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ABSTRACT 
In this paper we present the Markov chain Hyper-heuristic 
(MCHH), a novel online selective hyper-heuristic which employs 
reinforcement learning and Markov chains to provide an adaptive 
heuristic selection method. Experiments are conducted to 
demonstrate the efficacy of the method and comparisons are made 
with standard heuristics, a random hyper-heuristic and a multi-
objective hyper-heuristic from the literature. The approaches are 
compared on a small number of evaluations of the multi-objective 
DTLZ test problems to reflect the computational limitations of 
expensive optimisation problems. The results demonstrate the 
MCHH robust and reliable performance on these problems. 

Categories and Subject Descriptors 

I.2.8 [Problem Solving, Control Methods, and Search (F.2.2)] 

General Terms 

Algorithms, Theory. 

Keywords 
Multi-objective, Continuous, Optimisation, Hyper-heuristics. 

1. INTRODUCTION 
Real-world multi-objective optimisation problems are often 
computationally hard to solve, requiring sophisticated heuristic 
methods to generate acceptable approximations of the Pareto 
front. Furthermore, the computation models used to simulate these 
problems and evaluate the quality of solutions are commonly 
expensive to execute, limiting the number of evaluations one can 
feasibly make when searching for optimal solutions. This class of 
problem, with a restricted number of evaluations, presents a 
dilemma for optimisation experts – is it better to provide one 
solution close to some unknown front or provide a set of solutions 
that are likely to be further away from the optimum but provide a 
variety of options for the decision makers? Clearly, with few 
evaluations, it is highly unlikely that the true Pareto front will be 
located and so this trade-off becomes an important factor when 
deciding which type of heuristic to apply.  
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A wide range of meta-heuristics have been presented in the 
literature designed specifically for expensive problems. Generally 
these techniques use surrogate models to approximate the problem 
function and reduce the number of actual evaluations [1] [2]. 
Another classical approach is to employ Kriging-based methods to 
control the sequential generation of candidate solutions, such as 
Efficient Global Optimization [3] and Informational Approach to 
Global Optimization [4][5]. However, many of these approaches 
are better at solving specific types of problem and can be costly to 
tune to each new problem instance. Evolutionary Algorithms 
(EAs), for example, operate through a known set of specific 
heuristics that provide a balance of different operations. These 
heuristics, such as mutation and crossover, are vital to the overall 
performance of the meta-heuristic EAs but require parameter 
tuning for each problem to achieve the best results. 

Hyper-heuristics are designed to mitigate this problem and are 
aimed at providing methods to automate the process of selecting 
from the set of heuristics and operators to better improve the 
search [6]. By the careful selection of heuristics during the search 
process a wider range of heuristics can be supplied to the hyper-
heuristic which removes much of the burden associated with 
parameter tuning and heuristic selection. 

A hyper-heuristic algorithm searches the space and 
combinations of heuristics independently of the problem [7], in 
theory creating new sequences of heuristics for each problem they 
are applied to. This higher level of abstraction allows hyper-
heuristics to be applied to each new problem without any 
adjustment to the algorithm. Instead, the specialisation is 
introduced by supplying a set of heuristics that can be applied to 
the new problem. 

However, whilst hyper-heuristics have been shown to be very 
effective at solving a range of single-objective combinatorial 
optimisation problems [8], few examples of multi-objective 
approaches exist in the literature. Indeed, much of the hyper-
heuristic literature is focused on demonstrating the efficacy of 
new methods on single- or bi-objective combinatorial problems. 

In this paper we present a novel selective hyper-heuristic for 
online use in hybrid meta-heuristics, such as Evolution Strategies 
(ESs). Heuristic selection is informed by the use of a Markov 
chain [9] that models the probability of moving between 
heuristics. The approach uses online reinforcement learning to 
adapt heuristic selection in response to each heuristic's 
performance on the current problem by updating the transition 
weights between heuristics. The combination of weight adaption 
through reinforcement learning and the Markov chain 
representation is used by the hyper-heuristic to learn the best 
sequence of heuristics to apply as the search progresses. 
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The presented method is designed in an encapsulated, modular 
approach which can easily be integrated into any iterative 
optimiser and is therefore well suited to many Evolutionary 
Algorithm architectures. Experiments are conducted to 
demonstrate the efficacy of the method which is shown to 
compare well with standard heuristics, a random hyper-heuristic 
and a multi-objective hyper-heuristic from the literature. The 
approaches are compared on a small number of evaluations of the 
multi-objective DTLZ test problems [10] to simulate the restricted 
number of evaluations available in expensive real-world 
optimisation problems.  

2. METHOD 

In this section we outline the method used to evaluate the 
performance of heuristics in a multi-objective context and present 
a novel online selective hyper-heuristic applicable to problems 
with any number of objectives. 

2.1 Heuristic Performance 

Although a large number of studies have been conducted on 
hyper-heuristics, the majority of these are focused on single-
objective problems. As such, no one framework exists that aptly 
evaluates heuristic performance on multi-objective problems. 
Examples from the literature include objective specific learning 
methods, such as that used in the TSRoulWheel selective hyper-
heuristic [11]. In TSRoulWheel, each heuristic is rated on its 
performance on each objective and selection weights are updated 
using reinforcement learning. I.e., for a problem with m objectives 
and h heuristics, a weight matrix of m × h is produced. The 
algorithm first selects an objective to use as a basis from which it 
then selects heuristics, based on each heuristic’s weight for that 
specific objective. Whilst this method is shown to be the most 
effective examined in [11], and to be a reasonably good method in 
this study, it relies on improvements in one objective resulting in 
improvements in another as it evaluates each objective in turn, 
formulating the problem as a set of single-objective sub-problems. 

2.1.1 Pareto Dominance 

The use of Pareto optimality has been a cornerstone technique 
for the majority of multi-objective EAs since it was first suggested 
by Goldberg in 1989 [12]. In this study we use the Pareto 
dominance relationship to assign a quality performance measure 
to each heuristic. After a number of generations it is possible to 
calculate an estimate of the probability of each heuristic 
producing dominating solutions when applied in future iterations. 
This is estimated by calculating, for each solution in the new child 
population, the ratio of solutions it dominates in the parent 
population and then averages these ratios to produce a single 
score. This is shown in equation 1. Theoretically, good heuristics 
(for moving towards the Pareto front) will have a high probability 
of generating dominating solutions. 

,ሺ݄݌ ,ߤ ሻߣ ൌ෍∀௔∈ఒ∀௕∈ఓ݀݉݋ሺܽ, ܾሻ 

,ሺܽ݉݋݀	݁ݎ݄݁ݓ ܾሻ ൌ ൜
1, ܽ ≺ ܾ
0, ܽ ⊀ ܾ 

(1) 

The function p(h,μ,λ) shown in Equation 1 returns the average 
ratio of parent solutions μ dominated by each child solution in λ 
produced by heuristic h. The terms a and b refer to an individual 
child and parent respectively whilst the function dom(a, b) returns 
an integer (0 or 1) value indicating whether a dominates b. The 

approach assumes that a heuristic operates on a parent population 
of undefined size and produces a child population of undefined 
size, both of which could be a population of one. 

2.2 Markov chain Hyper-heuristic (MCHH) 

This section outlines a novel selective hyper-heuristic for 
single- and multi-objective optimisation that uses the performance 
measure defined in section 2.1. The hyper-heuristic uses a Markov 
chain to guide the selection of heuristics and applies online 
reinforcement learning to adapt the transition weights in the 
Markov chain. By using a Markov chain to control the selection of 
heuristics and adapting the transition weights from one heuristic 
to another the MCHH is able to not only learn which heuristics are 
effective, but what sequence of heuristics are most effective. For 
example, a heuristic may be good in general but a combination of 
two other heuristics, when applied in a specific sequence, may 
perform even better. The approach is designed to try and learn 
these transition sequences to further improve the optimisation 
process. 

[13] presents a similar single-objective approach, which relies 
on learning effective transition rules for each state. Although this 
is demonstrated as performing well, the set of rules are human 
designed and rely on knowledge about the behaviour of each 
heuristic. Additional constraints are also applied to the heuristic 
set, forcing heuristics to be allocated to one of two categories: 
spreading and converging. Whilst for single objective problems 
this might appear rational, for multi-objective problems there is no 
clear boundary between the two types of heuristic. It is 
theoretically plausible that the behaviour of a heuristic will 
change as the optimiser moves through the search space, 
exhibiting spreading behaviour in one area and converging 
behaviour in another, as is demonstrated later by the Transposition 
heuristic on DTLZ2. The method proposed in this section does not 
require this prior information and learns which heuristics are 
effective at converging during the search. 

2.2.1 Markov chain 

The proposed Markov chain Hyper-heuristic (MCHH) 
constructs a fully connected Markov chain with one state for each 
heuristic, i.e., each state in the chain is connected to every other 
state and to itself (see Figure 1). The weight of each edge out of a 
state represents the probability of moving from the current state 
(heuristic) to the destination state (heuristic), where all edges out 
of each state sum to one. 

 
Figure 1. Example Markov chain with 3 states representing 

three heuristics. 

The MCHH traverses this Markov chain by stochastically 
selecting the next heuristic, biased by the outbound edge weights. 
Each heuristic is applied ϵ	 times ሺset	 to	 5	 in	 the	 experiments	
belowሻ	before selecting the next heuristic. The next heuristic is 
then applied ϵ times before again selecting another heuristic, and 
so on. At the end of each episode (ϵ applications of a heuristic) the 
quality score in Equation 1 is calculated and the weight of the last 
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edge traversed by the MCHH, the edge used to move to the 
current heuristic, is updated. Once the weights have been updated, 
the MCHH selects the next heuristic and moves to it. This process 
is given as psuedocode in Figure 3, showing how each generation 
of the (μ+λ)-ES represents a single application of the heuristic. A 
description of the online weight learning is given in section 2.2.2. 

The transition weights in Markov chain can also be 
represented as a matrix of m × m, shown in Figure 2, where m is 
the number of heuristics. In this figure, the row represents the 
current state and the columns the potential state to move to. The 
sum of weights for edges leaving a state (a row) is normalised to 
1. I.e., if the row label represents the current heuristic and the 
columns the probability of transitioning to each heuristic then the 
values in the row will sum to 1 (once normalised). The sum of 
each column represents the “influence” of each heuristic where 
higher values indicate an overall higher likelihood of applying 
that heuristic. This summed weight vector is similar to a single 
vector credit assignment formulation of heuristic selection. Whilst 
the credit assignment approach is good at learning which 
operators are effective in general it cannot discover and utilise the 
most beneficial transitions between heuristics. 

  Transition State 
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 H1 H2 H3 

H1 1/3 1/2 1/6 

H2 1/6 1/3 1/2 

H3 1/3 1/3 1/3 

Overall Weight: 5/18 7/18 6/18 

Figure 2. Transition Weight Matrix for Example Markov 
chain with 3 states representing three heuristics. 

2.2.2 Online Reinforcement Learning 

In its simplest form, each edge in the Markov chain could 
represent the count of dominating solutions generated by the 
target heuristic following the preceding heuristic. In essence, this 
sets the weight of applying one heuristic and then the other to the 
performance of the second target heuristic after applying the first 
heuristic. In this study we applied the measure in Equation 1 to 
calculate the performance of each heuristic, replacing the count of 
dominating solutions with reinforcement weights based on the 
probability of generating dominating solutions. 

After applying the heuristics for one episode of ϵ applications, 
the probability of dominance is calculated using Equation 1. If the 
resulting score is greater than some threshold γ, the weight 
corresponding to the last transition (made to get to the current 
operator) is increased by α. Otherwise, the weight is degraded by 
β. Once the weight has been adjusted, the sum of outflow edges 
from the previous state are normalised to 1 to maintain the fidelity 
of the matrix. 

After normalising, the effect of increasing or decreasing an 
edge in the Markov chain will decrease or increase the other edges 
respectively. The repetition of this process should allow the 
matrix to converge on a set of probabilities for transitioning 
between individuals in the set of heuristics. This process identifies 
the good links between heuristics, with sequencing controlled by 
the edge direction, giving probabilistic information about 
combinations of heuristics. 

2.2.3 Markov chain Hyper-heuristic (MCHH) 

The MCHH is an online selective hyper-heuristic and is 
designed to operate only on the selection of heuristics in an 

encapsulated way. As such, the MCHH can be incorporated in any 
meta-heuristic and used as a hybridised hyper-heuristic. In this 
study we modified a (1+1) Evolution Strategy (ES) based on the 
UMMEA [14] to allow for fair comparisons with single heuristics. 

Figure 3 outlines the MCHH incorporated in a (μ+λ) 
Evolution Strategy. The steps in 2.1 relate to the selective hyper-
heuristic operations, operating on abstracted information about the 
heuristics. This step is introduced into the (μ+λ)-ES meta-heuristic 
as an online selection strategy. All the weights for the Markov 
chain transition matrix are initialised to 1 and adapted during the 
search process. 

1. Initialise parent population (μ) 
2. Repeat: 

2.1. If ϵ generations since last episode then 
2.1.1. Calculate performance (p) of current heuristic 
2.1.2. If p > γ then increase the weight from last 

heuristic to current heuristic by α 
2.1.3. Else if p < γ then decrease the weight from last 

heuristic to current heuristic by β 
2.1.4. Select next heuristic 

2.2. Vary parents (μ) using current heuristic to generate 
children (λ) 

2.3. Evaluate children (λ) 
2.4. Select parents for the next generation (μ') from union 

of parents (μ) and children (λ) 
2.5. Update the archive (ω) with children (λ) 

Figure 3. Pseudocode for the Markov chain Hyper-heuristic 
(MCHH) algorithm incorporated in a (μ+λ)-ES 

3. EXPERIMENT SETUP 

In order to examine the performance of the Markov chain 
Hyper-heuristic (MCHH) an experiment was conducted to 
compare the MCHH with (1+1)-ES meta-heuristics employing 1 
heuristic each, a random hyper-heuristic, and the TSRoulWheel 
multi-objective hyper-heuristics from the literature. The aim of 
this experiment was to examine the general performance of the 
MCHH in addition to testing each hyper-heuristic's ability to cope 
with a set of heuristics that vary in behaviour and performance; 
including a completely ineffective heuristic. 

3.1 Test Problems 
In this experiment the DTLZ test problems [10], a well known 

test problem suite from the literature, was used to compare the 
meta- and hyper-heuristics. The heuristics were applied to DTLZ1 
to 7. Two test problems are examined in detail (DTLZ1 and 
DTLZ2) as they provided different levels of difficulty (hard and 
easy) and varied problem features such as Pareto front geometry. 
Both problems were formulated for 3 objectives with DTLZ1 
taking 7 parameters and DTLZ2 taking 12 parameters, all within 
the same domain. 

The purpose of this experiment was to test the hyper-
heuristic's ability to optimise problems with a fixed set of 
heuristics. As such basic (1+1)-ES meta-heuristics were used as a 
basis for all algorithms to ensure a fair comparison between the 
hyper-heuristics and against the performance of the heuristics 
applied individually. The (1+1)-ESs were all limited in ability as 
the DTLZ problems are best solved with advanced population 
selection strategies and population based heuristics. In an ES, the 
absence of a selection operator enhances the impact of the 
heuristic variation operators on the search performance. This was 
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done in these experiments to minimise the influence of factors 
external to the hyper-heuristic heuristic selection techniques. 

A fixed seed population of solutions with random parameters 
were generated for all problems and used for every run on the 
respective problems. Each meta- and hyper-heuristic was run for 
1000 evaluations on both test problems and trialled 30 times on 
both problems to ensure a fair comparison and to examine the 
consistency in performances. 

3.2 Heuristics 

Four heuristics were created for this experiment: 3 
perturbative heuristics and 1 ineffective heuristic. The three 
perturbative heuristics were mutation, replication and 
transposition. The mutation heuristic applies single point additive 
mutation with random values drawn from a Gaussian distribution 
with standard deviation of σ = 0.01. The replication heuristic 
copies the value from one randomly selected parameter and 
replaces another different randomly selected parameter with the 
first value. The transposition heuristic swaps the values of a pair 
of different randomly selected parameters twice, swapping two 
different pairs. All three heuristics operate on one solution, 
affecting only that solution's parameter values. The ineffective 
heuristic returns a clone (exact copy of the original parameter 
values) of any given solution, essentially performing no operation 
and facilitating a test of the hyper-heuristics’ ability to discard 
poor performing heuristics. 

3.3 (1+1) Evolution Strategies 

Four identical (1+1) Evolution Strategies (ESs) were created 
following the UMMEA framework to examine the performance of 
each heuristic applied individually. Each (1+1)-ESs employed one 
of the four heuristics from section 3.2 to vary the population. Each 
(1+1)-ES was given an unlimited archive of non-dominated 
solutions and used an elitist solution selection policy. In the 
selection policy, the parent is only replaced if the child dominates 
the parent. 

3.4 Hyper-heuristics 

3.4.1 Markov chain Hyper-heuristic 

The hyper-heuristic selection method outlined in section 2 
was embedded in a hybrid (1+1) Evolution Strategy; the same as 
in section 3.3. The hybrid (1+1)-ES was given an unlimited 
archive and used the same elitist solution selection policy. The 
MCHH learning parameters were set to γ = 0.25, α = 0.1 and β = 
0.1 with ϵ = 5 generations per episode. The MCHH was given all 
four heuristics at the start of the optimisation process. 

3.4.2 Random Hyper-heuristic 

A random heuristic selection method was used for comparison 
with the MCHH. Again, the selection method was embedded in a 
hybrid (1+1)-ES with an unlimited archive and the same elitist 
solution selection policy. After each generation, the random 
heuristic selection method chose at random a new heuristic to 
apply in the next generation. The Random hyper-heuristic was 
given all four heuristics at the start of the optimisation process. 

3.4.3 TSRoulWheel 

The TSRoulWheel hyper-heuristic presented in [11] was 
implemented with a learning rate of 1. This optimiser was used to 

compare the performance of the MCHH learning method with a 
suitable example from the literature. As with MCHH and the 
Random hyper-heuristic, TSRoulWheel strategy was embedded in 
a (1+1)-ES and given all four heuristics at the start of the 
optimisation process. 

3.5 Quality Measures for Comparison 
Generational distance and Hypervolume were used to 

compare the performance of the meta- and hyper-heuristics. The 
generational distance [15] was used to examine the convergence 
of each method, calculating the average distance from the front 
for each solution in the archive at each generation. The distance 
measure was calculated using the minimum distance to a fixed 
sample set on the Pareto front. The hypervolume was used to 
examine coverage and population diversity. The hypervolume was 
calculated by sampling in the range [0, 100] for all objectives 
[16]. The generational distance of the final population was also 
used to compare the consistency in performance of each 
optimiser. 

3.5.1 MCHH Learning 

The sum of transition weights (averaged over the 30 trials) to 
each heuristic from MCHH weight matrix was calculated for each 
generation to examine the behaviour of the learning method used 
in the MCHH. The final MCHH weight matrix (averaged over the 
30 trials) was also recorded to examine the final population 
weight matrices produced by the MCHH. 

4. RESULTS 
Sections 4.1 and 4.2 compare the algorithms on test problems 

DTLZ1 and DTLZ2 respectively. Section 4.3 shows the final 
generational distance results on DTLZ problems 1 to 7. 

4.1 DTLZ1 
Figure 4 and 5 show the generational distance for each 

heuristic and hyper-heuristic on DTLZ1, averaged over 30 trials. 
As expected, each of the heuristics perform with vary degrees of 
quality, from clone (that does nothing) to the mutation heuristic 
which outperforms both the random hyperheuristic and 
TSRoulWheel. The MCHH works well, outperforming mutation 
and getting closest to the true Pareto front. Interestingly, the 
random hyper-heuristic is comparable to TSRoulWheel in terms 
of averaged generational distance but actually achieves better 
coverage and diversity, as indicated by the hypervolume. 
Although, on average, the TSRoulWheel is less effective than the 
random hyper-heuristic, the results are more reliable. This is 
shown in Figure 6 which displays each algorithm's distribution of 
final generation distances for each trial on DTLZ1. 
The replication heuristic was shown in the experiment to be 
highly exploitative, efficiently copying good parameter values 
across the solution parameter vector. However, as with all greedy 
heuristics, the algorithm quickly stagnates and reaches the best 
possible result with the limited parameter values available to it. 
Interestingly, although transposition did poorly in terms of 
generational distance, it continued to improve the hypervolume 
suggesting the heuristic increases diversity. 

It is this range of behaviours that allows the hyper-heuristics, 
like MCHH, to perform better than any one heuristic applied 
alone. Furthermore, the results for the random hyper-heuristic 
give support to the theory that any combination of heuristics, even 
applied without learning, is better than the average of each used
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Figure 4. Generational distance over generations which was averaged over 30 trials of 1000 evaluations of DLTZ1. 

 

 
Figure 5. Hypervolume over generations which was averaged over 30 trials of 1000 evaluations of DLTZ1. 

 

 
Figure 6. Boxplot of the generational distance of the final 
population from all 30 trials for all optimisers on DLTZ1. 

 
Figure 7. Sum of normalised transition weights for moves to 

each heuristic over generations for MCHH on DLTZ1. 
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Figure 8. Generational distance over generations which was averaged over 30 trials of 1000 evaluations of DLTZ2. 

 

 
Figure 9. Hypervolume over generations which was averaged over 30 trials of 1000 evaluations of DLTZ2. 

 

 
Figure 10. Boxplot of the generational distance of the final 
population from all 30 trials for all optimisers on DLTZ2. 

 
Figure 11. Sum of normalised transition weights for each 

heuristic over generations for MCHH on DLTZ2. 
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alone. In this example, the continual mix of heuristics results in an 
averaging of performance, improving on the worst heuristics but 
not attaining the same performance as the very best. 

One of the aims of the experiment was to examine how the 
learning mechanism in the MCHH performs on a range of 
heuristics, specifically how it copes with poor heuristics like 
clone. Figure 7 and 12 display the weights generated by the 
MCHH on DTLZ1. Figure 7 shows for each heuristic the sum of 
income weights for DTLZ1 over generations. Interestingly, in the 
first 250 generations the weighting of the mutation and replication 
heuristics appear to oscillate. This could be a result of the MCHH 
overweighting good performance of heuristics in the early stages 
or a reflection of the actual performance of the individual 
heuristics. The latter does match the results in 4 and 5, where the 
replication heuristic is shown to perform very well in the early 
stages of the optimisation process and then plateau. This is also 
reflected in Figure 12 which shows the transition weight matrix 
after optimising DTLZ1. 

Although the clone heuristic was intentionally introduced as a 
poor performer to examine the affect of ineffective heuristics on 
the hyper-heuristics it doesn't appear to have a significant effect. 
As is shown in Figure 12, the MCHH eliminates any weighting 
for the clone heuristic which might be contributing to the 
improved performance over random and TSRoulWheel. 

 
Figure 12. Colour map of the final matrix of transition 

weights between states in the MCHH averaged over 30 trials 
of 1000 evaluations of DTLZ1. 

4.2 DTLZ2 

Figure 8 and 9 show the generational distance for each 
heuristic and hyper-heuristic on DTLZ2, averaged over 30 trials. 
The majority of heuristics maintain a similar performance on this 
easier problem, which is shown in Figure 10. Although MCHH 
doesn't perform as well as in DTLZ1 (relative to the other 
heuristics), it still obtains the best final generational distance and 
performs better than both the random and TSRoulWheel hyper-
heuristics throughout the search. In contrast, the random hyper-
heuristic initially performs poorly, reflecting the behaviour of the 
transposition heuristic. However, after the first 100 generations, 
the random hyper-heuristic's performance recovers and quickly 
matches TSRoulWheel and the mutation heuristic by generation 
500. In these circumstances, where a heuristic is adversely 
affecting convergence, the positive effects of the learning applied 
by TSRoulWheel and the MCHH are best demonstrated. 

Other than the clone heuristic, the three other heuristics were 
designed to operate with varying degrees of performance, whilst 
still expecting dominating solutions to be produced occasionally. 
However, the transposition heuristic appears to diverge, moving 
away from the front for the first 150 generations before starting to 
converge again. The final generational distance of the 
transposition heuristic is in fact worse than the initial random 
seed. However, whilst the generational distance is degrading, it 

was noted that the transposition heuristic still generates new non-
dominated solutions and inserted them into the archive (which 
will allow for the generational distance to diverge). The 
hypervolume trend also indicates an increasing diversity in the 
population, covering a larger proportion of objective space. 

The behaviour of transposition can be explained by the natural 
shape formed by Pareto fronts (given a random distribution of 
points) and the geometry of the DTLZ2 problem. Pareto fronts 
tend to form a rounded surface with a knee towards the 
intersection of the axes as a result of the dominance function. In 3 
dimensions, this creates a shape roughly similar to an octant of a 
sphere with the centroid about the nadir (worst possible solution). 
The DTLZ2 problem is artificially designed with the true Pareto 
covering the surface of an octant of a sphere with its centroid at 
the intersection of the axes – the inverse of the natural formation 
of a Pareto front. Therefore, as solutions are found towards the 
extremes of the current Pareto front (which are non-dominated 
and inserted into the archive) they could, in fact, be further away 
from the true Pareto front, degrading the generational distance 
whilst improving the hypervolume. This unintentional behaviour 
is a good demonstration of the problems that are be encountered 
by meta-heuristics with fixed heuristic strategies. By employing 
selective hyper-heuristics, like the MCHH, it is possible to 
mitigate these problems and further improve performance. 

 
Figure 13. Colour map of the final matrix of transition 

weights between states in the MCHH averaged over 30 trials 
of 1000 evaluations of DTLZ2. 

Figure 13 shows the transition weight matrix after optimising 
DTLZ2. In these weights, the MCHH has identified the poor 
performance of the transposition heuristic and reduced weights 
that might allow for moves to this heuristic, unlike on DTLZ1 
where there was a chance of applying transposition. For the easier 
problem, the MCHH gave a higher weighting to the mutation 
heuristic, preferring to remain in that state for the majority of the 
search. However, a small weighting is still given to the replication 
heuristic, suggesting occasional use. 

Figure 11 shows, for each heuristic, the sum of income 
weights over generations for DTLZ2. As on DTLZ1, the 
replication heuristic does well at the start of the search, with a 
higher weighting than the mutation heuristic. However, as the 
performance of mutation heuristic improves the relative weighting 
is reversed. This demonstrates the ability of the MCHH in 
adapting the weights for each heuristic as their relative 
performances change and one heuristic becomes more optimal at 
different stages in the search process. 

4.3 Summary of DTLZ1-7 

The final generational distance results for all algorithms on 
the DTLZ test problems 1 to 7 are given in Table 1. As with the 
results shown in Section 4.1 and 4.2, the results in Table 1 are 
averaged over 30 trials with each heuristic starting with the same 
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seed population. In these experiments, none of the heuristics or 
hyper-heuristics outperformed the MCHH during both the short 
1,000 generation runs and longer runs for each problem. The 
MCHH achieved the best generational distance, even after 50,000 
generations on DTLZ1. 

Table 1. Final generational distance averaged over 30 trials 
over 1,000 generations of (1+1)-ES. The best results are shown 

in bold italics and the second best results in bold. 
 Clone Mut. Rep. Trans. Rand. TSRW MCHH

DTLZ1 189.80 29.87 53.22 186.59 51.06 29.36 22.05 
DTLZ2 0.13 0.025 0.023 0.072 0.013 0.026 0.012 
DTLZ3 819.95 170.41 469.98 840.74 158.19 176.80 90.78 
DTLZ4 27.19 5.78 15.28 27.49 5.21 5.95 3.08 
DTLZ5 0.92 0.33 0.27 0.90 0.13 0.37 0.06 
DTLZ6 1.05 1.46 1.42 0.64 2.36 1.38 0.63 
DTLZ7 14.57 12.95 6.04 5.47 5.59 12.96 5.04 

5. CONCLUSION 
In this paper we presented a novel selective hyper-heuristic, 

the Markov chain Hyper-heuristic (MCHH), and applied it to 
multi-objective continuous problems. The hyper-heuristic applies 
a reinforcement learning technique to update the transition 
weights in a Markov chain [9]. An experiment was conducted to 
compare the performance of the proposed technique against a set 
of meta-heuristic (1+1) Evolution Strategies, a random selective 
hyper-heuristic, and a multi-objective hyper-heuristic from the 
literature [11]. 

The results demonstrate the efficacy of the method in terms of 
its ability to learn good heuristic combinations, outperforming the 
tuned heuristics. The MCHH is shown to effectively penalise poor 
heuristics and learn good heuristic sequences. The TSRoulWheel 
hyper-heuristic from the literature is shown to match the 
performance of the best heuristic, but does not surpass it. The 
MCHH outperforms the random hyper-heuristic - a surprisingly 
good optimiser despite having no intelligent selection strategy. 

In addition to applying the MCHH to the DTLZ problems (of 
which two are shown in detail above), we applied the MCHH to 
the more complex Walking-Fish Group (WFG) toolkit problems 
[17]. The results also demonstrated the efficacy of the method but 
highlighted the need for more advanced solution acceptance 
strategies to further improve the search. Whilst intelligent 
heuristic selection can greatly improve the optimisation process, 
an optimiser is limited by the worst operating element and so it is 
important to incorporate higher-level techniques like the MCHH 
in effective meta-heuristics to achieve the best performance. 

Although the MCHH is shown to be good at converging to the 
front, there is no additional mechanism to encourage diversity. 
Future work will look to explore diversity preserving mechanisms 
and how they may be introduced into the MCHH. In addition, the 
MCHH should be compared with single-objective hyper-heuristics 
on traditional single-objective combinatorial hyper-heuristic 
problems from the literature to better demonstrate the generality 
of the method. 
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