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ABSTRACT 

Foraging strategies in uncertain environments is the subject of a 
great deal of biological investigation, much of which is grounded 
in mathematical models. One theoretical prediction with wide 
empirical support is the ideal free distribution (IFD), where agents 
distribute themselves among patches of resources in proportion to 
their suitability. However, the IFD assumes that agents have 

perfect information of the environment. In nature, this assumption 
is often violated, yet the IFD is still observed. Insights into 
evolved mechanisms and behaviors that result in the IFD show 
how such efficient outcomes may emerge from little information.  
In this study, the artificial life platform Avida is used to observe 
populations of digital organisms as they evolved to optimize 
resource intake in an environment with unpredictable resource 
distributions. It is shown that the ideal free distribution can 
emerge from simple foraging strategies that require minimal 

information. It is demonstrated that this distribution is a result of 
choices made by the organisms, and not simply due to those in a 
more advantageous setting producing more offspring.  Deviations 
from the IFD appear to be correlated with reduced information or 
foraging aggregation. Distributions with organisms of differing 
abilities are also investigated, demonstrating further 
correspondence with theoretical predictions. 
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H.4 [Information Systems Applications]: Miscellaneous; 
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1.   INTRODUCTION 
   One problem that agents face—whether they are buyers in 
markets or organisms in nature—is decision making under 
uncertainty. Given options with unclear payoffs, agents must 
choose the one that is most likely to maximize their fitness or 
utility. Biologists and economists have used mathematical 
methods to model such behavior. One such example is Stephen 

Fretwell’s “Ideal Free Distribution.” Originally developed to 
explain the foraging behavior of birds, the IFD has been applied in 
multiple contexts in biology, psychology, and economics [4, 17, 
18, 20]. The IFD models the distribution of a group of foragers 
among patches or habitats of food. Let sn,i be the expected success 
of the nth agent  in patch i. Let Ni be the number of agents in 
patch i. Then the suitability of patch i, Si, is described as follows 
[4]: 
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  This suitability decreases with the number of agents in the patch.  
The IFD model states that, in the long run, agents will distribute 
themselves such that Si is equal for all patches. Thus if patch A 
contains 80% of the total resources of the environment, and patch 
B contains 20% of the resources, then foragers will distribute 
themselves so that 80% of the foragers will be in patch A and 
20% of the foragers will be in patch B.  
  The IFD has been extensively explored through biological and 

psychological experiments. It has been found in the foraging 
behavior of guppies [1], ducks, [19], and dung beetles [18]. 
Likewise, this distribution has emerged in foraging experiments 
with humans [5, 20]. In socio-economic settings, the IFD has been 
witnessed in many human endeavors, including the study of 
human island colonization [11]. However, relatively little IFD-
related work has been done in the field of artificial life. There 
have been some experiments [15, 21] that demonstrate 

Herrnstein's related probability matching rule for individual 
agents [7]. One other notable case is Griffith and Yaeger's work in 
the artificial life simulator Polyworld [6]. In this experiment, 
agents controlled by neural-networks were evolved in a simple, 
square environment. Food was probabilistically dispersed to two 
bands at each end of the square. The two bands had different food 
dispersion probabilities. Over time, the agents' distributions 
matched these probabilities.  

  This paper explores the IFD behavior of strategies evolved in 
environments where the spatial resource distribution is variable. 
For this research, digital organisms in the Avida system were 
used. Avidian organisms are self-replicating computer programs 
in a Turing complete language.  As such, they are not 
fundamentally limited in the behavioral algorithms they employ. 
It is shown that the IFD does emerge when these digital organisms 
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evolve in environments that select only on the basis of food 
intake. Better approximations of the IFD seem to be related to 
long-range information and superior ability to manage aggregate 
interference. When agents have unequal competitive abilities, 
dominant organisms are overrepresented in the better patch, as 

Houston and McNamara's extension of the IFD model [8] 
predicts. Griffith and Yaeger [6] evolved agents in environments 
where the spatial distribution of food was relatively simple and 
fixed; this paper shows that the IFD can also arise from general 
foraging rules evolved in environments where the spatial 
distribution changes. These rules are quite simple; there is no need 
for reinforcement learning or for a large amount of information. In 
the context of the IFD, Avida’s program-based genomes also 

confer some advantages over neural-network approaches as they 
are more conducive to “reverse-engineering” of the computational 
strategies employed. In addition, Avida allows the precise control 
of the inflow rates of resources and consumption rates of agents, 
allowing a quantitative study of the effects of these rates on 
deviations from the IFD.                                                           

 

2.   METHODS 
   Avida [16] is an artificial life platform that has been used 
extensively to study evolutionary dynamics, including topics such 

as the origin of complex traits [13], navigation [2], and 
communication [12]. In Avida, digital organisms consist of a 
genome and a virtual processor that executes the genome. The 
virtual processor consists of a memory space, three registers and 
two stacks, four heads, and an input-output buffer. The genome is  
a list of Turing-complete instructions that are loaded into the 
memory of the virtual processor and executed to create the 
behavior of the organism. The set of possible instructions include 

basic functionality for arithmetic, conditionals, looping, memory 
manipulation, and biological functions. Instructions for 
locomotion and sensing local resource concentrations were also 
included. In most cases, the genome consists of a main loop where 
the organism copies itself to an offspring, instruction-by-
instruction. There is no explicit fitness function in Avida; instead, 
organisms are rewarded merit based on particular tasks they 
perform. Organisms with more merit will probabilistically execute 
more instructions per unit of time. The basic unit of time in Avida 

is called an update. Diversity occurs when mutations and errors 
appear in the reproduction of offspring. Organisms die when they 
are replaced by another organism replicating over them or after a 
specified number of instructions have been executed, set here as 
20 times the total length of the genome. The environment in this 
experiment consisted of a bounded, square grid of cells. At most 
one organism can occupy a cell at a time, and each cell contains a 
level of resource. This resource increases by some amount each 

update, to a maximum, unless an organism lands in that cell and 
consumes some of the resource. There are eight possible 
directions for an organism to face or move. 
  The locomotion instructions that were added to the default Avida 
instruction set included tumble, which turned the organism in a 
random direction, select-rotate, which allowed the organism to 

select either to turn right or left, and move, which moved the 
organism one cell in the direction it faced. Sense instructions 
included sense-diff-facing, which sensed the 1000-fold 
difference between the facing cell and the current cell, sensef, 

which sensed the log2 of resource in the faced cell, and sense, 
which sensed the log2 of resource in the occupied cell. Some long-
range sense functions were also added. sense-medium and 

sense-large sensed the log2 of a sum of resources. sense-
medium summed up to 25 cells in front of the organism, and 

sense-large summed all cells in front of the organism to the 
boundary of the grid. sense-diff-medium and sense-diff-large 
sensed the difference between the sum of cell resources faced by 
the organism and directly behind the organism with ranges 
corresponding to the instruction above.  

 

2.1   The Evolutionary Environment 
   A modified version of Avida 2.11 was used. The seed organism 
was the default organism of Avida, and, following other 
experiments [2], there was an organism cap of 200. To promote 
adaptive evolution of complex behaviors, the evolutionary 

environment consisted of two stages. The first, “easy” stage 
resembled the configuration by Elsberry [2] where organisms 
evolved to forage with a gradient of resources in a consistent, 
fixed location. No resource consumption occurred at this stage, 
leaving resource concentrations static. The grid was of size 
150x150. The resource was distributed as a cone of height 100 
with a cubic slope, centered at cell 50, 50 as depicted in Figure 1a. 
The cone's radius was 30 cells. To further encourage adaptive 

behavior, all offspring were placed in low resource areas. 
Organism merit was proportional to 2bonus, where bonus was 5% 
of the total resource in a cell. The reward depended on no specific 
task other than simply consuming the resource, but the organism 
could be rewarded only up to 1000 times. All other parameters 
were default parameters. Eight runs were conducted for 250,000 
updates. The final dominant organism from each run was taken to 
seed the stage two runs. 30 of each dominant organism from each 

run seeded the second stage. The resource distribution in stage 
two was variable; cones with a cubic slope with varying radius, 
height, and location were redistributed every 5000 updates. The 
number of cones within the environment also varied. Cones may 
overlap, creating varied landscapes. Out of convenience, Morrison 
and DeJong's [14] DF1 function was used to generate the cones’ 
location, radius, height, and number. The cones were stationary 
however. Parameters for the DF1 function included 35 peaks, a 

minimum height of 21, a maximum height of 100 and a slope that 
ranged from 1.5 to 5. Additionally, resources were consumable; 
organisms consumed 5% of the current cell resource in a single 
move, making near-total depletion a possibility. The resources 
flowed in 5% of their maximum cellular limit each update. In 
order to discourage random behavior, a minimum merit of 10000 
was required to reproduce, and the merit was now 2bonus*.5. The 
population cap was increased to 300. 8 runs were executed for 
500,000 updates. All other parameters remained identical to stage 

1. 
 

2.2   The Test Environment 
   To test whether organisms were engaging in behaviors that led 
to the IFD, it was necessary to create an isolated test environment 

where certain critical assumptions about the organisms could be 
enforced. First, all agents must be equally competitive. As such, 
the same genotype was used for all organisms in the test 
environment and each organism had identical merit. To ensure 
that the distribution seen was due to behavioral choices and not to 
population growth dynamics, no birth or death occurred in the test 
environment. Although cell resources could still vary, the 
consumption rate was set to a constant number for all cells and all 

organisms. The grid was 100x100, and two cones of cubic slope 
were placed at the bottom of the grid (Figure 1c). These gradients 
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had default radius 20 and were placed at 20, 80 and 80, 80 on the 
grid respectively. The sum of the heights of the cones (and thus 
the input rate) was 100. 200 organisms were initially placed at the 
top of the grid.  All other parameters were taken from the 
evolution environment. 
 

 
a. 

 
      b. 

 
      c. 

Figure 1. Example environmental resource distributions for 

(a) Stage 1, (b) Stage 2, and (c) Test environments. 

 

3.   RESULTS 

3.1   Strategies 
   Out of eight runs of the first stage, five yielded final dominant 
organisms that were able to locate resources in a “hill climber” 

fashion. The three others yielded a “cockroach” strategy. These 
organisms move until they hit the grid boundary, whereupon their 
facing is randomly redirected. Cockroaches bounce off these 
boundaries and move in the grid in a manner similar to a ball on a 
billiards table; by constant motion, these organisms locate and 
consume resources on average. This strategy did not exhibit the 
Ideal Free Distribution.  
   The five organisms that exhibited “hill climber” behavior may 
be subdivided into two main strategies. Strategy A, employed by 

four of the organisms, uses only local information in foraging. 
The main loop of the genome may be described as follows: 
1. Sense difference between current cell and facing cell 

2. If Negative, Change Direction 

3. Move 

4. Copy Instructions for Offspring 

While similar in structure to strategy A, strategy B (employed by 
one organism) uses both local and remote information in foraging: 

1. Sense difference between current cell and facing cell 

2. If Negative, Change Direction 

3. Sense difference between all cells in front and all cells 
behind organism (25 cells after stage 2) 

4. If Negative, Change Direction 

5. Copy Instructions for Offspring 

Interestingly, the single organism using strategy B did not seem to 
provide an advantage in stage two. In fact, all of the final 

dominant organisms in the stage two runs descended from the 
same, specific strategy A organism from stage one. Upon 
inspection of this organism, it was determined that it had the most 
efficient main loop of all strategy A organisms; it also had no 
extraneous turn instructions; it turned only when the resource 
difference was negative.  Of the eight organisms from stage two, 
two were random walkers. Distinguished from cockroaches, these 
organisms both moved and turned indiscriminately. These also 

obviously did not distribute themselves ideally. Of the six others, 
one used strategy A, two used a modified form of strategy B, and 
three used a new strategy C. Strategy C is identical to strategy A 
except that strategy C takes into account only medium-range 
information; no decisions are made based on either long-range or 
local information: 

1. Sense difference between 25 cells in front and behind 
organism 

2. If Negative, Change Direction 

3. Move 

4. Copy Instructions for Children 

No dominant organism after stage two used long-range 
information at all.  

3.2   The Ideal Free Distribution and Tests 
   Representative organisms were chosen employing strategies A, 
B, and C from stage two for testing. The main execution loops for 
each of these organisms were roughly equal in size. After 
adjusting the cell resource consumption rate and the instruction 
rate in the test environment, each strategy exhibited the ideal free 
distribution, with strategies B and C showing less variability than 
strategy A.  When cone areas were different but total resource 

inflow was still in a 2:8 ratio, some deviation from the IFD 
occurred. When the larger inflow was in the small cone, some 
undermatching occurred. Conversely, when the larger inflow was 
in the larger cone, some overmatching occurred. However, both 
the level of undermatching and overmatching were only around 
5%. One advantage of the experimental configuration is direct 
control over the cellular resource intake. The cellular intake rate is  
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Figure 2. Organism distributions by strategy. Titles represent the inflow rate of resources in each cone. 33-66 is 33%-66% 

and 20-80 is 20%-80%. In each run, 200 organisms were run for 2000 updates. The proportions were switched in the 

middle of the run. Instructions per update was held constant at 500 for all organisms. For IFD to emerge, the cellular 

intake rate—the amount an organism consumes immediately upon landing on a cell—differed among genotypes. Type A 

had an intake rate set at .05, while type B had an intake rate of .025. Type C had an intake rate of .1. If the intake rate was 

too high, resources would be completely depleted within an update leaving organisms scattered across the environment. If 

it was too low, resources would be too abundant for organisms to distribute themselves according to the IFD. There would 

be no incentive for organisms to forage beyond a single patch of resource. Relative proportions consider only the total 

number of organisms in the patches, while absolute proportions consider all organisms in the entire world. Note that a 

significant number of type A organisms were never on any of the patches due to their limited sensing abilities. 
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Figure 3. Organism distributions with a 10%-90% resource 

distribution. 

simply the amount of resource consumed in a cell when an 
organism lands on it. The organism can land on multiple cells, 
possibly the same cells, in a single update. Through adjustment of 
the cellular resource intake level, the tests in figure 2 were able to 
approximate a continuous intake situation where there was little to 
no depletion of resources; thus the continuous model of IFD may 
hold [23]. Note that the cellular in take rate in Avida is not the  

A    B   C 

 

Figure 4. Sample main loops from an organism of Type A, B, 

and C. 

same as the intake rate considered in the IFD. Although similar, 
the intake rate used in the IFD model would be related to the 
organism's total intake rate in an update. However, by adjusting 
the cellular intake rate, the probability of total cellular resource 
depletion in an update can be increased. This would then lead to 
aggregate interference between foraging organisms, and possible 

undermatching. Note that interference in this case is due to a 
consequence of aggregation and not to direct interactions between 
agents. Some ecologists may call this “pseudo-interference” [3]. 
Let Wi, Wj represent patch inflow rates, and let ni and nj be the 
number of agents in those corresponding patches. The modified 
IFD model [23] with interference is: 
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with m the measure of resource wastefulness, and thus foraging 
efficiency, from increased interference. By adjusting the cellular 
intake rate, m, the resource wastefulness may be estimated and 
thus the search efficiency. The equation reduces to the original 
IFD model with m = 1. Values of m that deviate from 1 indicate 
inefficiency. For strategies A, B, and C, a base intake level of I 

was chosen where the strategies closely followed the continuous 
model of IFD. The base parameters were then multiplied by some 
constant and the distribution was measured in a 33-66, 20-80, and 
10-90 cone height environment. The average proportions from 
each three tests generated three estimates of m for the given level 
of intake. Table 1 shows the average of those three estimates.  
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Note that m grows quite quickly for strategy A as cellular intake 
increases. B’s m grows somewhat more slowly, and C’s m grows 
extremely slowly. It appears that C can best cope with increased 
cellular depletion of resources.   

Table 1. Estimates of m, the resource wastefulness, for each 

strategy. 

 

3.3   Unequal Competition 
   The IFD assumes equal competition. All agents are able to 
forage equally. There have been many models that discuss 

situations when these assumptions are violated. One model of 
particular interest is Houston and McNamara's [8] extension of 
IFD based on statistical mechanics, which predicts that agents 
with higher ability will most likely be represented more in the 
better patch. According to the model, undermatching is also to 
occur. It is clear that each strategy has disadvantages and 
advantages. Strategy C neglects local information but pays 
attention to medium-range information. Strategy A only considers 

local information, while strategy B considers both. An experiment 
was conducted to observe the effects of these differing abilities. 
200 organisms, 100 of both types, were placed in a 20%-80% 
distribution of resource. The cellular intake rate was the same for 
both organisms; it was carefully chosen in between the two 
organism’s base rates as to assure both genomes were able to 
match the IFD in isolation. Runs lasted for 20000 updates, and 
resources were switched at update 10000. Interestingly, there is 

only slight undermatching, but it appears that B is able to 
“dominate” A, and C “dominates” both B and A. In each test, one 
species was overrepresented in the superior patch. The inferior 
organism was crowded out of both patches. This is especially 
apparent when A was contested with C; half of Type A organisms 
were not on any of the patches. It appears that medium-range 
information allows more efficient use of resources compared to 
local information. 

 

4.   DISCUSSION 
   These simple evolved organisms have revealed a great deal of 
information about foraging, the IFD, and even the early evolution 
of intelligent behaviors. First it appears that, at least in random 
foraging environments, information is not useful if it is too global. 

The organisms could have evolved to sense information that 
spanned the entire world. This was not the case in the long run. It 
did seem that a moderate amount of information was useful, 
however.  More type C organisms were represented at stage 2 
compared to stage 1, although more tests are needed to make 
statistically rigorous conclusions. The experiment included only 
three fairly vague sources of information about the environment. 
Future work in this area could include experiments where 

organisms have many different ways to sense the environment 
apart from simple resource levels. 

 

 

 

 
 

Figure 5. A vs. B. B seems to be only slightly overrepresented 

in the better patch. A is lightly crowded out, type A organisms 

undermatch, and type B organisms overmatch marginally. 
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Figure 6. A vs. C. C is well overrepresented in the better 

patch. About 45% of type A organisms are off both patches 

compared to around 25% in equal competition. It appears 

that overmatching and undermatching for both organisms is 

almost negligible, however. 

 

 

 

 
Figure 7. B vs. C. C is overrepresented in the better patch. 

Roughly 30% of type B organisms are crowded out of both 

patches. Type C organisms overmatch to the cones, while type 

B organisms undermatch. 
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   Another interesting find is the simplicity of the foraging 
behaviors encountered. All three strategies are essentially 
variations on hill-climbing, yet they are able to closely match the 
IFD. In violation of the IFD assumptions, available information 
was far from perfect. The only way to assess patch suitability was 

either through the level of two cells or through the sum of fifty 
cells. Considering the fact that the radius of our resource patches 
were 20 cells, these organisms had to make a decision in a given 
instant based on only 4% of the patch cells. These organisms 
could approximate global information based on local proxies. As 
Anil Seth [22] notes, intelligence, choice, and behavior can often 
be simply a product of the interaction between the agent and the 
environment. 

   From the limited data, it appears that the foraging efficiency of 
an organism is related to its ability to handle interference. Among 
the hill-climbers in stage two, resource wastefulness, and 
especially the growth of resource wastefulness, seemed to be 
inversely related to range of information use. Further investigation 
may be needed, including theoretical, mathematical models to 
explain this behavior. The results also seemed to at least partially 
agree with Houston and McNamara's [8] model of unequal 

competitors. Better organisms were overrepresented in better 
patches. However, it is hard to determine if there was significant 
undermatching as predicted by the model. There is definite room 
for future work in this area; there are multiple models [8, 9, 10] 
that attempt to explain the distribution with unequal competitors. 
The observed undermatching and overmatching in patches with 
unequal area is similar to the results of Polyworld and EPICURE, 
although their deviations were much more pronounced.  
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