conclude that SPSO generally has a
similar or even faster speed of convergence than APSO, and
not the other way around as observed in previous works [2,
9, 11, 15].

Quadric

a a* b b* c c* d d* e e*

Ackley

a a* b b* c c* d d* e e*

Quartic

a a* b b* c c* d d* e e*

Griewank

a a* b b* c c* d d* e e*

Rosenbrock

a a* b b* c c* d d* e e*

Rastrigin

a a* b b* c c* d d* e e*

Spherical

a a* b b* c c* d d* e e*

Salomon

a a* b b* c c* d d* e e*

HyperEllipsoid

a a* b b* c c* d d* e e*

EggHolder

a a* b b* c c* d d* e e*

Unimodal functions Multimodal functions

Figure 4: Speed of convergence.

5. CONCLUSIONS AND FUTUREWORK
In this paper, we have compared SPSO and APSO with

different social network structures in ten well-known bench-
mark functions. The results we obtained suggest that SPSO
is actually better than APSO, contrary to what previous
studies have claimed. We performed a statistical test on
these results to assess the significance of the differences, and
obtained strong evidence to support our observations: SPSO
generally yields better results than APSO. We also showed
how using the mean as a statistic to analyze these results
might lead to incorrect assumptions about the general be-
havior of the PSO algorithms.
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We have also introduced the Area Under the Curve (AUC)
as an indicator to measure the speed of convergence. This
indicator equally weighs the importance of the descent in
the evolutionary curve and the quality of the result to which
it converges. Using the evolutionary curves depicted by the
best results obtained, we computed their AUC and observed
that the speed of convergence is faster in general for SPSO.
We proceeded to perform a statistical test on these results
to assess the significance of the difference in speed of con-
vergence between SPSO and APSO. The results from this
test provided strong evidence in several cases that SPSO has
a faster speed of converge than APSO, but in several other
cases the results were not conclusive and suggested that both
variants had a similar speed of convergence. Therefore, from
a broad point of view, we conclude that SPSO generally has
a similar or even faster speed of convergence than APSO.

Regarding the social network structures considered, the
results depicted in general the expected behavior when in-
creasing the neighborhood size: faster speeds of convergence
and better results in unimodal problems, and faster speeds
of convergence but not necessarily better results in multi-
modal problems. Nevertheless, the most important result in
this matter is the significant difference in quality of results
and respective speed of convergence when using neighbor-
hoods of n = 2 and n = 6. SPSO and APSO using the ring
social structure with n = 6 yielded better results than when
n = 2 in both unimodal and multimodal functions.

Finally, this work highlights the importance of analyzing
results and drawing conclusions considering all the results
obtained in all independent runs instead of just using the
best one found, since it might just be circumstantial and
not the product of the general behavior of the algorithm.
Furthermore, it also demonstrates the importance of using
statistical tests on the results to better support observations
and conclusions about the general behavior and performance
of the algorithms in question.

In the future, this work could be extended by

• Comparing both variants on other benchmark func-
tions as well as on those already tackled but analyzed
without robust statistics or statistical significance tests.

• Comparing both variants on functions with a similar or
greater complexity as Rastrigin or EggHolder where
APSOmanaged to significantly outperform SPSO with
two configurations (n = 30 and n = 14, respectively)
and achieve similar results with the rest.

• Analyzing the behavior of both algorithms when using
different numbers of particles.

• Using different indicators to assess speed of conver-
gence.

• Finding an ideal neighborhood size in which improve-
ments on results are still significant with respect to
a smaller neighborhood in both unimodal and mul-
timodal functions and without risking stagnation in
local minima.
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