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ABSTRACT

This paper examines how the choice of the selection mech-
anism in an evolutionary algorithm impacts the objective
function it optimizes, specifically when the fitness function
is noisy. We provide formal results showing that, in an ab-
stract infinite-population model, proportional selection opti-
mizes expected fitness, truncation selection optimizes order
statistics, and tournament selection can oscillate. The “win-
ner” in a population depends on the choice of selection rule,
especially when fitness distributions differ between individ-
uals resulting in variable risk. These findings are further
developed through empirical results on a novel stochastic
optimization problem called “Die4”, which, while simple, ex-
tends existing benchmark problems by admitting a variety
of interpretations of optimality.

Categories and Subject Descriptors

F.2.m [Analysis of Algorithms and Problem Com-
plexity]: Miscellaneous; G.1.6 [Numerical Analysis]: Op-
timization

General Terms

Theory

Keywords

Evolutionary noisy optimization, convergence analysis, se-
lection algorithms

1. INTRODUCTION
Genetic algorithms provide one of the most powerful and

versatile approaches to optimization in common use today.
Even in some well-studied and difficult combinatorial prob-
lems like the traveling salesman problem, evolutionary ap-
proaches are among the most reliable [5].
For real-life problems in which fitness evaluations require

physical measurement or complex simulations, the same in-
dividual can be assigned different scores [7]. Optimizing
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in the face of such noisy fitness functions adds several addi-
tional difficulties beyond the challenge of ordinary optimiza-
tion. One well known fact is that these inconsistent evalua-
tions can mislead an algorithm, causing it to spend too much
or too little of its resources on an individual relative to its
“worth”. One common response is to repeat and average fit-
ness evaluations, which provides more accurate estimations
at the expense of additional evaluations [10]. Note, how-
ever, that while this multiple-sample approach shrinks the
variance of fitness distributions, it cannot reduce them to a
single point—the problem of noisy optimization remains.

A second difficulty in noisy optimization is that the very
notion of which individual is the best can have multiple in-
terpretations. Given that an individual can have more than
one fitness value, which one should “count” in the optimiza-
tion process? The maximum? The mode? Depending on
the form of the noise distribution, these options might not
even make sense. A natural choice is the mean, or expected
value. However, the median might be more appropriate for
some applications, say if the fitness distribution has extreme
outliers.

Existing analyses [11] and evaluations [8] of evolutionary
algorithms optimizing noisy fitness functions focus on prob-
lems in which “reasonable” objective functions align. That
is, the individual with the highest mean also has the high-
est median, 25th percentile, etc. In the case of the evalua-
tion, this decision was made explicitly so that results remain
comparable even if participants choose to optimize different
objectives.

Consider, however, applications such as finance where the
“right” decision depends critically on one’s risk attitude. An
optimization procedure applied to such a problem without
concern to what objective it is attempting to optimize is of
limited utility to the user. The user would want to choose an
algorithm that optimizes a desired quantity, or, even better,
would like to tell the algorithm what to optimize. Note
that this notion of risk is relevant even in more traditional
optimization problems such as jet-engine design where cost–
safety tradeoffs play an important role.

In this paper, we undertake an analysis and empirical
study of exactly the issue of what objective function an evo-
lutionary algorithm strives to optimize. We note that two
evolutionary algorithms that differ only in their selection
rule can optimize different objectives and provide several
concrete examples. Specifically, we show that whereas pro-
portional selection seeks to optimize the expected value of
the fitness distribution, truncation selection optimizes or-
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der statistics such as the median. Tournament selection, in
contrast, has no well defined target of optimization.
Section 2 provides the definition of the algorithms we con-

sider. Section 3 introduces a noisy optimization problem
called “Die4” that serves as our motivating illustration. Sec-
tion 4 analyzes several selection mechanisms in the infinite
population limit. Section 5 presents empirical results on
finite-population algorithms running on Die4 to show how
the theoretical findings help explain the results of experi-
ments.

2. SELECTION MECHANISMS
Briefly, a genetic algorithm defines the evolution of a pop-

ulation of individual genomes under the influence of repro-
duction, mutation, and selection operations. We study a
class of algorithms that has the following form.
The population size is set to a fixed N , and an initial col-

lection of N genomes is produced. For each generation, each
individual genome i in the population is evaluated, resulting
in a fitness score fi. In the setting we consider, this score is a
random variable and thus the fitness score is more properly
thought of as being sampled from a genome-specific fitness

distribution. A new generation is then constructed depend-
ing on the sampled fitness values and the selection mech-
anism in use. We next describe several possible selection
mechanisms.
In truncation selection, theN genomes are sorted based on

their fitness scores. Each of the top θ ×N scoring genomes
(breaking ties randomly, but consistently) is used, round-
robin-style, to populate the next generation. A fitness thresh-
old is defined at each generation and any individuals scoring
below that line are dropped from the population. The evo-
lutionary strategies (µ + λ) and (µ, λ) are examples of this
scheme. In our work, the two behaved similarly so we chose
not to report their results separately.
The idea of fitness proportional selection, or sometimes

“roulette” selection, is that individual genomes are selected
for the next generation at random from the entire current
population. However, those with higher fitness scores have a
better chance of being included. The new population is built
up one genome at a time, with each picked in proportion to
its fitness divided by the sum of the fitness of all genomes
in the population. Absent any rescaling, (1) this scheme
assumes only non-negative fitness, (2) genomes with a fitness
of 0 have no chance of producing offspring, and (3) if all
members of the population have zero fitness, the algorithm
terminates.
The tournament selection scheme also builds up an entire

new population each generation. A separate tournament
is held for each position in the new population. During
each tournament, τ distinct parents are chosen uniformly at
random from the entire current population, and the genome
with the largest fitness score of those τ individuals produces
an offspring for the next generation.
In all these schemes, whenever an offspring is created, it

has a 99% chance of being identical to the parent and a 1%
chance of being “mutated” (a problem-specific modification
to a new, but perhaps related, genome).
Although many other selection rules have been studied [6],

we focus on these because of their relative simplicity and
broad appeal. We defer an analysis of a more complete set
of rules to future work.
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Figure 1: Plot of probability of exceeding a given
value for three genomes discussed in the text.

3. DIE4: RISKY OPTIMIZATION
Die4 is a simple game we created to study optimization

under risk. It is played with a single 6-sided die, which
the player can roll repeatedly. Each time the player rolls
the die, the resulting value is added to the player’s score.
At any time, the player can stop the game and declare the
current total his score. However, if the die ever comes up
4, the player “dies”, losing his points and ending the game.
The individual’s fitness is exactly the score when the game
ends. Note that, although the probability of failure remains
constant at 1/6 throughout the game, the number of points
the player risks losing by rolling a 4 increases steadily from
round to round.

We seek the best cutoff rule for playing Die4. Specifically,
an individual genome consists of the value T and a fitness
function evaluation consists of the playing the game using
the rule “continue until a 4 is rolled or the sum reaches at
least the target value T”. Which value of T is best?

To explore the theoretical properties of this system, we
performed a set of evolutionary runs on three specific genomes
(those with thresholds T of 10, 16, and 22).

The fitness distributions of these genomes are depicted in
Figure 1 via their complementary cumulative distribution
functions (ccdfs). That is, the x-axis represents possible fit-
ness values and the y-axis represents the probability that
the corresponding genome will be assigned a fitness equal to
or greater than that fitness value. If the fitness distribution
for genome i is represented by the probability density func-
tion fi(x), the ccdf can be expressed as Gi(x) =

∫
∞

x
fi(s)ds.

Note that while Genome 10 has a higher probability of a
non-zero fitness, Genomes 16 and 22 have a higher proba-
bility of reaching fitness scores of 20 or more.

We examined the effect of running different selection rules
on populations constrained to these three genomes. For each
rule, we initialized a population of N = 100 genomes by se-
lecting from this set of three genomes uniformly at random,
ran for 1000 generations, and repeated this process 20 times.
For each of these runs, we recorded the distribution over
genomes up to generation 1000. To mutate an individual,
we replaced the genome with one of the three uniformly at
random.

Figure 2 reports the results of this study, where genera-
tion number appears along the x axis and the grey levels
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Figure 2: Die4, population 100, repetitions 20, mu-
tation rate 0.5%. The percentages on the right side
of each graph represent the fraction of the total
number of individuals of a particular type through
all generations.

corresponding to the three genomes emphasize the fraction
of the population consisting of copies of that genome. Given
that fitness evaluations are noisy, it is not unreasonable to
expect that results vary from run to run. However, what we
observe is a more complicated pattern. For instance, we see
truncation selection with θ = 0.1 consistently converging to
Genome 22, while truncation with θ = 0.5 consistently con-
verges to Genome 10. Proportional selection leans heavily
toward Genome 16, as does tournament selection τ = 2, but
with a much patchier time series.
In the remainder of the paper, we show that this pattern

of results is well explained by analyzing the behavior of the
different selection rules in the infinite population limit.

4. INFINITE POPULATION ANALYSIS
We analyze the behavior of the selection mechanisms in

the classical infinite population model [14] extended to treat
noisy fitness evaluations. This model provides a useful ab-
straction that allows for analysis without the complication
of finite sampling effects. While the effects of stochasticity
from a finite population are important, the goal here is to get

insight into the general direction that selection mechanisms
push a population in the context of noisy fitness functions.
Of course, this simplification is a double-edged sword. While
it reduces complications in proofs, it also hides possibly rele-
vant details. Hence, Section 5 provides supporting evidence
from computational simulations.

An infinite population is fully described by a finite set of
genomes Ω = {1, 2, . . . , n} and a real-valued weight vector
w representing population densities, with

∑n

i=1 w
t
i = 1 and

wt
i ≥ 0 for t ≥ 0, where t is the index of the generation.

We can assume without loss of generality that w0
i > 0 (all

genomes are present in the initial population) and this vector
is viewed as an input parameter. The weights describe the
proportion of each genome in the initial population. It is
worth noting that our analysis is focused on selection (with

no mutation or crossover), so if wt = 0, wt′ = 0 for all t′ > t
(no new genomes are introduced).

To introduce noisy fitness to the model, for all genomes
i ∈ Ω, let fi(x) be its probability density function, or fitness
distribution. We assume the fi(x)s are non-zero and continu-
ous and have strictly decreasing complementary cumulative
distribution functions (ccdfs) Gi(x) (over their support) and
for simplicity they have common support over the space of
fitness values X . Note that, due to the constraints on the
Gi(x)s, all of the probability density functions have associ-
ated quantile functions qi that are properly defined. (For
all x ∈ X , there exists a unique value y ∈ [0, 1] such that
qi(y) = 1−G−1

i (y) = x.)
An example meeting these constraints is if X = (0, 1) and

fi(x) are beta density functions with different parameters.
We will use a running example to help ground the intuition
behind the proof; see Figure 3 for an example of three dif-
ferent beta densities.

Given that wt
i ∈ (0, 1) represents the proportion of the

population at time t occupied by genome i,

f t(x) =
n∑

i=1

wt
ifi(x)

is the mixture distribution that characterizes the entire pop-
ulation at time t. We call this combined distribution over
fitness values the population distribution. (As an example
visualization, in Figure 3, the population distribution at
generation 0 is shown in red (darker solid line), while the
population distribution after a few generations of using pro-
portional selection is shown in green (lighter solid line).)

We will show that proportional selection and truncation
selection push the weights towards a vertex of the unit sim-
plex and the identity of that vertex is determined by the
characteristics of the fitness distributions (and is potentially
different depending on the selection mechanism). In con-
trast, tournament selection need not converge to any fixed
weight vector under our assumptions.

4.1 Proportional Selection: Expected Value
While it appears to be a folk theorem in the literature that

proportional selection finds the individual whose fitness dis-
tribution has the maximum expectation [9], we were unable
to locate a proof of this claim for a general noisy setting
in the literature. We provide such a proof in this section.
As a corollary, note that transforming the fitness before do-
ing selection optimizes the expectation of the transformed
fitness.
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Figure 3: Three example fitness distributions and
two mixtures shown as densities.

Under the proportional selection rule, individual genomes
receive a fitness value and then their probability of reproduc-
tion is proportional to this value. Ignoring the normaliza-
tion factor for the moment, in the infinite population model,
genome i occupies wt

i fraction of the population at time t
and those individuals have their fitness drawn from the den-
sity fi(x). Because we are imagining an infinite population,
each of these fitness values actually appears and the frac-
tion of the time fitness value x appears due to genome i
is wt

ifi(x). The total fitness weight of this genome in the
resulting population is therefore wt+1

i =
∫
X
wt

ixfi(x)dx/Z.
As a result, if we define

vi = Ex∼fi [x] =

∫
X

xfi(x)dx, (1)

the expected value of the fitness distribution for genome i,
then the evolution of the weights under proportional selec-
tion is given by:

wt+1
i =

wt
ivi∑

j∈1...n wt
jvj

, ∀i ∈ 1 . . . n and ∀t ≥ 0. (2)

For simplicity and without loss of generality, we assume that
v1 < v2 < · · · < vn. That is, genomes are sorted in increas-
ing expected fitness order and all expected fitness values are
unique. (If vi is not unique, we can consider the mixture of
the distributions that have the same vi as a single genome
that has as its fitness distribution the weighted mixture.)
To demonstrate convergence, we prove the following the-

orem.

Theorem 4.1. (Convergence of proportional selection)

lim
t→∞

wt
i = 0, ∀i ∈ 1 . . . n− 1, and lim

t→∞
wt

n = 1. (3)

The theorem states that the weight of the fitness distri-
bution with the largest expected value will converge to 1,
asymptotically. Before giving the formal proof, we will give a
visualization of the result. In Figure 4, the genome with the
fitness distribution of Beta(10, 3) has the highest expected
value, marked with the vertical line. The theorem states
that, over a series of generations, the weights of the other
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Figure 4: The same distributions as ccdfs. Expected
values are marked with vertical lines.

genomes decrease to 0 and thus the weight of the maximum
expected value fitness distribution Beta(10, 3) will dominate
the population in the limit. As a result, the population dis-
tribution will converge to the Beta(10, 3) distribution. As
can be seen in the figure, the population distribution at one
time step (green / light gray ccdf) is closer to the maximum
expected value fitness distribution than at an earlier time
step (red / dark gray ccdf).

Proof. Using induction, we show
wt

i = w0
i /(

∑
j
w0

j (vj/vi)
t). For the base case, note that

w0
i = w0

i /(
∑

j
w0

j ) because w0 is normalized.
For the inductive step,

wt+1
i = wt

ivi/(
∑
j

wt
jvj)

= wt
i/

∑
j

wt
j(vj/vi)

=
w0

i /(
∑

j
w0

j (vj/vi)
t)∑

j
[w0

j/(
∑

k
w0

k(vk/vj)
t)](vj/vi)

=
w0

i (vi)
t/(

∑
j
w0

j (vj)
t)∑

j
[w0

j (vj)
t/(

∑
k
w0

k(vk)
t)](vj/vi)

= w0
i (vi)

t/
∑
j

w0
j (vj)

t(vj/vi)

= w0
i /

∑
j

w0
j (vj/vi)

t+1.

For genome n and any i < n, vn > vi. Thus, using the
result above,

lim
t→∞

wt
n = lim

t→∞
w0

n/(
∑
j

w0
j (vj/vn)

t)

= lim
t→∞

w0
n/w

0
n = 1.

Since
∑

j
wt

j = 1, for i < n, limt→∞ wt
i = 0.
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Figure 5: Visualization of population fitness ap-
proaching the fitness distribution with the highest
xi in truncation selection (θ = 0.1)

Thus, in proportional selection, the genome with the high-
est expected fitness is preferentially reproduced at each gen-
eration and therefore comes to dominate the others.

4.2 Truncation Selection: Order Statistics
We next show that, in θ truncation selection, the dom-

inant genome is the one with the largest θ order statistic.
Let θ ∈ (0, 1) be the threshold parameter of the algorithm
(the top θ percent of the population gets to reproduce into
the next generation).
Define xi ∈ X such that Prx∼fi(x)(x ≥ xi) = θ = Gi(xi).

Thus, xi is the value of the quantile function qi(1 − θ) of
fitness distribution fi and it is unique by our assumptions
noted at the beginning of this section. It is the value xi

at which θ fraction of the fitness values are above xi and
1 − θ fraction of the fitness values are below xi. For exam-
ple, if θ = 1/2, xi is the median of fi. Figure 5 provides
a visualization in which the xis are marked with vertical
lines and appear at the intersection of the Gi functions with
the horizontal line at θ (labeled as G−1

Beta()(θ) in the figure).

Here, θ = 0.1 and Beta( 1
2
, 1
2
) has the highest xi value for

this θ. Once again, we assume without loss of generality
that x1 < x2 < · · · < xn—all of these fitness thresholds are
unique and sorted.
Let xt

c ∈ X be the population common point at generation
t, which is the value for which

∑
i∈1...n

wt
iGi(x

t
c) = θ. (4)

Thus, xt
c for the population distribution is analogous to xi

for genome i’s fitness distribution. In Figure 5, xt
c is the

intersection of the population distribution’s ccdf (at time t1
or t2) with the θ line. This xt

c threshold plays the important
role of deciding the change in weights for the genomes in the
next generation. When fitness evaluations are made for the
wt

i fraction of individuals with genome i, Gi(x
t
c) fraction of

them will survive because their fitness values will surpass
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Figure 6: Visualization of population fitness ap-
proaching the fitness distribution with the highest
xi in truncation selection (θ = 0.4)

xt
c. With the normalization factor included,

wt+1
i =

wt
iGi(x

t
c)

θ
, ∀i ∈ 1 . . . n and ∀t ≥ 0 (5)

are the weights at generation t+1 as a function of the weights
at generation t. The change in weights from generation to
generation induces a change in the population distribution
and thus change the next population common point xt+1

c .
The exact impact on xt+1

c is complex and thus the analysis
of truncation selection is a bit more indirect than that of
proportional selection.

Convergence to genome n is proven by the following the-
orem.

Theorem 4.2. (Convergence of truncation selection)

lim
t→∞

wt
i = 0, ∀i ∈ 1 . . . n− 1 and lim

t→∞
wt

n = 1. (6)

For our running example with beta distributions, it is in-
teresting to note that, for θ = 0.4, truncation selection will
lead to the same distribution dominating the population as
with proportional selection (compare Figures 4 and 6), but
setting θ = 0.1 leads to distribution Beta( 1

2
, 1
2
) converging to

1. (See Figure 5.) This example illustrates our main point—
the genome that dominates the population in the long term
is a function of the selection mechanism used.

Proof. Our argument consists of three major steps:

1. ∀t > 0, xt
c < xt+1

c : The population common point is
increasing.

2. ∃t′ > 0 s.t. xt′

c > xn−1: After a finite number of gener-
ations, the population common point exceeds the sec-
ond largest fitness threshold (and will not go below it
again due to Step 1).

3. xt
c > xn−1 =⇒ limt′→∞ wt′

n = 1: If the popula-
tion common point is above the second largest fitness
threshold, then the population will converge to the
genome with the largest fitness threshold.
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Putting these three facts together completes the proof. We
prove each in turn.

1. The population common point always increases.

At generation t, let W = {i s.t. xi > xt
c} be the “winners”

(any genome i with fitness threshold above the population
common point at time t) and L = {i s.t. xi ≤ xt

c} be the
“losers” (any genome i with fitness threshold at or below
the population common point at time t). (We suppress the
dependence of W and L on t to simplify notation).
Define δi = Gi(x

t
c)−θ if i ∈ W and δi = θ−Gi(x

t
c) if i ∈ L.

It captures the amount that genome i’s Gi value deviates
from θ at the current population common point. Note that
δi ≥ 0 for all i and that δi > 0 for at least one i ∈ W
(otherwise, all genomes are tied in their order statistics).
Also, note that wt+1

i > wt
i for i ∈ W and wt+1

i ≤ wt
i for

i ∈ L. These facts follow from Equation 5 and the definition
of W and L.
We proceed by contradiction. Assume the fitness common

point remains the same or decreases, xt+1
c ≤ xt

c. This as-
sumption implies Gi(x

t+1
c ) ≥ Gi(x

t
c) (by the fact that Gis

are strictly decreasing). Now,

θ =
∑

i∈1...n

wt+1
i Gi(x

t+1
c )

≥
∑

i∈1...n

wt+1
i Gi(x

t
c)

=
∑
i∈W

wt+1
i Gi(x

t
c) +

∑
i∈L

wt+1
i Gi(x

t
c)

=
∑
i∈W

wt+1
i (θ + δi) +

∑
i∈L

wt+1
i (θ − δi)

= θ +
∑
i∈W

wt+1
i δi −

∑
i∈L

wt+1
i δi

> θ +
∑
i∈W

wt
iδi −

∑
i∈L

wt
iδi

=
∑
i∈W

wt
i(θ + δi) +

∑
i∈L

wt
i(θ − δi)

= θ,

which is a contradiction (θ > θ). Thus, the fitness common
point must increase.

2. The population common point eventually ex-
ceeds the second largest fitness threshold.

Let ∆ = Gn(xn−1)−θ. Note that ∆ > 0 becauseGn(xn) =
θ (by definition of xn) and Gn(xn−1) > Gn(xn) (because
the xis are sorted and the Gis are strictly decreasing). This
quantity represents how likely it is for a fitness evaluation
for genome n to fall between xn−1 and xn.
Now, as long as xt

c ≤ xn−1, Gn(x
t
c) ≥ Gn(xn−1) (because

the Gis are strictly decreasing). By Equation 5,

wt+1
n = wt

nGn(x
t
c)/θ

≥ wt
nGn(xn−1)/θ

= wt
n(∆ + θ)/θ

= wt
n(1 + ∆/θ).

Thus, wt′

n grows without bound as long as xt′

c ≤ xn−1.

Therefore, there must be some time point t′ when xt′

c > xn−1

(and, due to Step 1, it will never go below xn−1 again).
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Figure 7: Oscillation of tournament selection (τ = 2)
in the infinite population model.

3. Once the population common point exceeds
the second largest fitness threshold, convergence to
genome n is guaranteed.

Let t̂ be the first time the population common point goes
over the second largest fitness threshold (and this threshold
is well defined as the time is discrete and the fitness support
is continuous) and define a to be the probability that the fit-
ness of the genome with the second largest fitness threshold
is larger than θ and smaller than the resulting population

common point: a = θ −Gn−1(x
t̂
c). For all i < n,

wt+1
i = wt

iGi(x
t̂
c)/θ

≤ wt
iGn−1(x

t̂
c)/θ

= wt
i(θ − a)/θ

= wt
i(1− a/θ).

As a result of the fact that wt
i is multiplied by a number

bounded away from 1, as t increases, wt
i goes to 0, as de-

sired.

4.3 Tournament Selection: Oscillation
We briefly look at tournament selection with τ = 2. We

find that the consistent drive toward a “maximum” genome,
seen in truncation and proportional selection, does not ap-
pear to be a feature of tournament selection.

In the infinite-population framework, tournament selec-
tion with τ = 2 consists of drawing two genomes from the
population in proportion to their weights and then compar-
ing their fitness values head to head. If hij is the probability
that genome i has a higher fitness value than genome j, the
change in weights can be written

wt+1
i = 2 wt

i

∑
j

hijw
t
j . (7)

(Note that hij + hji = 1.) We expect convergence of this
iteration if there is some genome i for which hij > 0.5 for
all j. However, as in the famous example of “non-transitive
dice” [13], it can be the case that there is i, j, k such that
hij > 1/2, hjk > 1/2, and hki > 1/2 leading to a rock-
paper-scissors-like ring of dominance.

If we assume fitness ties are broken at random, the Die4
example of Section 3 exhibits precisely this pattern. Specif-
ically, h16,10 = 0.535, h10,22 = 0.548, and h22,16 = 0.504.
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Figure 8: Different thresholds with their corre-
sponding optimal values and empirical histograms

Genome 16 beats genome 10 because they succeed nearly
as often and genome 16 gets the higher score. Genome 22
beats genome 16 for a similar reason. However, genome 10
beats genome 22 because it is significantly more likely to get
a non-zero score.
Figure 7 illustrates changes in the population over gen-

erations when tournament selection (τ = 2) is used in an
infinite population version of Die4. Note that instead of
converging to one genome, we see oscillatory behavior with
each genome growing and then shrinking over time. This
plot suggests an explanation for the tournament results re-
ported in Figure 2—instead of steady state behavior or con-
vergence, the weights for the three genomes fluctuate over
time.

5. EXPERIMENTAL COMPARISONS
To validate our analysis in a more realistic setting, we eval-

uated Die4 in a context where a larger number of genomes
have a chance to be part of the population. In contrast to
Section 3, populations could include any genome from 1 to
64. (Recall that genome i continues rolling until a 4 is rolled
or a total of at least i is reached.)
In all the experiments from this section, we only use selec-

tion followed by mutation (no crossover), with a mutation
rate of 1%. When a genome was mutated, it transformed
uniformly at random into one of the 64 possible genomes.
(Similar results are obtained using mutations that change
the genome to a nearby value.)
Using our knowledge of the Die4 game, we used dynamic

programming to analytically compute that the genomes with
maximum expected fitness are genomes 17 and 18, the max-
imum median is achieved by genome 11, and the maximum
10th percentile is that of genome 42.
To understand the extent to which finite population sizes

are well modeled by the infinite population analysis in Sec-
tion 4, we varied the population size and plotted heatmaps
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Figure 9: Variable population size, number of gen-
erations fixed at 1000, mutation 1% uniformly ran-
dom. The infinite population model predicted value
(“Optimal value“) is also shown in the figures

of the distribution of genomes at the end of a fixed number
of generations. The parameters we used were: population
size 70 to 4000, number of generations 1000, number of rep-
etitions 100.

As shown in Figure 9(a), proportional selection has a more
diffuse set of “winners”after 1000 generations when the pop-
ulation is small, whereas, as the population size increases,
the distributions of best genomes becomes peaked around
the optimal values. It is interesting to note that, while our
analysis does not apply directly to small populations, the
final fitness values in small population runs are still grouped
around the value predicted for the infinite population limit.

For truncation selection, we tested both scenarios men-
tioned in Section 3, θ = 0.5 (Figure 9(b)) and θ = 0.1 (Fig-
ure 9(c)). For truncation with θ = 0.5, the convergence to
the behavior predicted by the infinite population model is
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fast (for a population of 200 individuals, after 1000 genera-
tions, the dominant genome is the optimal one in the vast
majority of the experiments). On the other hand, it takes
a population of over 1000 individuals for truncation selec-
tion with θ = 0.1 to converge to optimal, with very noisy
behavior for populations smaller than 400 individuals.
The close correspondence of the infinite population analy-

sis and the finite population experiments across a wide range
of θ values is illustrated in Figure 8. There, for each θ level in
(0.05, 0.9) (with a 0.05 increment), we plotted as a heatmap
the histogram of the weights of the genomes after 1000 gen-
erations for a population size of 500 and 100 repetitions of
the experiment for each θ. We also computed the theoretic
maximum in the infinite population model and plotted it as
a thin black line. For intermediate values of θ, the two line
up well. For values of θ close to 1, the empirical behavior
of this relatively small population slightly deviates from the
expected behavior of the infinite population.

6. RELATED WORK
In the context of genetic algorithms, one of the first papers

to empirically investigate the effects of noise [7] looked at the
tradeoff between sampling a genome multiple times versus
increasing the size of the population. On the theoretical
side, a lot of analysis has looked at the effects of normal,
additive noise [11], for which the genome with maximum
expected fitness must match the one with maximum median
fitness. The same holds true for work in evolution strategies,
where the theoretical analysis has usually focused on the
noisy sphere model [2]. Other papers, however, have looked
at different types of randomness such as Cauchy noise [1].
More closely related to the present paper are those that

study the effects of the noisy fitness on the selection mech-
anism. The effects of normal additive noise on stochastic
tournament selection has been studied [4]. Another relevant
paper [12] argued for changing the selection mechanisms in
the case of noisy fitness optimization, observing the fact that
the total order between genomes in the case of deterministic
optimization becomes a partial order in the noisy case, re-
quiring a different perspective on selection. Thorough and
readable reviews of the existing literature on evolutionary
noisy optimization are available [3, 9].

7. CONCLUSIONS
This paper presented a formal analysis in the infinite pop-

ulation model of the behavior of several widely used selec-
tion algorithms—proportional selection, truncation selection
and tournament selection—when fitness functions are noisy.
We showed that different selection methods optimize differ-
ent objectives (proportional selection maximizes expected
value, truncation selection maximizes the order statistic cor-
responding to the truncation threshold, and tournament se-
lection need not maximize any concrete metric). We in-
troduced a new stochastic optimization domain (Die4) and
verified that the predicted theoretical behavior is consistent
with the experiments for finite populations.
A natural next step is to provide more detailed analysis

for the finite-population case. Also, a lot of valuable theo-
retical work has focused on analyzing the convergence rate
of different methods. Understanding the behavior of these
algorithms in the more general setting could be of great use

when applying evolutionary algorithms to naturally occur-
ring noisy optimization problems.

In future work, we want to drop some of the restrictive
modeling assumptions we made such as the common sup-
port for the noise distribution and the constraint for the
ccdf function to be strictly decreasing. Insights from such
studies, in turn, should lead to a better understanding of
the behavior of selection algorithms in noisy evolutionary
optimization.
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