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ABSTRACT
We formalize the concept of an unbiased black box algo-
rithm, which generalises the idea previously introduced by
Lehre and Witt. Our formalization of bias relates to the
symmetry group of the problem class under consideration,
establishing a connection with previous work on No Free
Lunch. Our definition is motivated and justified by a se-
ries of results, including the outcome that given a biased
algorithm, there exists a corresponding unbiased algorithm
with the same expected behaviour (over the problem class)
and equal or better worst-case performance. For the case
of evolutionary algorithms, it is already known how to con-
struct unbiased mutation and crossover operators, and we
summarise those results.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, Algorithms

Keywords
Black Box Algorithms, Combinatorial Optimization

1. BACKGROUND
Lehre and Witt consider several restrictions to the classic

black box optimization scenario, as applied to a search space
of binary strings [4]. In particular, they consider algorithms
that explore the search space using specialized operators,
satisfying the following conditions:

1. The operators are invariant with respect to bit-wise
exclusive-or and the permutation of bit positions.

2. Each operator is some function of a single previously
sampled element.
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In this paper we are only concerned with generalizations of
the first condition1. Lehre and Witt call operators satisfying
it unbiased, and justify it as “natural” by arguing that the
bit operators used in Evolutionary Algorithms are typically
unbiased.

We seek to understand this condition more formally, with
a view to generalizing it to arbitrary search spaces and to
arbitrary problem classes. In so doing, we will demonstrate
an intimate connection with the No Free Lunch theorems,
and with recent work on characterizing invariance properties
of Evolutionary Algorithms [7].

Our results are quite general and apply to all randomized
black box search algorithms, and any problem class (defined
on a finite search space). This is in contrast to [4] which con-
siders only algorithms of a certain form, and for a particular
search space.

2. BLACK BOX ALGORITHMS
We begin by summarizing the basic definitions of Black

Box search algorithms, following notation used in [6].
Let f : X → Y be a function between finite sets, and let

yi denote f(xi). The domain X and co-domain Y are fixed
for the following discussion, but f may vary.

Definition: A trace T corresponding to f is a sequence
〈(x0, y0), . . .〉 of pairs from X × Y where the x components
are unique; T is a trace if it is a trace corresponding to some
f . The following notation will be used,

T ∗ = {(x0, y0), . . .} set of pairs of components
Tx = 〈x0, . . .〉 sequence of x components
Ty = 〈y0, . . .〉 sequence of y components

In particular, T ∗ ⊆ f . The performance sequence associated
with trace T is Ty; a performance sequence is a performance
sequence associated with some trace. A function mapping
performance sequences to R is a performance measure.

Definition: Trace T corresponding to f is total if T ∗ = f .
A partial trace is one which is not total. The set of all partial
traces corresponding to function f is denoted by T (f), and
T is defined by

T =
[
f

T (f)

Definition: A search operator is a function g : T → X
which maps a partial trace T to some element not occurring

1Those readers interested in restrictions on operator arity
might like to see [1] for further analysis.

2035



in Tx.

Definition: A deterministic non-repeating Black Box search
algorithm A corresponds to a search operator g, and will be
referred to simply as an algorithm. Algorithm A applied to
function f is denoted by Af , and maps traces to traces

Af (T ) =

j
T ‖ (g(T ), f ◦ g(T )) if T ∈ T (f)

T otherwise

where ‖ is the concatenation operator.

In procedural terms, algorithm A runs on function f by
beginning with the empty trace ∅, and repeatedly applying
Af ; we denote by A(f) the total trace produced (by running
A on f to convergence); note that A(f)∗ = f . Algorithms
A and A′ are regarded as equal if and only if A(f) = A′(f)
for all f .

Definition: A randomized black box search algorithm is
identified with a probability vector μ having components
indexed by algorithms, and will be referred to simply as a
randomized algorithm. The total trace μ(f) resulting from
applying μ to f is A(f) with probability μA.

In procedural terms, randomized algorithm μ runs on f by
choosing A with probability μA and then applying algorithm
A to f . Note that the collection of randomized algorithms
contains the set of (deterministic) algorithms.

Randomized algorithms μ and μ′ are equivalent, denoted
by μ ≡ μ′, if and only if for all f and all T

Prob{μ(f) = T} = Prob{μ′(f) = T}
Following Schumacher [8], given permutation σ : X → X

and algorithm A corresponding to search operator g, the
algorithm σA corresponds to the search operator σg, which
is defined to act on any given trace T as follows:

σg(T ) = σ−1(g(σx(T )))

and σx maps traces to traces as follows: σx(∅) = ∅, and if
T = 〈(x0, y0), . . . , (xγ−1, yγ−1)〉, then

σx(T ) = 〈(σ(x0), y0), . . . , (σ(xγ−1), yγ−1)〉
(i.e., σx applies σ to the x components of T ). Moreover,
given f : X → Y, define σf to be f ◦ σ−1. Composition of
permutations will be denoted by juxtaposition.

Lemma 1. ([3]) For all algorithms A, and permutations
σ, σ′,

σ′(σA) = (σσ′)A
Moreover, ιA = A where ι is the identity permutation.

Following Duenez-Guzman [3], given randomized algorithm
μ, define the randomized algorithm σμ by

(σμ)A = μσ−1A

In procedural terms, to run σμ on f amounts to choosing
A with probability μA and then running algorithm σA on
f . A performance measure m is extended to randomized
algorithms in the natural way; the performance of μ on f as
measured by m is

m(μ, f) =
X
A

m(A(f)y) μA

Note how m is polymorphic: a performance measure m maps
performance sequences to values, whereas the performance
of μ on f as measured by m is the corresponding expected
value.

Theorem 1. ([3]) Given randomized algorithm μ, function
f , performance measure m, and permutation σ,

m(σμ, f) = m(μ, σf)

The expected performance of randomized algorithm μ over
a set of functions F ⊆ YX is

E(μ,F) =
1

|F|
X
f∈F

m(μ, f)

and is referred to as expected average performance (one
might argue it would be natural to call it average expected
performance, but the average and expectation commute).

Lemma 2. ([3]) E(·, ·) is linear in its first argument.

Theorem 2. ([3]) For all randomized algorithms μ, all per-
mutations σ ∈ X !, and all F ⊆ YX ,

E(σμ,F) = E(μ, σF)

Note that choosing F to be a singleton set reduces Lemma 2
and Theorem 2 to statements about m(μ, f).

3. UNBIASED ALGORITHMS
Given a search space X , we are often not concerned with

the set YX of all functions from X to some value set Y, but
with a subset of YX corresponding to a particular problem
class (e.g. functions corresponding to MAXSAT instances).
Moreover, we are often not concerned with the set X ! of all
permutations of X . Indeed, a criticism of the No Free Lunch
theorem is that it only applies to sets of functions which are
permutation closed [8], and sets of functions corresponding
to traditional combinatorial problem classes do not typically
have that property. This leads us to restrict attention to
those permutations of the search space which preserve the
problem class.

Definition 1. Given F ⊆ YX , let G(F) denote the set of
permutations preserving F ,

G(F) = {σ ∈ X ! |σf ∈ F for all f ∈ F}

Note that G(F) is a subgroup of X ! (both are closed under
composition – which is an associative binary operator – and
both are closed under the formation of inverses), and

σG(F) = G(F) = G(F)σ

σF = F

for all σ ∈ G(F).2

A central question left open by [4] is: how do we determine
the permutations with respect to which an algorithm should
be invariant?

Definition 2. A randomized algorithm μ is unbiased with
respect to a problem class F ⊆ YX if and only if μ ≡ σμ for
all σ ∈ G(F).

2We follow the usual convention that σS = {σs | s ∈ S} and
Sσ = {sσ | s ∈ S}.

2036



Examples are presented in the next section illustrating how
this definition captures and generalizes concepts in [4]. The
following theorems justify the definition, and relate this work
to the Focused No Free Lunch theorems of [3, 9].

Theorem 3. Let μ be any randomized algorithm, and let
F ⊆ YX be any problem class. For all σ ∈ G(F),

E(σμ,F) = E(μ,F)

regardless of the choice of performance measure.

Proof. Since σ ∈ G(F) =⇒ σF = F , Theorem 2 yields

E(σμ,F) = E(μ, σF) = E(μ,F)

When μ is unbiased, the previous result is a triviality,
since μ ≡ σμ. However, when μ is biased, the theorem
implies there are non-equivalent algorithms with the same
expected average performance. [3, 9].

Definition 3. Given randomized algorithm μ and problem

class F ⊆ YX , define the randomized algorithm

F(μ) =
1

|G(F)|
X

σ∈G(F)

σμ

Theorem 4. Given randomized algorithm μ and problem

class F ⊆ YX ,

σ(F(μ)) = (σF)(μ) = F(μ)

for all σ ∈ G(F). In particular, F(μ) is unbiased.

Proof. Lemma 1, together with the fact that G(F) is a
group yield

(σ(F(μ)))A = F(μ)σ−1A

=
1

|G(F)|
X

σ′∈G(F)

(σ′μ)σ−1A

=
1

|G(F)|
X

σ′∈G(F)

μσ′−1(σ−1A)

=
1

|G(F)|
X

σ′∈G(F)

μ(σ′σ)−1A

=
1

|G(F)|
X

σ′∈G(F)

((σ′σ)μ)A

=
1

|G(F)|
X

τ∈G(F)

(τμ)A

= F(μ)A

as required.

Theorem 5. Given randomized algorithm μ and problem

class F ⊆ YX ,

F(F(μ)) = F(μ)

Proof. Appealing to Theorem 4,

F(F(μ)) =
1

|G(F)|
X

σ∈G(F)

σF(μ)

=
1

|G(F)|
X

σ∈G(F)

F(μ)

= F(μ)

as required.

Note that, so far, we have placed no restrictions on what a
performance measure might be. However, it often happens,
of course, that we are interested in the task of optimization
of functions, and we now consider performance measures
that may be related to this task.

Definition 4. A performance measure m is monotone if
either higher performance values are interpreted as superior
performance (for example, if we were interested in finding
the local optima, and m counted the number encountered
before some cutoff time), or else lower values are interpreted
as superior performance (for example, if we were interested
in finding a global optimum, and m counted the number of
function evaluations made before encountering one).

We now show that to any randomized algorithm, there
corresponds an unbiased randomized algorithm having equal
expected average performance. Moreover, if the performance
measure is monotone, the unbiased algorithm cannot have
inferior worst-case expected performance.

Theorem 6. Given randomized algorithm μ and problem
class F ⊆ YX , the unbiased randomized algorithm F(μ)
has the same expected average performance as μ. Assuming
the performance measure is monotone: F(μ) cannot have
inferior worst-case expected performance; if the expected
performance of μ varies over the orbits of F under G(F),3

then F(μ) has superior worst-case expected performance.

Proof. Theorem 4 shows F(μ) is unbiased. Appealing
to Lemma 2 and Theorem 3,

E(F(μ),F) =
1

|G(F)|
X

σ∈G(F)

E(σμ,F)

=
1

|G(F)|
X

σ∈G(F)

E(μ,F)

= E(μ,F)

To see that the worst-case expected performance cannot be
inferior, suppose μ exhibits worst (maximal) performance
value at f∗ ∈ F . Appealing to Lemma 2 (see the comment
beneath Theorem 2), for any f ∈ F ,

m(F(μ), f) =
1

|G(F)|
X

σ∈G(F)

m(σμ, f)

=
1

|G(F)|
X

σ∈G(F)

m(μ, σf)

≤ 1

|G(F)|
X

σ∈G(F)

m(μ, f∗)

= m(μ, f∗)

If a minimal performance value means worst performance,
then the inequality above reverses, so the same conclusion
(F(μ) cannot have inferior worst-case expected performance)
is obtained. When the expected performance of μ varies over
the orbits of F , the worst-case expected performance of F(μ)
is superior since the inequality is strict.

Recall that the black box complexity of a problem class F
is the minimum worst-case expected optimization time for

3The orbit of f is {σf |σ ∈ G(F)}, and the orbits of F are
the orbits of f ∈ F .
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functions in F over all black box algorithms [2]. Conse-
quently, we have

Corollary 1. The black box complexity of a problem class
is the same as the unbiased black box complexity of that
class.

4. EXAMPLES

4.1 Random search
We now consider random search from the perspective of

the formalism developed in sections 2 and 3. Intuitively,
each step of random search is conducted by ignoring the
partial trace describing how search has so far progressed, and
selecting a new random point of X to visit. By recording
the sequence of points visited, one could produce a trace
T describing how random search happened to explore the
search space. Note that a deterministic algorithm — which
had trace T hard-coded into its search operator — could
explore X by visiting the same points in the same order.
It follows that random search is behaviorally equivalent to
randomly choosing and using some deterministic algorithm.

Let E be the “enumeration algorithm” corresponding to
the search operator

g(T ) = x|T |

where X = {x0, . . . , xn} and |T | is the number of elements
in sequence T . It follows that

E(f) = 〈(x0, f(x0)), . . . , (xn, f(xn))〉

Appealing to the duality theorem (see [6] for example),

(σ−1E)(f) = σx(E(σ−1f))

= σx(E(f ◦ σ))

= σx〈(x0, f(σ(x0))), . . . , (xn, f(σ(xn)))〉
= 〈(σ(x0), f(σ(x0))), . . . , (σ(xn), f(σ(xn)))〉

If we were interested in uniform random search, then it is
natural to choose σ uniformly (so every enumeration of X
is equally likely); the corresponding randomized algorithm
u is defined by

uA =
1

|X !|
X

σ∈X !

[A = σ−1E]

where [expression] is 1 if expression is true, and 0 otherwise.
Lemma 1 implies the map A → σA is bijective (its inverse
is A → σ−1A), henceX

A
uA =

1

|X !|
X

σ∈X !

X
A

[σA = E]

=
1

|X !|
X

σ∈X !

1

= 1

Lemma 3. Given algorithm A, function f , and trace T ,X
σ∈X !

[(σA)(f) = T ] = [T ∗= f ]

Proof. If T ∗ �= f , then (σA)(f)∗ = f �= T ∗ and both
sides above are zero. Therefore assume T ∗ = f . The proof
is completed by showing there exists a unique σ for which

(σA)(f) = T . Let T k be the restriction of T to {0, . . . , k}.4
We induct on k to show σ exists such that (σA)k+1

f (∅) = T k.
Let A correspond to search operator g.
Base case k = 0:

(σA)f (∅) = 〈(σ−1(g(∅)), f(σ−1(g(∅))))〉
T 0 = 〈(x0, y0)〉

Choose σ such that σ(x0) = g(∅).
Inductive case (σA)k

f (∅) = T k−1:

(σA)f ((σA)k
f (∅))

= T k−1‖ (σ−1(g(σx(T k−1))), f(g(σx(T k−1))))

T k

= T k−1‖ (xk, yk)

Choose σ such that σ(xk) = g(σx(T k−1)); there can be no
conflicts with previous constraints on the choice of σ, since
g(σx(T k−1)) ∈ X \ {σ(x0), . . . , σ(xk−1)}. It follows that
there is a unique σ such that (σA)(f) = T ; all choices in
the inductive construction are forced, and the construction
defines σ for all x ∈ X .

Theorem 7. If – as in the No Free Lunch scenario – the
problem class F is permutation closed (G(F) = X !), then

Prob{F(μ)(f) = T} =
[T ∗ = f ]

|X |!
for every randomized algorithm μ.

Proof. Appealing to Lemma 3,

Prob{F(μ)(f) = T}

=
X
A

F(μ)A[A(f) = T ]

=
X
A

1

|X !|
X

σ∈X !

(σμ)A[A(f) = T ]

=
1

|X !|
X

σ∈X !

X
A

μσ−1A [A(f) = T ]

=
1

|X !|
X

σ∈X !

X
A

μA [(σA)(f) = T ]

=
1

|X !|
X
A

μA
X

σ∈X !

[(σA)(f) = T ]

=
1

|X !|
X
A

μA[T ∗ = f ]

=
[T ∗ = f ]

|X |!

Theorem 8. If – as in the No Free Lunch scenario – the
problem class F is permutation closed (G(F) = X !), then

F(μ) ≡ u

for every randomized algorithm μ.

Proof. Let e be the randomized algorithm defined by

eA = [A = E]

4A sequence is a function mapping i (from some index set)
to the ith element of the sequence.
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Note that

F(e)A =
1

|X !|
X

σ∈X !

(σe)A

=
1

|X !|
X

σ∈X !

eσ−1A

=
1

|X !|
X

σ∈X !

[σ−1A = E]

= uA

Hence u = F(e), and by Theorem 7,

Prob{u(f) = T} =
[T ∗ = f ]

|X |! = Prob{F(μ)(f) = T}

for every randomized algorithm μ.

Theorems 6 and 8 not only show any algorithm has the
same expected average performance as random search (over
a permutation-closed problem class), but also that random
search has the best worst-case expected performance. It
should be appreciated that the extent to which the results
in this section are intuitive is one measure of success in our
being able to formally demonstrate the appropriateness of
our formalism.

4.2 MAXSAT
Let the search space be binary strings of length n and

suppose a binary string represents a truth-assignment for a
MAXSAT problem on n variables (the i th bit is the value
of xi). Given a MAXSAT instance with objective function
f , we are interested in permutations σ such that f ◦σ is also
a MAXSAT objective function.

One way to obtain such a permutation is to exclusive-or
the bits with a fixed binary string. This will have the effect
of negating certain literals in the MAXSAT instance. For
example, suppose the MAXSAT instance is

(x1,¬x3, x5) ∧ (¬x1, x2, x4) ∧ (x2, x3,¬x5)

and f is the corresponding objective function which counts
how many clauses are satisfied by a given truth assignment.
Let σ be the permutation given by applying the mask 11001.
Then f ◦ σ corresponds to the MAXSAT instance

(¬x1,¬x3,¬x5) ∧ (x1,¬x2, x4) ∧ (¬x2, x3, x5)

A second type of permutation preserving this problem
class arises from re-ordering the bit positions. Suppose π
re-orders the bits as b1b2b3b4b5 → b5b4b3b2b1. Then f ◦ π
corresponds to the MAXSAT instance

(x5,¬x3, x1) ∧ (¬x5, x4, x2) ∧ (x4, x3,¬x1)

These types of permutations correspond exactly to those
considered by Lehre and Witt to define unbiased operators.
Our definition of unbiased with respect to a problem class
both captures and generalizes the symmetry concepts they
consider in [4].

4.3 Traveling Salesman
Let the search space be the set of all permutations of the

labels {1, 2, . . . , n}. We consider functions corresponding to
traveling salesman problems. Fix a permutation π from the
search space. Let σ be the permutation of the search space
given by

σ(x) = π ◦ x

If f is an objective function corresponding to a particular
problem instance, then f ◦ σ corresponds to an instance in
which the labels of the original problem have been permuted
by π. Unbiased black box algorithms for TSP would have
to be invariant with respect to such permutations.

4.4 Subset Sum
The goal of the subset sum problem is to find a non-empty

subset of a given a finite set {z1, . . . , zn} of integers whose
sum is as close as possible to zero. Let the search space
again be a set of binary strings representing possible subsets
(the i th bit indicates whether the subset contains i). Given
the objective function

f(x) =

(
∞ if x = 0 · · · 0P

i zi[xi = 1] otherwise

permutations of the search space given by exclusive-or with
a mask (as in the MAXSAT example) will not preserve the
problem class, since the value of the zero string will not
be infinite. Permutations reordering bit positions are al-
lowed however. We see that for this problem class, the un-
biased algorithms are not necessarily invariant with respect
to exclusive-or.

4.5 Vertex Cover
Given a graph, the vertex cover problem is to find the

smallest set of vertices so that every edge is connected to
some vertex in the set. It is easy to see that re-ordering the
vertices in the graph gives another problem instance. By
our definition, an unbiased algorithm should be invariant
with respect to such re-orderings. A genetic algorithm that
uses one-point crossover would not be unbiased, because the
behavior would depend on the particular vertex ordering.

If we can find a good ordering of vertices, it may happen
that one-point crossover is particularly effective. However,
incorporating an optimal vertex ordering into the algorithm
prevents it from being black box – since knowledge of the
problem instance is required. But if we restrict attention to
that subset of vertex cover problems for which the vertex
ordering is optimal, then our one-point crossover algorithm
is black box with respect to that subset. Moreover, since
now vertex re-orderings do not preserve the problem class,
the algorithm does not need to be invariant with respect to
them in order to be unbiased.

5. LINEAR SUBSET PROBLEMS
It would be helpful to have a generic way to deduce the set

of permutations which preserve a given search space. We can
provide a partial answer for the situation where the problem
class has a certain algebraic form, as follows (see chapter 19
of [5] for a similar definition):

Definition 5. A linear subset problem class is given by a
set C of components and a collection X of subsets of C,
forming the search space. Instances of the problem class are
defined by a weight function w : C −→ R. The objective
function is then

f(x) =
X
i∈x

w(i)

Many classical optimisation problems are linear subset
problems. We give three examples:
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Travelling Salesman Problem The components are all
possible edges between cities. Elements of the search
space are edge sets forming valid routes. The weight
function specifies the problem instance by giving the
cost of each edge (with infinity for edges not in the
graph).

MAXSAT The components are all possible clauses that
can be formed by the literals. An element of the search
space is a set of clauses which is satisfied by some truth
assignment. The weight function specifies the problem
instance by assigning 1 to clauses appearing in the in-
stance and 0 to the remainder.

MAXCUT The components are pairs of distinct vertices.
Elements of the search space correspond to subsets of
vertices; select components for which one vertex is in
the subset and the other is not. The weight function
specifies the cost associated with an edge (with zero
for edges not in the graph).

Definition 6. Let C and X be the component set and
search space (respectively) of a linear subset problem class.
An automorphism of the class is a permutation π : C → C
for which π(x) ∈ X for all x ∈ X (where we apply π element-
wise to the members of x).

The set of automorphisms forms a group which acts on X .

Theorem 9. Let F ⊆ YX correspond to a linear subset
problem class. If π is an automorphism of this class, then
π ∈ G(F).

Proof. Let C be the component set. Given any instance
corresponding to a weight function w : C −→ R, we have
the corresponding objective function

f(x) =
X
i∈x

w(i)

Note that

(πf)(x) = f(π−1(x))

=
X

i∈π−1(x)

w(i)

=
X
j∈x

w(π−1(j))

=
X
j∈x

(w ◦ π−1)(j)

Hence the objective function πf corresponds to the instance
having corresponding weight function w ◦ π−1.

Some examples:

Travelling Salesman Permutations of the set of possible
edges which will preserve tours must correspond to
permutations of the cities.

MAXSAT Permutations of clauses preserving the search
space include permuting the variables, and negating
subsets of literals (and combinations of these). These
give us the invariance properties described by Lehre
and Witt (and mentioned in the previous section).

MAXCUT The automorphisms include those arising from
permuting the labels of the vertices of the graph.

6. EVOLUTIONARY ALGORITHMS
Lehre and Witt [4] constructed unbiased algorithms by

using mutation operators which are invariant with respect
to exclusive-or and re-orderings of bit positions. It would be
helpful – for the purpose of constructing unbiased algorithms
– to have a recipe for evolutionary operators guaranteed to
produce an unbiased algorithm with respect to any search
space and problem class.

Fortunately, much is already known about this problem.
In particular, if the group G(F) acts transitively on the
search space X ,5 then all mutation and crossover operators
invariant with respect to G(F) can be constructed (see [7]).

Mutation is implemented by fixing some element o ∈ X
and some probability distribution π over X which has the
property: for all σ ∈ G(F) with σ(o) = o it is the case that
π(x) = π(σ(x)) for all x ∈ X . To mutate an element x ∈ X:

1. Pick σ ∈ G(F) so that σ(o) = x.

2. Pick y ∈ X according to π.

3. Return σ(y).

Every mutation operator invariant with respect to G(F) can
be implemented in this way, by suitable choice of π.

Crossover is implemented by fixing some element o ∈ X
and some probability distribution χ over XX , which has the
property: for all σ ∈ G(F) with σ(o) = o it is the case that
χ(h) = χ(σ ◦ h ◦ σ−1) for all h ∈ XX . To cross over two
elements x, y ∈ X :

1. Pick σ ∈ G(F) so that σ(o) = y.

2. Choose h ∈ XX according to χ.

3. Return σ(h(σ−1(x)))

Every crossover operator invariant with respect to G(F) can
be implemented in this way, by suitable choice of χ.

Note that any selection operator, since dependent on fit-
ness values and not on the choice of representation of the
search space, will always be invariant with respect to any
group action on X . Consequently, these results mean that
all unbiased evolutionary algorithms can be completely char-
acterised, provided that G(F) acts transitively on X .

Returning to the situation described by Lehre and Witt [4],
they require that the mutation operator commute with the
group generated by bitwise exclusive-or, and permutation of
bit positions acting on the space of binary strings of a given
length. Choosing the all zeros string as o ∈ X , we find that
it is permutations of bit positions which preserve o. We
therefore require our probability distribution π over X to
have the property that strings containing the same number
of ones (or, equivalently, zeros) should have the same prob-
ability. Given x ∈ X , we can take the group element that
maps o to x to be

σ : z −→ z ⊕ x

We see, then, that any unbiased mutation operator corre-
sponds to first choosing the number of bits to flip (according
to some distribution) and then flipping exactly that number
of bits (chosen uniformly).

5G(F) acts transitively iff ∀x, y ∈ X . ∃σ∈G(F) . y = σ(x).
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7. CONCLUSIONS
We have given a formal definition of biased and unbiased

black box algorithms. The definition of bias is relative to
the particular problem class under consideration. There is a
surprising link with recent work on focussed No Free Lunch,
in that there may be a set of algorithms all having the same
expected performance on a problem class that need not be
permutation closed. One such algorithm will be unbiased. It
will not only have the same expected performance but also
equal or better worst-case expected performance than the
others. It follows that the black-box complexity of a problem
class is the same as the unbiased black box complexity of
that class. This provides one rigourous justification for the
investigation of unbiased algorithms and their performance
properties. Moreover, our results apply to any finite problem
class on any finite search space. We have also summarized
(in the transitive case) the construction of mutation and
crossover operators invariant with respect to G(F).
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