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ABSTRACT

This paper introduces an easy to use technique for deriv-
ing upper bounds on the expected runtime of non-elitist
population-based evolutionary algorithms (EAs). Applica-
tions of the technique show how the efficiency of EAs is criti-
cally dependant on having a sufficiently strong selective pres-
sure. Parameter settings that ensure sufficient selective pres-
sure on commonly considered benchmark functions are de-
rived for the most popular selection mechanisms. Together
with a recent technique for deriving lower bounds, this pa-
per contributes to a much-needed analytical tool-box for the
analysis of evolutionary algorithms with populations.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms

Theory, Algorithms

Keywords

Runtime Analysis, Evolutionary Algorithms

1. INTRODUCTION
Despite the often very complex behaviour of evolution-

ary algorithms (EAs), there have been significant advances
in the theoretical understanding of these algorithms in the
past decade. In particular, there is now a large number of
rigorously proved results on the time-complexity of EAs [13].
One contributing factor behind this success may have been
the clear strategy to initiate the analysis on the simplest
settings before proceeding to more complex scenarios, while
at the same developing appropriate analytical techniques.
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One of the simplifying assumptions made was to disregard
the population, and focus on variants of the simple (1+1)
EA which only keep one individual after each generation [3].
Runtime results quickly emerged, first for simple example
problems that exhibited some fundamental structure, and
later to more complex problems, including classical combina-
torial optimisation problems. Progress was also made along
another direction, to understand a wider range of search
heuristics, including ant colony optimisation, particle swarm
optimisation, and memetic algorithms. The progress was
made possible by the development (and discovery) of appro-
priate analytical techniques tailored to runtime analysis of
EAs. One of the first general techniques that was developed
is artificial fitness levels [15].

When applicable, artificial fitness levels is one of the con-
ceptually simplest ways of deriving upper bounds on the ex-
pected runtime of elitist EAs. (An EA is called elitist when
at least one of the best individuals in the current popula-
tion is copied unchanged to the next population.) The idea
is to partition the search space X into so-called fitness levels
A1, . . . , Am ⊆ X , such that for all i ∈ [m], all the search
points in fitness level Ai have inferior function value to the
search points in fitness level Ai+1. Due to the elitism, the
EA will never loose the highest fitness level found so far.
If the probability of mutating any search point in fitness
level Aj into one of the higher fitness levels is at least sj ,
then the expected time until this occurs is at most 1/sj . The
expected time to overcome all the inferior levels, i. e., the ex-
pected runtime, is by linearity of expectation no more than
∑m−1

j=1 1/sj . This simple technique can sometimes provide
tight upper bounds. Sudholt recently provided an alter-
native fitness-level argument for deriving lower bounds [14].
The key idea behind the technique is a condition which when
satisfied ensures that the EA will not skip too many fitness
levels when optimising the function. The technique is appli-
cable to a wide range of EAs, and provides remarkably tight
bounds in several cases.

Some techniques have emerged for analysing EAs with
populations. Witt introduced a family tree technique for the
(µ+1) EA and other EAs [16]. Chen et al. introduced a tech-
nique for deriving upper bounds on the expected runtime of
elitist EAs which is similar in flavour to the fitness-level
arguments [1]. Lässig and Sudholt used a fitness-level tech-
nique for parallel EAs [9]. Neumann et al. [12] adapted drift
analysis to fitness-proportionate selection. The approach in-
volves finding a way to represent the state of the entire pop-
ulation by a single real value. Based on work in [11], Lehre
recently introduced an alternative drift theorem specifically
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for population-based EAs, which decouples the effects of the
selection mechanism from the effects of the variation opera-
tor [10].

Our contribution is a fitness-level technique for obtain-
ing upper bounds on non-elitist population-based EAs, thus
complementing the result in [10]. The paper is organised as
follows. Section 2 specifies the class of algorithms that are
considered. Section 3 states the main theorem, i. e., the new
fitness-level technique. Section 4 analyses the cumulative
selection probability and reproduction rate in the most pop-
ular selection mechanisms. The results from this analysis are
used to verify Condition 3 in the main theorem. Section 5
illustrates how to apply the fitness-level technique to obtain
upper bounds on a range of pseudo-Boolean functions. Sec-
tion 6 complements the previous section by providing lower
bounds obtained by means of the techniques in [10]. Sec-
tion 7 concludes the paper.

2. PRELIMINARIES
The j-th element of a vector P is denoted by P (j). For any

positive integer n, define n := {1, 2, . . . , n}. For any predi-
cate A, the expression [A] takes the value 1 if A is true, and
0 otherwise. The Hamming-distance is denoted by H(·, ·).
Standard notation for asymptotic growth of functions is used
(see, e.g., [2]). The natural logarithm is denoted by ln(·),
and the logarithm to the base 2 is denoted by log(·). For a
bitstring x of length n, define |x|1 :=

∑n

i=1 xi.
The main theorem is a statement about the runtime of

the search heuristics covered by the algorithmic scheme in
Algorithm 1. The algorithmic scheme defines a class of algo-
rithms which can be instantiated by specifying the variation
operator pmut, and the selection mechanism psel. The neu-
tral term population selection-variation algorithm is used
to emphasise that the algorithmic scheme not only encom-
passes evolutionary algorithms, but also other population-
based search heuristics.

1 Population Selection-Variation Algorithm

Require: Finite state space X ,
transition matrix pmut over X ,
and initial population P0 ∼ Unif(Xλ).

1: for t = 0, 1, 2, . . . until termination condition met do
2: for i = 1 to λ do
3: Sample It(i) ∈ [λ] according to psel(Pt).
4: x := Pt(It(i)).
5: Sample x′ according to pmut(x).
6: Pt+1(i) := x′.
7: end for
8: end for

Algorithm 1 is identical to the algorithmic scheme intro-
duced in [10], except for one assumption about psel that
will be described below. The algorithm keeps a vector Pt ∈
X λ, t ≥ 0, of λ search points. In analogy with evolutionary
algorithms, the vector will be referred to as a population,
and the vector elements as individuals. Each iteration of
the inner loop is called a selection variation-step. Then, λ
iterations of the inner loop, i. e., one iteration of the outer
loop, is called a generation. The initial population is sam-
pled uniformly at random. In subsequent generations, a
new population Pt+1 is generated by independently sam-
pling λ individuals from the existing population Pt accord-

ing to psel, and perturbing each of the sampled individuals
by a variation operator pmut. Note that the generations are
non-overlapping, so the algorithm is non-elitist.

Variation operators are formally represented as transition
matrices pmut : X ×X → [0, 1] over the search space, where
pmut(x | y) represents the probability of perturbing an indi-
vidual y into an individual x. Hence, the algorithmic scheme
is restricted to unary variation operators, i. e., those where
each individual has only one parent. Higher-arity variation
operators (e.g., crossover operators) are not covered.

Selection operators are represented as probability distri-
butions over the set of integers [λ], where the conditional
probability psel(i | Pt) represents the probability of select-
ing individual Pt(i), i. e., the i-th individual from population
Pt. For notational convenience, the probability of selecting
an individual x ∈ Pt will also be denoted by psel(x | Pt).
Each individual within a generation is sampled indepen-
dently from the same distribution psel. Note that this as-
sumption is not made in [10]. The fitness function f : X → R

is considered implicitly given by the selection mechanism.
Without loss of generality, we assume maximisation. The or-
dering of the elements in a population vector P ∈ X λ accord-
ing to decreasing f -value will be denoted x(1), x(2), . . . , x(λ),
i. e., such that f(x(1)) ≥ f(x(2)) ≥ · · · ≥ f(x(λ)). For any
constant γ ∈ (0, 1), the individual x(⌈γλ⌉) will be referred to
as the γ-ranked individual of the population.

Definition 1. A selection mechanism psel is f -monotone
if for all P ∈ X λ and pairs i, j ∈ [λ] it holds

psel(i | P ) ≥ psel(j | P ) ⇐⇒ f(P (i)) ≥ f(P (j)).

Informally, the selective pressure of a selection mechanism
refers to the degree to which the selection mechanism selects
individuals that have higher f -values, and will be quantified
in two different ways. The fitness-level technique (Theo-
rem 4) for proving upper bounds uses the cumulative selec-
tion probability, whereas the negative drift theorem (Theo-
rem 12) for proving lower bounds uses the reproductive rate.

Definition 2. The cumulative selection probability β as-
sociated with selection mechanism psel is defined for all γ ∈
(0, 1] and P ∈ X λ by

β(γ, P ) :=
∑

y∈P

psel(y | P ) ·
[

f(y) ≥ f(x(γλ))
]

Informally, β(γ, P ) is the probability of selecting an indi-
vidual with fitness at least as high as that of the γ-ranked
individual. In the cases where β is independent of the pop-
ulation vector P , we will write β(γ) instead of β(γ, P ).

Definition 3. The reproductive rate of Algorithm 1 is

α0 := inf
t≥0

max
1≤i≤λ

E [Rt(i)] ,

where Rt(i) :=
∑λ

j=1[It(j) = i].

Informally, the reproductive rate is the expected number
of times the individual with highest selection probability is
selected per generation. The reproductive rate is always de-
fined, and in the interval [1, λ]. The reproductive rate α0

sets a limit on the expected number of offspring per indi-
vidual in the population. A reproductive rate close to 1
indicates a low selective pressure.
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3. MAIN RESULT
Recall the definition of an f -based partition [15]: A parti-

tion of a finite set X is a collection of subsets A1, . . . , Am+1

such that Ai∩Aj = ∅ for all i 6= j, and A1∪· · ·∪Am+1 = X .
A partition is called f-based if for all pairs x ∈ Ai and
y ∈ Aj , it holds that f(x) ≤ f(y) if and only if i ≤ j, and
Am+1 contains only optimal search points. For notational
convenience, define for j ∈ [m], the set A+

j :=
⋃m+1

i=j+1 Ai,
i. e., the set of search points at higher fitness levels than Aj .

Theorem 4. Given a function f : X → R, and an f-
based partition (A1, . . . , Am+1), let T be the number of func-
tion evaluations until Algorithm 1 with an f-monotone se-
lection mechanism psel obtains an element in Am+1 for the
first time. If there exists p0, s1, . . . , sm, s∗ ∈ (0, 1], and con-
stants γ0, ε ∈ (0, 1), and δ > 0, such that for all P ∈ X λ,
for all γ ∈ (0, γ0), and for all j ∈ [m], it holds

(C1) pmut

(

y ∈ A+
j | x ∈ Aj

)

≥ sj ≥ s∗

(C2) pmut

(

y ∈ Aj ∪A
+
j | x ∈ Aj

)

≥ p0

(C3)
β(γ, P )

γ
≥

(1 + δ)

p0

(C4) λ ≥
2(1 + δ)

εδ2
· ln

(

m

s∗

)

Then E [T ] ≤ c(mλ2 +
∑m

j=1 s
−1
j ) for some constant c > 0.

Before proving the theorem, we informally describe the
conditions of the theorem. Similarly to the classical fitness-
level argument, the theorem assumes that an f -based par-
tition is provided. Four conditions must be satisfied for the
theorem to hold:

The first condition requires that for each fitness level j,
there is a lower limit sj on the “upgrade probability” from
level j, i. e., the probability of mutating an individual x in
fitness level j into an individual y that belongs to a higher
fitness level. This condition is the same as for the classical
fitness level argument discussed in the introduction.

The second condition requires that there exists a lower
limit p0 on the probability that the individual will not“down-
grade” to a lower fitness level. In the classical setting of
bitwise mutation with mutation rate 1/n, it suffices to use
any parameter p0 ≤ (1/e)(1 − 1/n), which is less than the
probability of not mutating any bits.

The third condition requires that the selective pressure
induced by the selection mechanism is sufficiently strong.
The selective pressure is quantified via the cumulative se-
lection probability β (see Definition 2). The required level
of selective pressure depends on parameter p0 in the second
condition.

The fourth condition requires that the population size λ is
sufficiently large. The required population size depends on
the number of fitness levels m and the upgrade probabilities
sj , which are problem-dependant parameters. However, a
population size of λ = Θ(logn), where n is the problem
dimension, will suffice for many pseudo-Boolean functions.

If the four conditions can be satisfied, then an upper
bound on the expected runtime of the algorithm can be
guaranteed. The upper bound depends on the number of
fitness levels m, on the population size λ, and on the up-
grade probabilities sj , for j ∈ [m].

Proof of Theorem 4. We bound the expected runtime
by estimating the expected number of generations until the

γ-ranked individual reaches the optimal fitness level Am+1.
Let τ denote the number of generations until this occurs.
Let E be the event that if the γ-ranked individual in the
current generation belongs to fitness level Aj , j ∈ [m], then
the γ-ranked individual in the next generation belongs to
Aj ∪ A

+
j .

We divide the run of the algorithm into phases, each phase
lasting for 2tE generations, where tE := E [τ | E ], i. e., tE
is the expected runtime in generations given that event E
always holds. Assuming that event E always holds, the γ-
ranked individual reaches the optimal fitness level within one
phase with probability at least 1/2 by Markov’s inequality.
A phase is considered successful if event E holds during the
phase, and the γ-ranked individual has reached the optimal
fitness level before the end of the phase. A phase is there-
fore successful with probability at least pE/2, where pE is
the probability that event E holds during the phase. The
expected number of phases before a successful phase is no
more than 2/pε. It follows that the expected, unconditional
runtime is E [T ] ≤ 4λtE/pE . In the remaining of the proof,
we estimate tE , and show that pE is bounded from below by
a positive constant.

We begin by finding an upper bound for tE . For all j ∈
[m], define the random variable τj to be the number of gener-
ations, starting with the γ-ranked individual in fitness level
Aj , until the γ-ranked individual reaches a strictly better
fitness level Ak for k > j. Linearity of expectation gives
tE = E [τ | E ] ≤

∑m

j=1 E [τj | E ], so we can focus on bound-
ing the conditional expectation of τj for any j. Assume that
the γ-ranked individual belongs to fitness level Aj in gener-
ation t. We call an individual advanced if it belongs to A+

j ,
i. e. any of the strictly better fitness level than the γ-ranked
individual. For all t ≥ 0, let random variable Xt be defined
as the number of advanced individuals in generation t.

We now make some observations about the random vari-
able Xt+1. We can consider each selection and mutation
step in a generation as an independent trial, where a trial is
successful if the outcome of the selection and mutation step
is an advanced individual. Random variable Xt+1 is there-
fore binomially distributed, corresponding to the number of
successes in λ trials. Assuming that the previous generation
contained at least one advanced individual, the expectation
of Xt+1 can be bounded using Condition 3 by

µt+1 := E [Xt+1 | 1 ≤ Xt < ⌈γλ⌉] (1)

≥ λ · β(Xt/λ) · p0 ≥ Xt · (1 + δ). (2)

The probability of a successful trial can be significantly
different in the case when Xt = 0, i. e., when there are no
advanced individuals. Define qj as the probability that the
next generation contains at least one advanced individual.
This probability can be bounded as

qj := Pr (Xt+1 > 0 | Xt = 0) > 1− (1− β(γ)sj)
λ

≥ 1− exp(−λβ(γ)sj) ≥
λβ(γ)sj

λβ(γ)sj + 1
,

where the last inequality follows from Lemma 17.
The random variable τj can be expressed as τj = min{t ≥

0 | Xt ≥ ⌈γλ⌉}. To bound the expectation of τj , we can
therefore apply Theorem 16 (the drift theorem) with re-
spect to the stochastic process Xt. We will use the dis-
tance function V (x) := g(x)+h(x) with the two components
g(x) := ⌈γλ⌉ − x, and h(x) := 1/qje

κx, where κ can be cho-
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sen arbitrarily such that κ ∈ (0, δ). The maximal distance
is bounded from above by B := λ+ 1/qj .

We will show that there exists a constant ∆ > 0 such that

E [V (Xt)− V (Xt+1) | E ,Xt = i] = E [∆g,t(i) + ∆h,t(i)] ≥ ∆

for all i, where the two drift components are defined as

∆g,t(i) := (g(Xt)− g(Xt+1) | E ,Xt = i), and

∆h,t(i) := (h(Xt)− h(Xt+1) | E , Xt = i).

Case 1 (i ≥ 1): Eq. (2) gives

E [∆g,t(i) | i ≥ 1] = E [Xt+1 − i | E ,Xt = i ≥ 1] ≥ δi.

Furthermore, since Xt+1 conditional on Xt = i ≥ 1 is bino-
mially distributed with parameters λ and p ≥ (1 + δ)i/λ, it
follows from Lemma 18 that

E [∆h,t(i) | i ≥ 1] =
1

qj
· E
[

e−iκ − e−κXt+1 | E , i ≥ 1
]

≥ 0.

Case 2 (i = 0): It suffices to use the trivial lower bound
E [∆g,t(i) | i = 0] ≥ 0 for the first drift component. The
next generation contains at least one advanced individual
with probability qj . So for the second drift component, it
holds that

E [∆h,t(i) | i = 0] ≥ qj · (1/qj) · (e
0 − e−κ) = 1− e−κ.

By linearity of expectation, it therefore holds for all i ≥ 0
that E [∆g,t(i) + ∆h,t(i)] ≥ min{δ, 1 − e−κ} =: ∆. Theo-
rem 16 now gives

E [τj | E ] ≤
B

∆
=

1

∆

(

λ+
1

qj

)

≤
1

∆

(

λ+
1

λsjβ(γ)
+ 1

)

.

Summing up for all fitness levels gives

tE = E [τ | E ] ≤
1

∆

(

m(λ+ 1) +
m
∑

j=1

1

λsjβ(γ)

)

.

We then estimate the probability pE . To produce an indi-
vidual that is as at least as fit as the γ-ranked individual, it
suffices to select any of the best ⌈γλ⌉ individuals in the pop-
ulation and not create an offspring that belongs to a lower
fitness level. Using Condition 3, the probability of this event
is at least β(γ)p0 > (1 + δ)γ. Hence, the expected num-
ber of times this happens during one generation is at least
(1 + δ)⌈γλ⌉. In order to reduce the fitness of the γ-ranked
individual, it is necessary that there are less than ⌈γλ⌉ such
events. However, by a Chernoff bound, the probability r
that this happens in a given generation is

r ≤ exp

(

−
ελδ2

2(1 + δ)

)

exp

(

−
(1− ε)λδ2

2(1 + δ)

)

≤
s∗
m
e−ε′λ

where the last inequality follows from condition 4, and we
defined the constant ε′ := δ2(1−ε)/2(1+δ). The probability
pE that event E holds during 2tE generations is by union
bound pE ≥ 1− 2tEr, so

pE ≥ 1−
2m

∆

(

λ+ 1 +
1

λs∗β(γ)

)

s∗
m
e−ε′λ = 1− e−Ω(λ),

where the asymptotic expression is with respect to λ.
The proof is completed by choosing a sufficiently large

constant c > 0 such that 4λtE/pE ≤ c(mλ2+
∑m

j=1 s
−1
j ).

4. MEASURING SELECTIVE PRESSURE
Section 5 illustrates how Theorem 4 can be applied to de-

rive upper bounds on the expected runtime of evolutionary
algorithms with some classical selection mechanisms. This
section focuses on Condition 3 of Theorem 4 only, showing
that it often can be verified independently of the function
f that is optimised. We analyse how the parameter set-
tings of the most popular selection mechanisms influence
the selective pressure, as measured by the cumulative selec-
tion probability, and the reproductive rate. In particular,
we will determine the parameter regions for which Condi-
tion 3 of Theorem 4 is satisfied (called parameter region
of “high” selective pressure), and the parameter regions for
which Condition 2 of Theorem 16 is satisfied (called param-
eter region of “low” selective pressure). The statements are
given in Lemmas 5, 6, 7, and 8, and in Corollary 10. The
results are summarised in Table 1 for the case where pmut is
the standard bitwise mutation with probability χ/n. In this
case, any constant p0 < 1/eχ can be used independently of
the problem.

Note the following about the results in Table 1. For all
selection mechanisms except fitness proportional selection,
there is a sharp transition between the parameter region
where the selective pressure is sufficiently high, and the pa-
rameter region where the selective pressure is too low. Fur-
thermore, the transition between the two parameter regions
can depend in a non-linear way on other parameters, notably
the mutation rate parameter. Standard parameter settings
for mutation rate (χ = 1) and the selection mechanisms
sometimes put the algorithm in the low selective pressure
region. In particular, linear ranking selection with standard
mutation rate 1/n is always in the low selection pressure
region, because 1 ≤ η < 2. Hence, in order to put linear
ranking selection in the high selective pressure region, it is
necessary to decrease the mutation rate χ below ln 2 ≈ 0.69.
Also, unscaled fitness proportionate selection (ν = 1) has
insufficient selective pressure on OneMax. Finally, binary
tournament selection (k = 2) has insufficient selective pres-
sure with mutation rate 1/n. To enter the high selective
pressure region, it is necessary to increase the tournament
size to at least 3, or to decrease the mutation rate.

Tournament Selection

In tournament selection with tournament size k ≥ 2, one se-
lects the fittest individual among k uniformly sampled indi-
viduals with replacement from the current population. Ties
are broken uniformly at random.

Lemma 5. The reproductive rate of k-Tournament Selec-
tion is at most k. If k ≥ (1 + δ)/p0 for any constants
p0 ∈ (0, 1) and δ > 0, then there exist constants γ, δ′ > 0
such that p0β(γ

′) > γ′(1 + δ′) for all γ′ ∈ (0, γ].

Proof. For the first statement, the probability that a
given individual occurs in a tournament is by union bound
at most k/λ. Hence, the expected number of times a given
individual is selected is at most λ · (k/λ) = k.

For the second statement, in order to select an individ-
ual with the same fitness or better fitness than the γ-ranked
individual, it is sufficient that the randomly sampled tourna-
ment contains at least one individual with rank γ or better.
Hence, one obtains for 0 < γ < 1,

β(γ) > 1− (1− γ)k. (3)
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Selection Mech. High S. P. Low S. P. Problem Pop. Size High S. P. Low S. P.

Fitness Prop. (*) ν > fmax ln(2e
χ) ν < χ/ ln 2, n3 ≤ λ OneMax λ ≥ c lnn O(nλ2) eΩ(n)

Linear Ranking η > eχ η < eχ LeadingOnes λ ≥ c lnn O(nλ2 + n2) eΩ(n) [10]

k-Tournament k > eχ k < eχ Linear Functions λ ≥ c lnn O(nλ2 + n2) eΩ(n) [10]

(µ, λ) λ > µeχ λ < µeχ k-Unimodal λ ≥ c ln(nk) O(kλ2 + nk) eΩ(n) [10]

Cellular EAs ∆(G) < eχ [10] Jumpr λ ≥ cr lnn O(nλ2 + (n/χ)r) eΩ(n) [10]

Table 1: Left: Separation of the parameter spaces of five selection mechanisms into regions of “high” and
“low” selective pressure (S. P.) (cf. Lemma 5-8, and Corollary 10), assuming bitwise mutation rate χ/n. For
notational clarity, (1 ± δ)-factors are omitted. Right: Expected runtime of Algorithm 1 with corresponding
parameter settings (cf. Theorems 11 and 14). (*) The result for fitness prop. selection is only for OneMax.

From the assumption that k ≥ (1 + δ)/p0, it follows that

(1− γ)k < e−γk <
1

1 + γk
≤

p0
p0 + γ(1 + δ)

. (4)

Choose γ sufficiently small such that γ < δp0/2(1+δ) holds.
Combining (3) and (4), then yields the desired result

β(γ) >
γ(1 + δ)

p0 + γ(1 + δ)
>

γ(1 + δ)

p0(1 + δ/2)
.

Linear Ranking Selection

Ranking selection mechanisms select individuals according
to the fitness rank in the population. Individuals are ranked
from 0 to 1, with the best individual ranked 0, and the worst
individual ranked 1. Following Goldberg and Deb [4], a func-
tion α : R → R is considered a ranking function if α(x) ≥ 0

for all x ∈ [0, 1], and
∫ 1

0
α(y)dy = 1. The selection mech-

anism is defined by the cumulative probability of selecting
individuals ranked γ or better, by

∫ γ

0
α(x)dx. Linear rank-

ing selection is defined by setting α(γ) := η(1 − 2γ) + 2γ,
where the parameter η ∈ (1, 2] adjusts the selective pressure.

Lemma 6. The reproductive rate of linear ranking selec-
tion is not larger than η. Furthermore, if η > (1 + δ)/p0
for some δ > 0, then there exists a constant γ > 0 such that
p0β(γ

′) > γ′(1 + δ/2) for any γ′ ∈ (0, γ).

Proof. The expected number of times a given individual
is selected is bounded from above by α(0) = η (see [11]), so
the statement about the reproductive rate holds.

If η > (1+ δ)/p0 and γ is chosen sufficiently small so that
(1 + δ)(1− γ) > (1 + δ/2), then

p0β(γ) ≥ p0

∫ γ

0

α(x)dx = p0γ(η(1− γ) + γ) > γ(1 +
δ

2
).

(µ, λ)-Selection

In (µ, λ)-selection, one selects uniformly at random among
the best µ out of λ individuals in the current population.

Lemma 7. The reproductive rate of (µ, λ)-selection is no
more than λ/µ. If λ/µ > (1+δ)/p0 for some constant δ > 0,
then p0β(γ) ≥ γ(1 + δ) for all γ ∈ (0, µ/λ).

Proof. The probability of selecting a given individual is
no more than 1/µ, so the reproductive rate is no more than
λ/µ. Furthermore, β(γ) ≥ γλ/µ if γλ ≤ µ, and β(γ) = 1
otherwise. Hence, if λ/µ > (1 + δ)/p0 for some constant
δ > 0, then β(γ) ≥ γλ/µ > γ(1+δ)/p0 for any γ < µ/λ.

Fitness Proportionate Selection

Fitness proportionate selection with power scaling parame-
ter ν ≥ 1 is defined for maximisation problems as follows

∀i ∈ [λ] psel(i | Pt, f) :=
f(Pt(i))

ν

∑λ

j=1 f(Pt(j))ν
.

Setting ν = 1 gives classical fitness proportionate selection.
Happ et al. considered variants of the RLS and the (1+1)

EA where the plus-selection mechanism is replaced with fit-
ness proportionate selection [5]. They found that changing
the algorithms this way makes them highly inefficient on
linear functions. However, their analysis is limited to EAs
with a population size of one, which is uncommon in ap-
plications of fitness proportionate selection. Neumann et al.
showed that, unless the fitness function is scaled, even larger
population sizes are unhelpful on OneMax [12]. In the fol-
lowing, it is shown how similar results can be obtained using
the techniques presented here and in [10].

Lemma 8. Let fmax be any integer. Fitness proportionate
selection with scaling parameter ν > ln(2/p0)fmax satisfies
p0β(γ) > γ(1 + 1/3) for all γ < p0/4, on any integer-valued
fitness function with range in [0, fmax].

Proof. Choose any constant γ < p0/4, and let fγ ≤ fmax

be the fitness of the γ-ranked individual in the population.
Let k ≥ ⌈γλ⌉ be the number of individuals with fitness at
least fγ , and s ≥ kfν

γ ≥ ⌈γλ⌉fν
γ be the scaled sum of the

fitness values of these k individuals. The probability of se-
lecting one of the k individuals is

β(γ) ≥
s

(λ− k)(fγ − 1)ν + s
≥

γ

(1− k/λ)(1− f−1
γ )ν + γ

≥
γ

(1− f−1
max)ν + p0/4

≥
γ

p0/2 + p0/4
,

and the result follows for δ = 1/3.

To derive a good upper bound on the reproductive rate of
fitness proportionate selection, it is necessary to bound the
sum of the fitness values in the population. For functions
like OneMax, it seems intuitive that the population should
contain relatively few 0-bits, as the selection-mechanism has
a bias towards individuals with 1-bits. The following lemma
shows that this intuition is correct for fitness proportionate
selection, and many other selection mechanisms.

Lemma 9. Let ε > 0 be any constant. Define T to be
the smallest t such that Algorithm 1 using an f-monotone
selection mechanism, and population size λ ≥ n3 has a
population Pt where

∑λ

j=1 |Pt(j)|1 ≤ λ(n/2)(1 − ε). Then

Pr (T ≤ ecn) = e−Ω(n).
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Proof. For the initial population, it follows by a Cher-
noff bound that Pr (T = 1) = e−Ω(n). We then claim that for

all t ≥ 0, Pr (T = t+ 1 | T > t) ≤ e−c′n for a constant c′ >
0, which by the union bound implies that Pr (T < ecn) ≤

ecn−c′n = e−Ω(n) for any constant c < c′.

To see why the claim holds, let Z
(j)
t = n−|Pt(j)|1, for t ≥

0 and j ∈ [λ], be the number of 0-bits in the j-th individual
in generation t, and pj the probability of selecting the j-
th individual when producing the population in generation

t + 1. Furthermore, let Zt =
∑λ

j=1 Z
(j)
t . For f -monotone

selection mechanisms, it holds that
∑λ

j=1 pjZ
(j)
t ≤ Zt/λ.

The expected number of 0-bits in an offspring j ∈ [λ], is

E
[

Z
(j)
t+1 | Z(k)

t = zk, 1 ≤ k ≤ λ
]

=
λ
∑

k=1

pk
(

(n− zk)
χ

n
+ zk

(

1−
χ

n

))

= χ +

(

1−
2χ

n

) λ
∑

k=1

pkzk ≤ χ +

(

1−
2χ

n

)

(Zt/λ),

and the expected number of 0-bits in generation t+ 1 is

E [Zt+1 | Zt = z, z < λ(n/2)(1 + ε)]

≤ λχ+ z (1− 2χ/n) ≤ z − ελχ.

The random variables Z
(1)
t+1, Z

(2)
t+1, . . . , Z

(λ)
t+1 are non-negative

independent random variables, each bounded from above by
n. The conditions of Theorem 15 (Hoeffding’s inequality)
are satisfied, leading to the desired bound

Pr (Zt+1 > Zt) ≤ Pr (Zt+1 −E [Zt+1] > ελχ)

≤ exp

(

−
2(ελχ)2

λn2

)

= e−Ω(n).

It is easy to see that fitness proportionate selection is f -
monotone for all ν ≥ 1. Hence, the following statement
follows directly from Lemma 9.

Corollary 10. For any constant δ > 0, the reproductive
rate of fitness proportionate selection on OneMax when λ ≥
n3 is no more than 2ν + δ.

Proof. By Lemma 9, and analogously to Eq. (6), the
probability of selecting the fittest individual is no more than
nν/(λ(n/2)(1− ε))ν .

5. UPPER BOUNDS
Given the results obtained in the previous section, we are

now ready to illustrate how Theorem 4 can be applied to ob-
tain upper bounds on the expected runtime of Algorithm 1.
We consider the most popular selection mechanisms, and the
classical example functions that are used in runtime analy-
sis of EAs. In particular, we analyse the runtime on linear
functions (including OneMax), unimodal functions (includ-
ing LeadingOnes), and the Jumpk function.

A pseudo-Boolean function f is called linear if there exists
constants c1, . . . , cn such that f(x) =

∑n

j=1 cixi. We assume
that c1 ≥ c2 ≥ · · · cn > 0. The special case where c1 = · · · =
cn = 1 is called OneMax.

The Jump function is defined as OneMax, except that
the optimum is separated from other search points by a

Hamming-gap of inferior search points [3].

Jumpr(x) :=

{

|x|1 + 1 if |x|1 ≤ n− r or |x|1 = n,

0 otherwise.

A pseudo-Boolean function f is called unimodal if every
bitstring x is either optimal, or has a Hamming-neighbour
x′ such that f(x′) > f(x). We say that a unimodal func-
tion is k-unimodal if it has k distinct function values f1 <
f2 < · · · < fk. For the lower bounds presented in Ta-
ble 1, we assume that the number of search points with
the optimal function value fk is bounded from above by a
polynomial in the problem size n. Note that the function
LeadingOnes(x) :=

∑n

i=1

∏i

j=1 xi is n-unimodal.
The fitness partitions that are used in the proof of Theo-

rem 11 are similar to those employed in previous applications
of the fitness-level technique [8, 9, 14].

Theorem 11. Algorithm 1 with bit-wise mutation rate
χ/n for any constant χ > 0, and where psel is either linear
ranking selection, k-tournament selection, or (µ, λ)-selection
where the parameter settings satisfy “High S. P.” in Table 1
(left) and “Pop. Size” in Table 1 (right), has expected run-
times as indicated by “High S. P.” in Table 1 (right). Al-
gorithm 1 has expected runtime O(nλ2) on OneMax when
psel is fitness prop. selection with parameter ν > n ln(2eχ).

Proof. We apply Theorem 4 with the following f -based
partitions and upgrade probabilities.

For linear functions f , we set m = n and choose, as in [8],

Aj :=

{

x ∈ {0, 1}n |

j
∑

i=1

ci ≤ f(x) <

j+1
∑

i=1

ci

}

.

For OneMax, LeadingOnes, and k-unimodal functions,
with k distinct function values f1 < · · · < fk, we set m = k
and use the canonical partition [14]

Aj := {x ∈ {0, 1}n | f(x) = fj} .

For linear functions, and for k-unimodal functions (includ-
ing LeadingOnes where k = n) it is sufficient to flip one
specific bit, and no other bits to reach a higher fitness level.
For these functions, we therefore choose for all j the upgrade
probabilities sj := s∗ := (χ/n) (1− χ/n)n−1 = Ω(1/n).

For OneMax, it is sufficient to flip one of the n− j 0-bits,
and no other bits to escape fitness level j. For this function,
we therefore choose the upgrade probabilities

sj := (n− j)(χ/n)(1− χ/n)n−1 = Ω(1− j/n), s∗ := sn−1.

For Jumpr, we setm := n−r+1, and choose the partitions

A1 = {x ∈ {0, 1}n | n−m ≤ |x|1 < n},

j > 1 Aj = {x ∈ {0, 1}n | |x|1 = j}.

In order to escape fitness level A1, it is sufficient to flip at
most r bits, and to flip no other bits. For fitness level j > 1,
it suffices to flip one of n−j 0-bits, and no other bits. Hence,
we choose the upgrade probabilities

s1 := s∗ := (χ/n)r(1− χ/n)n−r = Ω((χ/n)r)

j > 1 sj := (n− j)(χ/n) (1− χ/n)n−1 = Ω(1− j/n).

(C1) Condition 1 is satisfied by the definition of the fitness
partitions and the upgrade probabilities.

(C2) For all functions, we set the parameter p0 to the
probability of not flipping any bits. If the selected individual
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x belongs to fitness level Aj , and the bitwise mutation op-
erator does not flip any bits, then the new individual x′ also
belongs to fitness level Aj . Condition 2 is therefore satisfied.
For any constant ε > 0, it holds for all n > 2χ2/ ln(1 + ε)
that

p0 =
(

1−
χ

n

)n

≥

[

(

1−
χ

n

)n
χ
−1
]χ+ 2χ2

n

≥
1

(1 + ε)eχ
. (5)

(C3) For k-tournament selection, assume for any constant
c′ > 0 that k ≥ (1 + c′)eχ, and pick arbitrary positive con-
stants ε and δ such that 1 + c′ = (1 + ε)(1 + δ). Eq. (5)
implies that k ≥ (1 + ε)(1 + δ)eχ ≥ (1 + δ)/p0. Condition
3 is now satisfied by Lemma 5. Analogous arguments and
Lemmas 6, 7, and 8 can be used to show that Condition 3
also holds for fitness proportionate selection, linear ranking
selection, and (µ, λ)-selection.

(C4) For linear functions (including OneMax), m/s∗ =
O(n2). For k-unimodal functions (including LeadingOnes),
m/s∗ = O(nk). Finally, for Jumpr, m/s∗ = O(nr+1/χr).
So, Condition 4 is satisfied if the population size λ is set
according to Table 1 (right) for a large enough constant c.

All conditions are satisfied, and the upper bounds in col-
umn “High S. P.” in Table 1 (right) follow.

6. LOWER BOUNDS
The upper bounds are complemented by lower bounds

which hold for the parameter settings in the column “Low
S. P.” in Table 1 (left). The lower bounds are proved us-
ing Theorem 12, which is a special case of the negative drift
theorem for populations (Theorem 1 in [10]). Theorem 12 is
restricted to the bitwise mutation operator, but has easier
to verify conditions than the general theorem.

Theorem 12 ([10]). Given Algorithm 1 on X = {0, 1}n

with bit-wise mutation rate χ/n, and population size λ =
poly(n). Let a(n) and b(n) be positive integers s.t. b(n) ≤
n/χ and d(n) := b(n)−a(n) = ω(lnn). For an x∗ ∈ {0, 1}n,
let T (n) be the smallest t ≥ 0, s.t. H(Pt(j), x

∗) ≤ a(n) for

some j ∈ [λ]. Let Rt(i) :=
∑λ

j=1[It(j) = i]. If there are
constants α0 ≥ 1 and δ > 0 s.t. for all t ≥ 0

(1) E [Rt(i) | a(n) < H(Pt(i), x
∗) < b(n)] ≤ α0, ∀i ∈ [λ],

(2) ψ := ln(α0)/χ + δ < 1, and

(3) b(n)/n < min{ 1/5 , 1/2− 1/2
√

ψ(2− ψ) },

then Pr
(

T (n) ≤ ecd(n)
)

= e−Ω(d(n)) for a constant c > 0.

The theorem implies that Algorithm 1 with bitwise mu-
tation rate χ/n has exponential runtime when the repro-
ductive rate is below eχ. The results in Table 1 for lin-
ear ranking selection, tournament selection, (µ, λ)-selection,
and cellular EAs were already proved in [10]. It remains to
consider fitness proportionate selection. It has been previ-
ously shown that this selection mechanism is inefficient on
OneMax when scaling is not used (ν = 1) [12]. The follow-
ing simple corollary to Theorem 16 strengthens this result.

Corollary 13. If χ = 1, and n3 ≤ λ = poly(n), then
the probability that Algorithm 1 using fitness proportional
selection with scaling parameter ν = 1 obtains a search
point with more than 97.1% 1-bits when optimising OneMax
within ecn generations is e−Ω(n), for some constant c > 0.

Proof. We apply Theorem 12 for the parameters a(n) =

0.02900, b(n) = 0.02901, and α0 = 1−a(n)
0.49999

. It follows by

Lemma 9 that
∑λ

j=1 |Pt(j)|1 ≥ 0.49999 ·nλ with probability

1 − e−Ω(n), otherwise we consider the run a failure. The
reproductive rate is therefore bounded by

λ · psel(i | Pt, f) ≤
(1− a(n)) · nλ

0.49999 · nλ
= α0.

It is now straightforward to verify numerically that the sec-
ond and third conditions are satisfied.

Finally, it is shown that fitness proportionate selection is
inefficient on OneMax, even with some degree of scaling.

Theorem 14. Let T be the number of generations until
Algorithm 1 with bitwise mutation rate χ/n, population size
n3 ≤ λ = poly(n), and fitness proportional selection with

parameter ν, 1 ≤ ν < χ(1−δ)
ln(2+ǫ)

optimises OneMax. Then

Pr
(

T ≤ ec
′n
)

= e−Ω(n) for a constant c′ > 0.

Proof. We apply Theorem 12, and show that Condition
1 holds by bounding the reproductive rate. We assume that
∑λ

j=1 |Pt(j)|1 ≥ λ(n/2)(1−ε′) holds within the first ecn gen-

erations for appropriate constants c, ε′ > 0, and consider the
run a failure otherwise. By Lemma 9, the failure probability
is bounded from above by e−Ω(n).

The function f(x) = xν is convex for ν ≥ 1, so the finite
form of Jensen’s inequality implies that

1

λ

λ
∑

j=1

|Pt(j)|
ν
1 ≥

(

λ
∑

j=1

|Pt(j)|1
λ

)ν

≥

(

n(1− ε′)

2

)ν

. (6)

Hence, the reproductive rate is bounded by

max
i

λ|Pt(i)|
ν
1

∑λ

j=1 |Pt(j)|ν1
≤

(

n

(n/2)(1− ε′)

)ν

= 2ν(1 + ε), (7)

for an appropriate constant ε. The second condition now
follows, as ln(α0)/χ < ν ln(2 + ε)/χ < 1 − δ. Since ψ < 1,
there exists a b(n) where n− b(n) = Ω(n) that satisfies the
third condition. Finally, we choose a(n) = (b(n)+n)/2.

7. CONCLUSION
A new technique for runtime analysis of EAs has been

introduced (Theorem 4), allowing upper bounds on the ex-
pected runtime of non-elitist EAs with populations to be
derived easily. The technique is similar to the existing fit-
ness level technique used to analyse elitist EAs.

Theorem 4 gives conditions on the operators of the algo-
rithm which, when satisfied, can be used to predict when
the EA is efficient. The first condition is the same as in the
classical fitness level technique. The second condition states
that the offspring should with not too small probability be
at least as fit as the parent. The third condition prescribes
a required level of selective pressure relative to the muta-
tion strength. The final condition sets a lower limit on the
population size. The second and fourth conditions can in
most cases be verified independently of the fitness function,
as shown in Section 4.

The theorem is illustrated on standard example functions.
The results, which are summarised in Table 1, are interest-
ing in their own right, showing how the runtime of the EA
depends critically on the selective pressure. It has been an
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open question to quantify the degree of selective pressure
necessary for efficient search. It is generally claimed that
the selective pressure should not be too strong in order to
prevent loss of diversity (i. e. to enable “exploration”), and
not be too weak in order to allow the search to be effective
(i. e., to enable “exploitation”). Table 1 shows parameter
settings that ensure the necessary selective pressure needed
to optimise a range of classical example functions efficiently.
For the considered selection mechanisms, except fitness pro-
portionate selection, there are sharp, non-linear transitions
in parameter space between parameter settings that lead to
exponential runtime, and parameter settings that lead to
polynomial runtime.

Note that the upper bounds on the runtimes in Table 1
are weaker than the corresponding bounds for the (1+1) EA.
This means that the (1+1) EA may perform better on the
chosen functions, or that Theorem 4 may be improved.

In general, the paper addresses the lack of techniques
available for analysing the runtime of population-based EAs.
The new technique reduces the gap between the complexity
of algorithms used in practice, and the simplicity of the al-
gorithms amenable to rigorous analysis. Together with the
lower bound technique provided in [10], it is a step towards
a better understanding of population-dynamics in EAs.
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APPENDIX

Theorem 15 (Hoeffding’s Inequality [7]). If X =
∑m

i=1Xi, where Xi ∈ [0, b], i ∈ [m], are indep. random vari-
ables, then Pr (X −E [X] ≥ t) ≤ exp

(

−2t2/b2m
)

for t > 0.

Theorem 16 (Drift Theorem [6]). Let X1, X2, ... be
a stochastic process over S, and d : S → R

+
0 a distance

function on S. Define T to be the first time t such that
d(Xt) = 0. If there exists a constant ∆ > 0 such that,

1. ∀t ≥ 0 : Pr (d(Xt) < B) = 1, and

2. ∀t ≥ 0 : E [d(Xt)− d(Xt+1) | T > t] ≥ ∆,

then E [T ] ≤ B/∆.

Lemma 17. For all x ∈ R, 1− e−x ≥ x/(x+ 1).

Proof. From ex ≥ x + 1, it follows that 1 − 1/ex ≥
(x+ 1)/(x+ 1) − 1/(x + 1) = x/(x+ 1).

Lemma 18. If X ∼ Bin(λ, p) with p ≥ (i/λ)(1 + δ), then
E
[

e−κX
]

≤ e−κi for any κ ∈ (0, δ).

Proof. The value of the moment generating function
MX(t) of the binomially distributed variable X at t = −κ is

E
[

e−κX
]

=MX(−κ) = (1− p(1− e−κ))λ. (8)

By Lemma 17 and 1 + κ < 1 + δ, it follows that

p(1− e−κ) ≥
i(1 + δ)

λ

(

κ

1 + κ

)

≥
κi

λ
.

From (8), we now have E
[

e−κX
]

≤ (1− κi/λ)λ ≤ e−κi.
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