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ABSTRACT
Recombination (or called crossover) operators are a kind of char-
acterizing feature of evolutionary algorithms (EAs). The useful-
ness of recombination operators has been verified empirically in
many practical applications, and has also been theoretically studied
in single-objective optimization. For multi-objective optimization,
however, there lacks strong evidence on whether the recombination
operators can lead to a better running time. In this paper, we estab-
lish some theoretical support to the use of recombination in multi-
objective optimization. We analyze the running time of REMO, a
simple multi-objective EA with a recombination operator, on two
well-studied bi-objective problems, i.e., the LOTZ and the COCZ
problems. Our analysis results disclose that the average running
time of REMO on LOTZ and COCZ is Θ(n2) and Θ(n log n), re-
spectively, improved from Θ(n3) and Θ(n2) as when the recombi-
nation operator is turned off, respectively. These results imply that
the recombination operator is crucial for the efficiency of REMO
on these two problems. The analysis also suggests that, gener-
ally, recombination operators can be helpful to multi-objective op-
timization as they may accelerate the filling of the Pareto front
through recombining diverse solutions.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Theory
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1. INTRODUCTION
In evolutionary algorithms (EAs) [1], recombination (or called

crossover) operators are used to generate offspring solutions from
existing ones, they take two or more individual solutions from the
population pool maintained by an EA and exchange some parts of
the solutions to form new solutions. Recombination operators are
a kind of characterizing feature of evolutionary algorithms [1]. In
recent development of multi-objective optimization, recombination
operators are also used in multi-objective EAs, from early work
(e.g., [21]) to up-to-date work (e.g., [28, 24]). However, there are
few theoretical results on whether recombination operators are use-
ful for EAs addressing multi-objective problems, and how much
useful they can be. The answers to these questions can enhance our
understanding of this kind of nature-inspired operators and may
disclose potential for further developments.

1.1 Related Work
Many theoretical results on the running time of EAs have been

derived and approaches to analyze EAs have been developed, e.g.
[6, 13, 36]. Most of these analysis focus on EAs with only mutation
operators, while only a few touch recombination operators.

Properties of recombination operators have been addressed in the
scenario of single-objective optimization. Early empirical analysis
includes [20] and [32]. Running time analysis later provided theo-
retical understanding of recombination operators. Several crossover-
only evolutionary algorithms were proved to be effective on the H-
IFF problem which is hard for any kind of mutation-based EAs [34,
2]. Jansen and Wegener [15, 16] proved that crossover operators
can be crucially important on some artificial problems. Crossover
operators then have been proved to be useful in more cases, in-
cluding Ising models [8, 33], the TwoPaths instance class of the
problem of computing unique input-output sequences [19], some
instance classes of the vertex cover problem [26], and the all-pairs
shortest path problem [3, 5, 4]. Meanwhile, on the contrary, Richter
et al. [27] gave the Ignoble Trail functions where a crossover oper-
ator was proved to be harmful. Approaches of analysis have been
developed such as the Markov chain switching theorem [35] that
compares the running time of an EA turning recombination on and
off. While all these studies are in the scenario of single-objective
optimization, the results can not be easily generalized to the sce-
nario of multi-objective optimization. Particularly, multi-objective
optimization aims at finding a set of optimal and non-dominant so-
lutions rather than a single optimal solution, where the situation
becomes more complex and is untouched.

Early analysis of multi-objective EAs (MOEAs) concentrates on
the conditions under which MOEAs can find the global optimal so-
lution given unlimited time, e.g. [11, 12, 29, 30, 31]. For running
time analysis, studies on two bi-objective pseudo-boolean func-
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Table 1: Comparison of expected running time of several multi-objective EAs on LOTZ and COCZ.
Problem (1+1)-EMO SEMO FEMO GEMO REMO0.5 REMO0

LOTZ Θ(n3) [17] Θ(n3) [18] Θ(n2 log n) [18] Θ(n2 log n) [17] Θ(n2) Θ(n3)
COCZ Θ(n2 log n) [17] O(n2 log n) [17] O(n2 log n) [17] Θ(n2) [17] Θ(n log n) Θ(n2)

tions, the LOTZ and the COCZ problems extended respectively from
the well studied LeadingOnes and OneMax problems, have led
to some disclosure of limited time behaviors of MOEAs. Table 1
lists the analysis results of several MOEAs on the two problems.
Note that none of these previously analyzed MOEAs uses recom-
bination operators.

The recent work by Neumann and Theile [24] is, to the best of
our knowledge, the first and only work analyzing crossover opera-
tors in MOEAs. They proved that a crossover operator can speed
up evolutionary algorithms for the multi-criteria all-pairs-shortest-
path problem. Discovered through their analysis, the crossover op-
erator can be helpful in the interplay with the mutation operator,
such as that the crossover operator can generate a good starting
point solution from which the mutation operator can evolve the
population efficiently.

We also note that there are a bunch of studies that analyze MOEAs
for solving single-objective problems [25, 22, 9, 23, 14]. However,
we concern about multi-objective problems.

1.2 Our Contribution
As that multi-objective optimization aims at finding a set of op-

timal solutions with different balances of the objectives, which was
not involved in the analysis for single objective optimization, this
paper investigates whether recombination operators can have any
effect on solving the optimal solution set.

We study the performance of REMO (recombination-incorporated
evolutionary multi-objective optimizer), which is extended from
the SEMO [18] algorithm, on the LOTZ and the COCZ problems.
We prove that the average running time of REMO using recom-
bination with probability 0.5 (denoted as REMO0.5) is Θ(n2) on
the LOTZ problem, and Θ(n log n) on the COCZ problem. Mean-
while, we also analyze REMO with the recombination operator
turned off (denoted as REMO0), and prove that the average run-
ning time of REMO0 is Θ(n3) on the LOTZ problem and Θ(n2)
on the COCZ problem. Comparing the analysis results of REMO0.5

with REMO0, we conclude that the recombination operator is cru-
cial for the efficiency of REMO on the two problems. The running
time of REMO and all the other known results is compared in Ta-
ble 1. It can be observed that, with the help of the recombination
operator, REMO0.5 has the best running time on the LOTZ prob-
lem, and has better running time than (1+1)-EMO and GEMO on
the COCZ problem while has better upper bound than SEMO and
FEMO.

Through the analysis of REMO on the two problems, we dis-
cover that the recombination operator can work by accelerating the
filling of the Pareto front through recombining diverse optimal so-
lutions that have been found. It is worth noticing that this mecha-
nism is different from that analyzed in [24], where the crossover op-
erator works as its interplay with mutation. Moreover, the idea that
recombination can accelerate the filling of the Pareto front through
recombining diverse solutions, though only proved in the specific
cases, might be hold in more general situations and might be useful
for designing more efficient MOEAs.

The rest of this paper is organized as follows. Section 2 intro-
duces the preliminaries on multi-objective optimization. Section

3 introduces the model problems. Section 4 presents the REMO
algorithm, which is analyzed in Section 5. Section 6 concludes.

2. MULTI-OBJECTIVE OPTIMIZATION
Multi-objective optimization requires to simultaneously optimize

two or more objective functions, as in Definition 1. When there are
two objective functions, it is also called as a bi-objective optimiza-
tion problem. We consider maximization problems in this paper.

Definition 1 (Multi-Objective Optimization) Given a feasible so-
lution space X and objective functions f1, . . . , fm, the maximum
multi-objective optimization aims to find the solution x∗ satisfying

x∗ = arg max
x∈X

f(x) = arg max
x∈X

(
f1(x), f2(x), ..., fm(x)

)

where f(x) =
(
f1(x), f2(x), ..., fm(x)

)
is the objective vector

of the solution x.

Usually, the objectives are conflicted, i.e., optimization of one
objective alone will degrade the other objectives, and it is impos-
sible to have one solution that optimizes all the objectives. There-
fore, multi-objective optimization tries to find a set of solutions
according to some criterions. One commonly used criterion is the
Pareto optimality, which utilizes the domination relation between
solutions as in Definition 2. The solution set by Pareto optimality
is called Pareto set, as in Definition 3.

Definition 2 (Domination) Let f = (f1, f2, . . . , fm) : X → Rm

be the objective vector, where X is the feasible solution space, and
Rm is the objective space. For two solutions x and x′ ∈ X :

1. x weakly dominates x′ if, for all i that 1 ≤ i ≤ m, fi(x) ≥
fi(x

′), denoted as ºf ;

2. x dominates x′ if, x weakly dominates x′ and fi(x) >
fi(x

′) for some i, denoted as Âf .

Definition 3 (Pareto Optimality) Let f = (f1, f2, . . . , fm) : X
→ Rm be the objective vector, where X is the feasible solution
space, and Rm is the objective space. A solution x ∈ S is Pareto
optimal if there is no other solution in X that dominates x. A set S
is called Pareto set if it contains only Pareto optimal solutions. The
collection of objective values of a Pareto set is called the Pareto
front of the set.

With the goal of finding the largest Pareto set, or called the op-
timal Pareto set, the running time of an MOEA is counted as the
number of calls to f until it finds the Pareto front of the optimal
Pareto set, that is, the MOEA should find at least one corresponding
solution for each element in the Pareto front of the optimal Pareto
set. Note that this definition agrees with that in [18, 10, 17]. Since
MOEAs are naturally stochastic algorithms, we measure the per-
formance of MOEAs by the expected running time. SEMO [18],
as described in Algorithm 1, is a simple MOEA, and also the first
analyzed MOEA due to its simplicity, which explains the common
structure of various MOEAs.
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Algorithm 1 (SEMO [18]) Given solution length n and objective
function vector f , SEMO consists of the following steps:
1: Randomly choose x ∈ {0, 1}n

2: P ← {x}
3: loop
4: Choose x from P uniformly at random
5: Create x′ by flipping a randomly chosen bit of x
6: P ← P − {z ∈ P |x′ Âf z}
7: if @z ∈ P such that z ºf x′ then
8: P ← P ∪ {x′}
9: end if

10: end loop

3. THE MODEL PROBLEMS
Two bi-objective pseudo-boolean model problems, LOTZ (Lead-

ing Ones Trailing Zeros) and COCZ (Count Ones Count Zeros), are
usually used to investigate the properties of MOEAs [18, 10, 17],
as the listed in Table 1.

For LOTZ, the first objective is to maximize the number of lead-
ing one bits (the same as the LeadingOnes problem [6]), and the
other objective is to maximize the number of trailing zero bits.

Definition 4 (LOTZ) The Pseudo-Boolean function LOTZ:
{0, 1}n → N2 is defined as follows:

LOTZ(x) =

(
n∑

i=1

i∏
j=1

xj ,

n∑
i=1

n∏
j=i

(1− xj)

)
.

As analyzed in [18], the objective space of LOTZ can be parti-
tioned into n+1 subsets Fi, where i ∈ {0, . . . , n} is the sum of the
two objective values, i.e., f(x) ∈ Fi if f1(x) + f2(x) = i. Obvi-
ously, Fn is the Pareto front of the optimal Pareto set, and the opti-
mal Pareto set has n + 1 elements, which are 0n, 10n−1, . . . , 1n.

For COCZ, the first objective is to maximize the number of one
bits (the same as the OneMax problem [6]), and the other objective
is to maximize the number of one bits in the first half of the solution
plus the number of zero bits in the second half. The two objectives
are corporative in maximizing the number of one bits in the first
half of the solution, but conflict in the second half.

Definition 5 (COCZ) The Pseudo-Boolean function COCZ:
{0, 1}n → N2 is defined as follows:

COCZ(x) =




n∑
i=1

xi,

n/2∑
i=1

xi +

n∑

i=n/2+1

(1− xi)




where n is even.

As analyzed in [17], the objective space of COCZ can be parti-
tioned into n/2+1 subsets Fi, where i ∈ {0, . . . , n/2} is the num-
ber of one bits in the first half of the solution. It is obvious that each
Fi contains n/2+1 different objective vectors (i+j, i+n/2−j),
where j ∈ {0, . . . , n/2} is the number of one bits in the second
half. The Pareto front of the optimal Pareto set is Fn/2, and the
optimal Pareto set is {1 n

2 ∗n
2 ; ∗ ∈ {0, 1}}, the size of which is 2

n
2 .

4. REMO
The recombination-incorporated evolutionary multi-objective op-

timizer (REMO) studied in this paper is depicted in Algorithm 2,
which is extended from the algorithm SEMO by incorporating a
recombination operator. The components of REMO is explained
in the following.

It is well known that the diversity of the population is impor-
tant to the success of recombination operators, since recombination
makes no progress from similar solutions. Therefore, we should
employ some diversity control in REMO. We use objective diver-
sity (od) measure with an assumption that the diversity of a set of
solutions is consistent with the difference of their objective vec-
tors. By this assumption, a population containing solutions with
good objective values on different objectives has a high diversity.
The objective diversity is defined as follows. For a set of solutions
S, define a variable qi for the i-th objective (1 ≤ i ≤ m),

qi =

{
1 if max{fi(x) | x ∈ S} ≥ θi,

0 otherwise,

where θi is the “goodness” threshold of the i-th objective, then we
define the objective diversity of S

od(S) =
∑m

i=1
qi.

That is, the objective diversity of a population is the number of ob-
jectives that have corresponding good solutions in the population,
and a solution is good for an objective if its objective value is not
less than a predefined threshold. Then, given m objectives, the
largest value of objective diversity is m. Here, we use the objec-
tive diversity with θi = the minimal local optimal value of the i-th
objective.

To make the initial population diverse enough, we use an initial-
ization process, described in Subprocedure 1. In the initialization
process, m independent randomized local search (RLS) are em-
ployed to optimize the m objective functions f1, f2, . . . , fm, each
RLS corresponds to one objective. In the RLS, the solution is ex-
amined whether it is local optimal for an objective every n muta-
tion steps, where n is the length of the solution. When to check
whether a solution is local optimal for an objective, we use the so-
lutions having Hamming distance 1 with the current solution as the
neighborhood. This initialization procedure is terminated when lo-
cal optimal solutions are found for all the objectives.

Subprocedure 1 (Initialization) Input: m solutions x1, x2, . . . ,
xm from {0, 1}n; Output: m local optimal solutions correspond-
ing to one of the m objectives respectively; the Initialization pro-
cedure consists of the following steps:
1: repeat
2: repeat the following process n times
3: Create offsprings x′1, x

′
2, . . . , x

′
m by flipping a randomly

chosen bit of x1, x2, . . . , xm respectively
4: if fi(x

′
i) > fi(xi) for an i then

5: xi ← x′i
6: end if
7: end repeat
8: until ∀i: xi is a local optima for fi

The process makes the initial population contain one good so-
lution for each objective, i.e., qi = 1(1 ≤ i ≤ m). Thus, the
objective diversity of the initial population is m. Since a solution
in the population is eliminated only if it is dominated by a new so-
lution, there always exists good solutions for each objective. As the
result, the objective diversity of the population always keeps m, the
maximal objective diversity, throughout the evolutionary process.

In each reproduction step, REMO picks a set of m solutions with
the objective diversity at least m/2 from the current population to
carry out the recombination. In order to do so, the best solutions
each for one of the randomly selected m/2 objectives are selected
at first, denoted as a set P 1

s . The remaining m − |P 1
s | solutions
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are randomly chosen from the population excluding P 1
s . Thus, the

selected solutions for recombination have an objective diversity at
least m/2.

In the reproduction procedure, we use the parameter pc to con-
trol the use of the crossover, that is, in each reproduction step, the
offspring solutions are generated by the crossover with probability
pc, and otherwise generated by the mutation. In the end of each
iteration, the offspring solutions Po are used to update the current
population.

Algorithm 2 (REMO) Given solution length n and objective func-
tion vector f of length m, REMO consists of the following steps:

1: P ← Initialization(m solutions randomly from {0, 1}n)
2: loop
3: P 1

s ← select the best solution in P for each of the randomly
selected m/2 objectives

4: P 2
s ← randomly select m− |P 1

s | solutions from P − P 1
s

5: Ps ← P 1
s ∪ P 2

s

6: r ← uniformly chosen from [0, 1] at random
7: if r < pc then
8: Po ← Recombination(Ps)
9: else

10: Po ← for each solution x ∈ Ps, flip a randomly chosen bit
11: end if
12: for each solution x′ ∈ Po

13: P ← P − {z ∈ P | x′ Âf z}
14: if @z ∈ P such that z ºf x′ then
15: P ← P ∪ {x′}
16: end if
17: end for
18: end loop

The recombination operator employed in REMO is the diag-
onal multi-parent crossover [7], as in Definition 6. For m so-
lutions, diagonal multi-parent crossover randomly selects m − 1
crossover points between adjacent bits and creates m offspring so-
lutions by sequentially combining the components partitioned by
the crossover points, which is a generalization of one-point crossover
over two solutions.

Definition 6 (Recombination [7]) Given m solutions whose length
is n, randomly select m− 1 crossover points from n− 1 positions
between adjacent bits, and create m offspring solutions as follows.
Denote the order of the m parents as 1, 2, ..., m. The m offspring
solutions are generated by combining m components partitioned
by the m − 1 crossover points, where the components of the ith
offspring solution sequentially come from parents i, i + 1, ..., m−
1, m, 1, ..., i− 1, where 1 ≤ i ≤ m.

Note that we investigate the bi-objective problems in this paper,
thus when selecting solutions for reproduction, the best solution in
the current population for a randomly selected objective is selected
first, and then the other solution is randomly chosen from the re-
maining solutions. Also since the bi-objective problems are con-
sidered in this paper, the recombination operator used in REMO is
just one-point crossover.

5. ANALYSIS OF REMO
In this section, we prove the running time of REMO on the LOTZ

problem as well as on the COCZ problem. First, we analyze the
running time of the initialization procedure of REMO on these two
problems.

Lemma 1 On the LOTZ problem, the expected running time of the
initialization procedure of REMO is Θ(n2).

Proof. The initialization procedure is to optimize the two objec-
tives of LOTZ separately by two independent RLS. For the first
objective LO which is to maximize the number of leading ones,
the probability of increasing LO in one mutation step is 1/n and
the expected number of 0’s of the initial random solution is n/2,
thus, the expected running time to find the solution optimizing LO
is n2/2. Meanwhile, a solution is examined whether it is local
optimal for an objective every n mutation steps, thus it needs to ex-
amine n/2 times in expectation in the evolutionary process. Since
the neighborhood size of a solution is n, the running time of check-
ing whether a solution is local optimal is n. Thus, the expected
running time to find the optimal solution for the objective LO is
n2/2 + n · n/2 = n2. The result also holds for optimizing the
second objective TZ. Thus, the expected running time of the ini-
tialization procedure of REMO on LOTZ is Θ(n2). ¥

Lemma 2 On the COCZ problem, the expected running time of the
initialization procedure of REMO is Θ(n log n).

Proof. The initialization procedure is to optimize the two objec-
tives of COCZ separately by two independent RLS. For the first
objective which is to maximize the number of 1’s, the probability
of increasing the objective by 1 in one mutation step from a solu-
tion with i 0’s is i

n
. Thus, the expected running time for a solu-

tion with i 0’s is nHi. Since a random solution uniformly selected
from {0, 1}n has i 0’s with probability

(
n
i

)
/2n, the expected run-

ning time for optimizing the first objective is
∑n

i=0

(
n
i

)
nHi/2n ∈

[n
2
H n

2
, nH n

2
]. Meanwhile, a solution is examined whether it is lo-

cal optimal for an objective every n mutation steps, then it needs
to examine [ 1

2
H n

2
, H n

2
] times in expectation in the evolutionary

process, where the cost of one examination is n. Thus, the ex-
pected running time to find a local optima for the first objective is
[nH n

2
, 2nH n

2
] ∈ Θ(n log n). The result also holds for optimiz-

ing the second objective. Thus, the expected running time of the
initialization procedure of REMO on COCZ is Θ(n log n). ¥

Then, we derive a property of the evolving population of REMO
on the LOTZ problem as well as on the COCZ problem.

Lemma 3 On the LOTZ problem, after the initialization proce-
dure, the population of REMO contains only Pareto optimal so-
lutions and its size never decreases.

Proof. After the initialization procedure, the solutions 1n and 0n

are generated, which are local optima for the objective LO and TZ,
respectively. Thus, the initial population P = {1n, 0n} contains
two Pareto optimal solutions. Assume that the current population
contains only Pareto optimal solutions. In the next step, after us-
ing either one-point crossover or one bit mutation on the two se-
lected Pareto optimal solutions, the offspring solutions which are
not Pareto optimal will be dominated by the parents, and only the
new Pareto optimal solutions will be accepted. Thus, the next pop-
ulation also contains only Pareto optimal solutions. Then, it is ob-
vious that the size of the population never decreases. ¥

Lemma 4 On the COCZ problem, after the initialization proce-
dure, the population of REMO contains only Pareto optimal so-
lutions and its size never decreases.

Proof. After the initialization procedure, the solutions 1n and 1
n
2 0

n
2

are generated, which are local optima for the two objectives of
COCZ, respectively. Thus, the initial population P = {1n, 1

n
2 0

n
2 }
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contains two Pareto optimal solutions. Assume that the current
population contains only Pareto optimal solutions. In the next step,
on the two selected Pareto optimal solutions, if it uses one-point
crossover, only Pareto optimal solutions can be generated; other-
wise it uses mutation, the offspring solutions which are not Pareto
optimal are dominated by the parents. Thus, the next population
also contains only Pareto optimal solutions. Then, it is obvious that
the size of the population never decreases. ¥

5.1 Analysis of REMO with pc = 0.5

Theorem 1 On the LOTZ problem, the expected running time of
REMO with pc = 0.5 is Θ(n2).

Proof. For the LOTZ problem, the size of the Pareto front of the
optimal Pareto set is n + 1 and the Pareto optimal solution has a
one-to-one correspondence with its objective vector. By Lemma
3, we divide the optimization process into n − 1 phases, where
the i-th phase (1 ≤ i ≤ n − 1) corresponds to the process of
evolving the population containing i + 1 Pareto optimal solutions
to that containing i + 2 Pareto optimal solutions, and then bound
the running time of the whole evolutionary process by summing up
the running time bound of each phase.

We consider the i-th phase where the population contains i + 1
Pareto optimal solutions. In the selection procedure of REMO,
the best solution in the current population for a randomly chosen
objective will be selected first, then the other solution will be ran-
domly selected from the remaining solutions. Since the two solu-
tions 1n and 0n, which are optimal for the objectives LO and TZ
respectively, have been found, the selection procedure actually se-
lects one solution x randomly from {1n, 0n} first, each of which
with probability 1

2
, then selects the other solution randomly from

the remaining solutions P−{x}, each of which with probability 1
i
.

Thus, there are two cases: the two solutions 1n and 0n are selected;
one selected solution is either 1n or 0n and the other selected one
is from P − {1n, 0n}. The former case happens with probability
1
i
. In this case, these two solutions can generate one new Pareto

optimal solution with probability n−i
n−1

by one-point crossover in
one step. In the latter case, suppose that the selected solution from
P − {1n, 0n} has k(0 < k < n) leading ones, the number of the
solutions having more than k leading ones in the current population
is k′(1 ≤ k′ ≤ i− 1) and the other selected solution is 1n, which
happens with probability 1

2i
, these two solutions can generate one

new Pareto optimal solution with probability n−k−k′
n−1

by one-point
crossover in one step. Correspondingly, the other selected solution
is 0n which also happens with probability 1

2i
, then one new Pareto

optimal solution can be generated with probability k−i+k′
n−1

by one-
point crossover in one step. Thus, one new Pareto optimal solution
can be generated by one-point crossover in one step with probabil-
ity 1

i
· n−i

n−1
+(i−1) · 1

2i
·(n−k−k′

n−1
+ k−i+k′

n−1
) = (i+1)(n−i)

2i(n−1)
. Since

the crossover probability is 1
2

, one new Pareto optimal solution can
be generated in one step in the i-th phase with probability at least
(i+1)(n−i)

4i(n−1)
. Thus, the expected steps of the i-th phase is at most

4i(n−1)
(i+1)(n−i)

.
Since two offspring solutions need to be evaluated in one repro-

duction step, the running time of one step is counted as 2. Thus, the
expected running time to find the Pareto front of the optimal Pareto
set is at most 2 · ∑n−1

i=1
4i(n−1)

(i+1)(n−i)
∈ Θ(n log n). By combining

the running time of the initialization procedure in Lemma 1, the
expected running time of REMO with pc = 0.5 to find the Pareto
front of the optimal Pareto set of the LOTZ problem is Θ(n2). ¥

Theorem 2 On the COCZ problem, the expected running time of
REMO with pc = 0.5 is Θ(n log n).

Proof. For the COCZ problem, the size of the Pareto front of the
optimal Pareto set is n

2
+ 1. Since the population in the evolution-

ary process contains at most one Pareto optimal solution for each
element in the Pareto front of the optimal Pareto set and Lemma 4,
we divide the optimization process into n

2
− 1 phases, where the

i-th phase (1 ≤ i ≤ n
2
− 1) corresponds to the process of evolving

the population containing i+1 Pareto optimal solutions to that con-
taining i + 2 Pareto optimal solutions, and then bound the running
time of the whole evolutionary process by summing up the running
time bound of each phase.

We consider the i-th phase where the population contains i + 1
Pareto optimal solutions. In the selection procedure of REMO,
since the two solutions 1n and 1

n
2 0

n
2 , which are optimal for the

two objectives of COCZ respectively, have been found, the algo-
rithm actually select one solution x randomly from {1n, 1

n
2 0

n
2 }

first, each of which with probability 1
2

, and then select the other
solution randomly from the remaining solutions P − {x}, each of
which with probability 1

i
. Thus, there are two cases: the two so-

lutions 1n and 1
n
2 0

n
2 are selected; one selected solution is either

1n or 1
n
2 0

n
2 and the other selected one is from P − {1n, 1

n
2 0

n
2 }.

The former case happens with probability 1
i
. In this case, these

two solutions can generate one or two new Pareto optimal solu-
tions with probability at least

n
2−i

n−1
by one-point crossover in one

step. In the latter case, suppose that the selected solution from
P − {1n, 1

n
2 0

n
2 } has k(1 ≤ k ≤ n

2
− 1) 0’s, the number of

the solutions having less than k 0’s in the current population is
k′(1 ≤ k′ ≤ i − 1) and the other selected solution is 1n, which
happens with probability 1

2i
, these two solutions can generate one

or two new Pareto optimal solutions with probability at least k−k′
n−1

by one-point crossover in one step. Correspondingly, the other se-
lected solution is 1

n
2 0

n
2 which also happens with probability 1

2i
,

then one or two new Pareto optimal solutions can be generated

with probability at least
n
2−k−i+k′

n−1
by one-point crossover in one

step. Thus, one or two new Pareto optimal solutions can be gen-
erated by one-point crossover in one step with probability at least
1
i
·

n
2−i

n−1
+ (i− 1) · 1

2i
· ( k−k′

n−1
+

n
2−k−i+k′

n−1
) =

(i+1)( n
2−i)

2i(n−1)
. Since

the crossover probability is 1
2

, one or two new Pareto optimal solu-
tions can be generated in one step in the i-th phase with probability
at least (i+1)( n

2−i)

4i(n−1)
. Thus, the expected steps of the i-th phase is at

most 4i(n−1)
(i+1)( n

2−i)
.

Since the running time of one step is counted as 2, the expected
running time to find the Pareto front of the optimal Pareto set is at
most 2 ·∑

n
2−1

i=1
4i(n−1)

(i+1)( n
2−i)

∈ Θ(n log n). By combining the run-
ning time of the initialization procedure in Lemma 2, the expected
running time of REMO with pc = 0.5 to find the Pareto front of
the optimal Pareto set of the COCZ problem is Θ(n log n). ¥

5.2 Analysis of REMO with pc = 0

Theorem 3 On the LOTZ problem, the expected running time of
REMO with pc = 0 is Θ(n3).

Proof. For the LOTZ problem, we define that two Pareto opti-
mal solutions are consecutive if they are neighbor in the sequence
1n, 1n−10, . . . , 0n. Since one random bit mutation on a Pareto
optimal solution can generate only consecutive Pareto optimal so-
lutions and Lemma 3, the population in any step of the evolution-
ary process is always constructed by a prefix l and a suffix s of
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the sequence 1n, 1n−10, . . . , 0n. Then, we divide the optimiza-
tion process into n phases, where the population in the i-th phase
(1 ≤ i ≤ n) contains i + 1 Pareto optimal solutions.

In the first phase, |l| = 1 and |s| = 1, where | ∗ | denotes the
length of the sequence ∗. The two solutions 1n and 0n are selected.
For 1n, the offspring solution generated by one bit mutation can be
accepted only if the last 1 bit is mutated. For 0n, only if the first 0
bit is mutated, the offspring solution can be accepted. Thus, in one
step, two new Pareto optimal solutions will be generated simul-
taneously with probability 1

n2 ; and only one new Pareto optimal
solution will be generated with probability 2(n−1)

n2 .
Then, we consider the i-th phase (1 < i ≤ n− 1). In the selec-

tion procedure, since 1n and 0n are optimal for the two objectives
of LOTZ respectively, one solution will be randomly selected from
{1n, 0n} and the other solution will be randomly selected from the
remaining solutions. Then, there are two cases.

case 1: min{|l|, |s|} > 1. In this case, the solutions 1n and 0n

by one bit mutation will never generate new Pareto optimal solu-
tions, and only the last solution of the prefix l or the first solution
of the suffix s can generate one new Pareto optimal solution with
probability 1

n
by one bit mutation. Thus, one new Pareto optimal

solution can be generated in one step with probability 2
in

.
case 2: min{|l|, |s|} = 1. Suppose that |l| = 1. If the selected

solution from {1n, 0n} is 0n, mutation on 0n will never generate
new Pareto optimal solutions, and one new Pareto optimal solu-
tion can be generated by mutation on the other selected solution
with probability 2

in
, since either the solution 1n or the first solu-

tion of the suffix s can generate one new Pareto optimal solution
with probability 1

n
. If the selected solution from {1n, 0n} is 1n,

by mutation on 1n, one new Pareto optimal solution 1n−10 can
be generated with probability 1

n
, and by mutation on the other se-

lected solution, one new Pareto optimal solution can be generated
with probability 1

in
. Thus, in one step, only one new Pareto optimal

solution will be generated while min{|l|, |s|} is still 1 with proba-
bility 1

in
− 1

2in2 ; only one new Pareto optimal solution will be gen-
erated while min{|l|, |s|} > 1 with probability 1

2n
+ 1

2in
− 1

2in2 ;
and two new Pareto optimal solutions will be generated simultane-
ously while min{|l|, |s|} > 1 with probability 1

2in2 .
From the analysis above, it can be concluded that the expected

running time to find the Pareto front of the optimal Pareto set de-
pends only on the size of the current population (i.e., |l|+ |s|) and
whether min{|l|, |s|} is larger than 1. We denote E(i)(i ≥ 1) and
E′(i)(i ≥ 3) as the expected running time to find the Pareto front
of the optimal Pareto set from the i-th phase where min{|l|, |s|} =
1, and that from the i-th phase where min{|l|, |s|} > 1, respec-
tively.

Then, from the above analysis for the transition behavior in the
i-th phase (1 < i ≤ n− 1), we have

∀3 ≤ i < n : E′(i) =
in

2
+ E′(i + 1),

and for all integers i ∈ [2, n− 1),

E(i) =
2in2

(3 + i)n− 1
+

2n− 1

(3 + i)n− 1
E(i + 1)

+
(i + 1)n− 1

(3 + i)n− 1
E′(i + 1) +

1

(3 + i)n− 1
E′(i + 2).

It trivially holds that E(n) = E′(n) = 0, and E(n − 1) =
2(n−1)n2

n2+2n−1
. Then, it is not difficult to prove that, for all integers

i ∈ [3, n],

E(i) ≤ E′(i) =
n(n− i)(n + i− 1)

4
.

From the analysis of the first phase and E(2) = 4n2

5n−1
+ 2n−1

5n−1
E(3)+

3n−1
5n−1

E′(3) + 1
5n−1

E′(4), we have

E(1) =
n2

2n− 1
+

1

2n− 1
E′(3) +

2n− 2

2n− 1
E(2)

=
(13n− 9)n2

(2n− 1)(5n− 1)
+

2n− 2

5n− 1
E(3) +

6n2 − 3n + 1

(2n− 1)(5n− 1)
E′(3)

+
2n− 2

(2n− 1)(5n− 1)
E′(4).

Thus, we have

3

5
E′(3) < E(1) ≤ (13n− 9)n2

(2n− 1)(5n− 1)
+ E′(3).

Since E′(3) = n(n−3)(n+2)
4

∈ Θ(n3), the expected steps af-
ter the initialization procedure to generate the Pareto front of the
optimal Pareto set (i.e., E(1)) is Θ(n3). Since the running time
of one step is counted as 2, by combining the running time of the
initialization procedure in Lemma 1, the expected running time of
REMO with pc = 0 to find the Pareto front of the optimal Pareto
set of the LOTZ problem is Θ(n3). ¥

Theorem 4 On the COCZ problem, the expected running time of
REMO with pc = 0 is Θ(n2).

Proof. For the COCZ problem, we first define that two Pareto op-
timal solutions x1 and x2 are consecutive if |‖x1‖ − ‖x2‖| = 1,
where ‖ ∗ ‖ is the 1-norm. That is, the difference of the number
of 0’s for two consecutive Pareto optimal solutions is 1. Then, we
define that a set S of Pareto optimal solutions is consecutive if it
contains exactly one solution with i 0’s for any i ∈ [il, iu], where
il = min{n− ‖x‖ | x ∈ S} and iu = max{n− ‖x‖ | x ∈ S}.
The solution with il 0’s and that with iu 0’s in the consecutive
set are called l-boundary solution and u-boundary solution, respec-
tively. Since one random bit mutation on a Pareto optimal solution
can only generate consecutive Pareto optimal solutions and Lemma
4, the population in the evolutionary process is always constructed
by a consecutive set containing 1n and another consecutive set con-
taining 1

n
2 0

n
2 . Denote l as the consecutive set containing 1n and

s as the consecutive set containing 1
n
2 0

n
2 . Then, we divide the op-

timization process into n
2

phases, where the population in the i-th
phase (1 ≤ i ≤ n

2
) contains i + 1 Pareto optimal solutions.

In the first phase, |l| = 1 and |s| = 1, where | ∗ | denotes the
size of the set ∗. The two solutions 1n and 1

n
2 0

n
2 are selected.

For 1n, the offspring solution generated by one bit mutation will
be accepted if the 1 bit in the second half is mutated. For 1

n
2 0

n
2 , if

the 0 bit is mutated, the offspring solution will be accepted. Thus,
in one step, two new Pareto optimal solutions will be generated si-
multaneously with probability 1

4
; and only one new Pareto optimal

solution will be generated with probability 1
2

.
Then, we consider the i-th phase (1 < i ≤ n

2
− 1). In the

selection procedure, since 1n and 1
n
2 0

n
2 are optimal for the two

objectives of COCZ respectively, one solution will be randomly se-
lected from {1n, 1

n
2 0

n
2 } and the other solution will be randomly

selected from the remaining solutions. Then, there are two cases.
case 1: min{|l|, |s|} > 1. In this case, the solutions 1n and

1
n
2 0

n
2 by one bit mutation will never generate new Pareto optimal

solutions, and only the u-boundary solution in the set l and the l-
boundary solution in the set s can generate one new Pareto optimal
solution with probability

n
2−(|l|−1)

n
and

n
2−(|s|−1)

n
respectively by

one bit mutation. Thus, one new Pareto optimal solution can be
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generated in one step with probability
n
2−(|l|−1)

in
+

n
2−(|s|−1)

in
=

n−i+1
in

.
case 2: min{|l|, |s|} = 1. Suppose that |l| = 1. If the selected

solution from {1n, 1
n
2 0

n
2 } is 1

n
2 0

n
2 , mutation on 1

n
2 0

n
2 will never

generate new Pareto optimal solutions, and one new Pareto optimal
solution can be generated by mutation on the other selected solu-
tion with probability 1

2i
+

n
2−(i−1)

in
, since 1n and the l-boundary

solution of s can generate one new Pareto optimal solution with
probability 1

2
and

n
2−(i−1)

n
, respectively. If the selected solution

from {1n, 1
n
2 0

n
2 } is 1n, by mutation on 1n, one new Pareto opti-

mal solution can be generated with probability 1
2

, and by mutation
on the other selected solution, one new Pareto optimal solution can
be generated with probability

n
2−(i−1)

in
. Thus, in one step, only one

new Pareto optimal solution will be generated while min{|l|, |s|}
is still 1 with probability 3( n

2−i+1)

4in
; only one new Pareto optimal

solution will be generated while min{|l|, |s|} > 1 with proba-

bility (i+ 1
2 )n+i−1

4in
; and two new Pareto optimal solutions will be

generated simultaneously while min{|l|, |s|} > 1 with probability
n
2−i+1

4in
.

From the analysis above, it can be concluded that the expected
running time to find the Pareto front of the optimal Pareto set de-
pends only on the size of the current population (i.e., |l|+ |s|) and
whether min{|l|, |s|} is larger than 1. We denote E(i)(i ≥ 1) and
E′(i)(i ≥ 3) as the expected running time to find the Pareto front
of the optimal Pareto set from the i-th phase where min{|l|, |s|} =
1, and that from the i-th phase where min{|l|, |s|} > 1, respec-
tively.

Then, from the above analysis for the transition behavior in the
i-th phase (1 < i ≤ n

2
− 1), we have, for all integers i ∈ [3, n

2
),

E′(i) =
in

n− i + 1
+ E′(i + 1),

and for all integers i ∈ [2, n
2
− 1),

E(i) =
4in

(i + 5
2
)n− 3i + 3

+
3(n

2
− i + 1)

(i + 5
2
)n− 3i + 3

E(i + 1)

+
(i + 1

2
)n + i− 1

(i + 5
2
)n− 3i + 3

E′(i + 1)+
n
2
− i + 1

(i + 5
2
)n− 3i + 3

E′(i + 2).

It trivially holds that E(n
2
) = E′(n

2
) = 0 and E(n

2
− 1) =

4n2−8n
n2+12

. Then it is not difficult to prove that, for all integers i ∈
[3, n

2
],

E(i) ≤ E′(i) =
∑ n

2−1

k=i

kn

n− k + 1
.

From the analysis of the first phase, we have

E(1) =
4

3
+

1

3
E′(3) +

2

3
E(2).

Since E(2) ≤ 16n
9n−6

+ E′(3), we have

1

3
E′(3) < E(1) ≤ 68n− 24

27n− 18
+ E′(3).

Since E′(3) =
∑ n

2−1

k=3
kn

n−k+1
∈ Θ(n2), the expected steps

after the initialization procedure to generate the Pareto front of the
optimal Pareto set (i.e., E(1)) is Θ(n2). Since the running time
of one step is counted as 2, by combining the running time of the
initialization procedure in Lemma 2, the expected running time of
REMO with pc = 0 to find the Pareto front of the optimal Pareto
set of the COCZ problem is Θ(n2). ¥

From the comparison between the performance of REMO with
pc = 0 and that with pc = 0.5 on these two problems, it can be
concluded that recombination is crucial for the efficiency of REMO
on the two problems.

In the above theorems, the running time is expressed in the ex-
pectations. They can also be derived in the form of large prob-
abilities, i.e., REMO with pc = 0.5 solves the LOTZ problem
in O(n2) time with probability 1 − O(1), and solves the COCZ
problem in O(n log n) time with probability 1−O(1). Compared
with other previously analyzed MOEAs, on the LOTZ problem,
REMO has the best performance; on the COCZ problem, REMO
has better running time than (1+1)-EMO and GEMO, and has bet-
ter upper bound of running time than SEMO and FEMO. Fur-
thermore, we notice that, since the LOTZ problem was generalized
from the LeadingOnes problem and the COCZ problem was gen-
eralized from the OneMax problem, the LOTZ and COCZ problems
involve single objectives of LeadingOnes and OneMax, respec-
tively. Being aware that (1+1)-EA solves LeadingOnes problem
in Θ(n2) time [6] and OneMax problem in Θ(n log n) time [6],
we hypothesize that REMO reaches the lower bounds of running
time of any MOEAs on the LOTZ and COCZ problems.

6. DISCUSSIONS AND CONCLUSIONS
Multi-objective evolutionary algorithms have been successfully

applied in many practical situations, and some theoretical results
of MOEAs have been derived in recent years. However, previous
analyzed MOEAs rarely incorporate recombination operators. This
paper investigates whether recombination operators can be useful
in the scenario of multi-objective optimization.

The Pareto front is a property of MOEA that was not involved in
previous theoretical studies of single-objective EAs, thus we inves-
tigate whether a recombination operator can have effect on solving
the Pareto front of multi-objective problems. We analyze the run-
ning time of REMO, a multi-objective evolutionary algorithm with
a recombination operator, on the previous studied model problems
LOTZ and COCZ. The results show that REMO is more efficient
than the previous analyzed MOEAs. We also analyze the running
time of REMO turning off recombination on these two problems,
and obtain similar performance to that of SEMO. Thus, we con-
clude that recombination is crucial for the efficiency of REMO
on these two problems, which supports that recombination oper-
ators can be useful for multi-objective optimization. The analysis
of REMO on the two problems discloses that the recombination
operator can work by accelerating the filling of the Pareto front
through recombining diverse optimal solutions found-so-far. This
idea, though proved only in the studied cases, might be hold in
general situations and might be useful for designing more efficient
MOEAs.

The analysis of REMO on more realistic problems with more
kinds of objective functions will be studied. Other ways of incor-
porating recombination operators in MOEAs are interesting topics
that will be investigated in the future.
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