
Markov Chain Hyper-heuristic (MCHH): an Online Selective
Hyper-heuristic for Multi-objective Continuous Problems

Kent McClymont
University of Exeter
Harrison Building,

Exeter EX4 4QJ
+44 (0) 1392 722524

km314@exeter.ac.uk

Ed C. Keedwell
University of Exeter
Harrison Building,

Exeter EX4 4QJ
+44 (0) 1392 722524

e.c.keedwell@exeter.ac.uk

ABSTRACT
In this paper we present the Markov chain Hyper-heuristic
(MCHH), a novel online selective hyper-heuristic which employs
reinforcement learning and Markov chains to provide an adaptive
heuristic selection method. Experiments are conducted to
demonstrate the efficacy of the method and comparisons are made
with standard heuristics, a random hyper-heuristic and a multi-
objective hyper-heuristic from the literature. The approaches are
compared on a small number of evaluations of the multi-objective
DTLZ test problems to reflect the computational limitations of
expensive optimisation problems. The results demonstrate the
MCHH robust and reliable performance on these problems.

Categories and Subject Descriptors

I.2.8 [Problem Solving, Control Methods, and Search (F.2.2)]

General Terms

Algorithms, Theory.

Keywords
Multi-objective, Continuous, Optimisation, Hyper-heuristics.

1. INTRODUCTION
Real-world multi-objective optimisation problems are often
computationally hard to solve, requiring sophisticated heuristic
methods to generate acceptable approximations of the Pareto
front. Furthermore, the computation models used to simulate these
problems and evaluate the quality of solutions are commonly
expensive to execute, limiting the number of evaluations one can
feasibly make when searching for optimal solutions. This class of
problem, with a restricted number of evaluations, presents a
dilemma for optimisation experts – is it better to provide one
solution close to some unknown front or provide a set of solutions
that are likely to be further away from the optimum but provide a
variety of options for the decision makers? Clearly, with few
evaluations, it is highly unlikely that the true Pareto front will be
located and so this trade-off becomes an important factor when
deciding which type of heuristic to apply.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07...$10.00.

A wide range of meta-heuristics have been presented in the
literature designed specifically for expensive problems. Generally
these techniques use surrogate models to approximate the problem
function and reduce the number of actual evaluations [1] [2].
Another classical approach is to employ Kriging-based methods to
control the sequential generation of candidate solutions, such as
Efficient Global Optimization [3] and Informational Approach to
Global Optimization [4][5]. However, many of these approaches
are better at solving specific types of problem and can be costly to
tune to each new problem instance. Evolutionary Algorithms
(EAs), for example, operate through a known set of specific
heuristics that provide a balance of different operations. These
heuristics, such as mutation and crossover, are vital to the overall
performance of the meta-heuristic EAs but require parameter
tuning for each problem to achieve the best results.

Hyper-heuristics are designed to mitigate this problem and are
aimed at providing methods to automate the process of selecting
from the set of heuristics and operators to better improve the
search [6]. By the careful selection of heuristics during the search
process a wider range of heuristics can be supplied to the hyper-
heuristic which removes much of the burden associated with
parameter tuning and heuristic selection.

A hyper-heuristic algorithm searches the space and
combinations of heuristics independently of the problem [7], in
theory creating new sequences of heuristics for each problem they
are applied to. This higher level of abstraction allows hyper-
heuristics to be applied to each new problem without any
adjustment to the algorithm. Instead, the specialisation is
introduced by supplying a set of heuristics that can be applied to
the new problem.

However, whilst hyper-heuristics have been shown to be very
effective at solving a range of single-objective combinatorial
optimisation problems [8], few examples of multi-objective
approaches exist in the literature. Indeed, much of the hyper-
heuristic literature is focused on demonstrating the efficacy of
new methods on single- or bi-objective combinatorial problems.

In this paper we present a novel selective hyper-heuristic for
online use in hybrid meta-heuristics, such as Evolution Strategies
(ESs). Heuristic selection is informed by the use of a Markov
chain [9] that models the probability of moving between
heuristics. The approach uses online reinforcement learning to
adapt heuristic selection in response to each heuristic's
performance on the current problem by updating the transition
weights between heuristics. The combination of weight adaption
through reinforcement learning and the Markov chain
representation is used by the hyper-heuristic to learn the best
sequence of heuristics to apply as the search progresses.

2003

The presented method is designed in an encapsulated, modular
approach which can easily be integrated into any iterative
optimiser and is therefore well suited to many Evolutionary
Algorithm architectures. Experiments are conducted to
demonstrate the efficacy of the method which is shown to
compare well with standard heuristics, a random hyper-heuristic
and a multi-objective hyper-heuristic from the literature. The
approaches are compared on a small number of evaluations of the
multi-objective DTLZ test problems [10] to simulate the restricted
number of evaluations available in expensive real-world
optimisation problems.

2. METHOD

In this section we outline the method used to evaluate the
performance of heuristics in a multi-objective context and present
a novel online selective hyper-heuristic applicable to problems
with any number of objectives.

2.1 Heuristic Performance

Although a large number of studies have been conducted on
hyper-heuristics, the majority of these are focused on single-
objective problems. As such, no one framework exists that aptly
evaluates heuristic performance on multi-objective problems.
Examples from the literature include objective specific learning
methods, such as that used in the TSRoulWheel selective hyper-
heuristic [11]. In TSRoulWheel, each heuristic is rated on its
performance on each objective and selection weights are updated
using reinforcement learning. I.e., for a problem with m objectives
and h heuristics, a weight matrix of m × h is produced. The
algorithm first selects an objective to use as a basis from which it
then selects heuristics, based on each heuristic’s weight for that
specific objective. Whilst this method is shown to be the most
effective examined in [11], and to be a reasonably good method in
this study, it relies on improvements in one objective resulting in
improvements in another as it evaluates each objective in turn,
formulating the problem as a set of single-objective sub-problems.

2.1.1 Pareto Dominance

The use of Pareto optimality has been a cornerstone technique
for the majority of multi-objective EAs since it was first suggested
by Goldberg in 1989 [12]. In this study we use the Pareto
dominance relationship to assign a quality performance measure
to each heuristic. After a number of generations it is possible to
calculate an estimate of the probability of each heuristic
producing dominating solutions when applied in future iterations.
This is estimated by calculating, for each solution in the new child
population, the ratio of solutions it dominates in the parent
population and then averages these ratios to produce a single
score. This is shown in equation 1. Theoretically, good heuristics
(for moving towards the Pareto front) will have a high probability
of generating dominating solutions.

,ሺ݄݌ ,ߤ ሻߣ ൌ෍∀௔∈ఒ∀௕∈ఓ݀݉݋ሺܽ, ܾሻ

,ሺܽ݉݋݀	݁ݎ݄݁ݓ ܾሻ ൌ ൜
1, ܽ ≺ ܾ
0, ܽ ⊀ ܾ

(1)

The function p(h,μ,λ) shown in Equation 1 returns the average
ratio of parent solutions μ dominated by each child solution in λ
produced by heuristic h. The terms a and b refer to an individual
child and parent respectively whilst the function dom(a, b) returns
an integer (0 or 1) value indicating whether a dominates b. The

approach assumes that a heuristic operates on a parent population
of undefined size and produces a child population of undefined
size, both of which could be a population of one.

2.2 Markov chain Hyper-heuristic (MCHH)

This section outlines a novel selective hyper-heuristic for
single- and multi-objective optimisation that uses the performance
measure defined in section 2.1. The hyper-heuristic uses a Markov
chain to guide the selection of heuristics and applies online
reinforcement learning to adapt the transition weights in the
Markov chain. By using a Markov chain to control the selection of
heuristics and adapting the transition weights from one heuristic
to another the MCHH is able to not only learn which heuristics are
effective, but what sequence of heuristics are most effective. For
example, a heuristic may be good in general but a combination of
two other heuristics, when applied in a specific sequence, may
perform even better. The approach is designed to try and learn
these transition sequences to further improve the optimisation
process.

[13] presents a similar single-objective approach, which relies
on learning effective transition rules for each state. Although this
is demonstrated as performing well, the set of rules are human
designed and rely on knowledge about the behaviour of each
heuristic. Additional constraints are also applied to the heuristic
set, forcing heuristics to be allocated to one of two categories:
spreading and converging. Whilst for single objective problems
this might appear rational, for multi-objective problems there is no
clear boundary between the two types of heuristic. It is
theoretically plausible that the behaviour of a heuristic will
change as the optimiser moves through the search space,
exhibiting spreading behaviour in one area and converging
behaviour in another, as is demonstrated later by the Transposition
heuristic on DTLZ2. The method proposed in this section does not
require this prior information and learns which heuristics are
effective at converging during the search.

2.2.1 Markov chain

The proposed Markov chain Hyper-heuristic (MCHH)
constructs a fully connected Markov chain with one state for each
heuristic, i.e., each state in the chain is connected to every other
state and to itself (see Figure 1). The weight of each edge out of a
state represents the probability of moving from the current state
(heuristic) to the destination state (heuristic), where all edges out
of each state sum to one.

Figure 1. Example Markov chain with 3 states representing

three heuristics.

The MCHH traverses this Markov chain by stochastically
selecting the next heuristic, biased by the outbound edge weights.
Each heuristic is applied ϵ	 times ሺset	 to	 5	 in	 the	 experiments	
belowሻ	before selecting the next heuristic. The next heuristic is
then applied ϵ times before again selecting another heuristic, and
so on. At the end of each episode (ϵ applications of a heuristic) the
quality score in Equation 1 is calculated and the weight of the last

2004

edge traversed by the MCHH, the edge used to move to the
current heuristic, is updated. Once the weights have been updated,
the MCHH selects the next heuristic and moves to it. This process
is given as psuedocode in Figure 3, showing how each generation
of the (μ+λ)-ES represents a single application of the heuristic. A
description of the online weight learning is given in section 2.2.2.

The transition weights in Markov chain can also be
represented as a matrix of m × m, shown in Figure 2, where m is
the number of heuristics. In this figure, the row represents the
current state and the columns the potential state to move to. The
sum of weights for edges leaving a state (a row) is normalised to
1. I.e., if the row label represents the current heuristic and the
columns the probability of transitioning to each heuristic then the
values in the row will sum to 1 (once normalised). The sum of
each column represents the “influence” of each heuristic where
higher values indicate an overall higher likelihood of applying
that heuristic. This summed weight vector is similar to a single
vector credit assignment formulation of heuristic selection. Whilst
the credit assignment approach is good at learning which
operators are effective in general it cannot discover and utilise the
most beneficial transitions between heuristics.

 Transition State

C
u

rr
en

t
S

ta
te

 H1 H2 H3

H1 1/3 1/2 1/6

H2 1/6 1/3 1/2

H3 1/3 1/3 1/3

Overall Weight: 5/18 7/18 6/18

Figure 2. Transition Weight Matrix for Example Markov
chain with 3 states representing three heuristics.

2.2.2 Online Reinforcement Learning

In its simplest form, each edge in the Markov chain could
represent the count of dominating solutions generated by the
target heuristic following the preceding heuristic. In essence, this
sets the weight of applying one heuristic and then the other to the
performance of the second target heuristic after applying the first
heuristic. In this study we applied the measure in Equation 1 to
calculate the performance of each heuristic, replacing the count of
dominating solutions with reinforcement weights based on the
probability of generating dominating solutions.

After applying the heuristics for one episode of ϵ applications,
the probability of dominance is calculated using Equation 1. If the
resulting score is greater than some threshold γ, the weight
corresponding to the last transition (made to get to the current
operator) is increased by α. Otherwise, the weight is degraded by
β. Once the weight has been adjusted, the sum of outflow edges
from the previous state are normalised to 1 to maintain the fidelity
of the matrix.

After normalising, the effect of increasing or decreasing an
edge in the Markov chain will decrease or increase the other edges
respectively. The repetition of this process should allow the
matrix to converge on a set of probabilities for transitioning
between individuals in the set of heuristics. This process identifies
the good links between heuristics, with sequencing controlled by
the edge direction, giving probabilistic information about
combinations of heuristics.

2.2.3 Markov chain Hyper-heuristic (MCHH)

The MCHH is an online selective hyper-heuristic and is
designed to operate only on the selection of heuristics in an

encapsulated way. As such, the MCHH can be incorporated in any
meta-heuristic and used as a hybridised hyper-heuristic. In this
study we modified a (1+1) Evolution Strategy (ES) based on the
UMMEA [14] to allow for fair comparisons with single heuristics.

Figure 3 outlines the MCHH incorporated in a (μ+λ)
Evolution Strategy. The steps in 2.1 relate to the selective hyper-
heuristic operations, operating on abstracted information about the
heuristics. This step is introduced into the (μ+λ)-ES meta-heuristic
as an online selection strategy. All the weights for the Markov
chain transition matrix are initialised to 1 and adapted during the
search process.

1. Initialise parent population (μ)
2. Repeat:

2.1. If ϵ generations since last episode then
2.1.1. Calculate performance (p) of current heuristic
2.1.2. If p > γ then increase the weight from last

heuristic to current heuristic by α
2.1.3. Else if p < γ then decrease the weight from last

heuristic to current heuristic by β
2.1.4. Select next heuristic

2.2. Vary parents (μ) using current heuristic to generate
children (λ)

2.3. Evaluate children (λ)
2.4. Select parents for the next generation (μ') from union

of parents (μ) and children (λ)
2.5. Update the archive (ω) with children (λ)

Figure 3. Pseudocode for the Markov chain Hyper-heuristic
(MCHH) algorithm incorporated in a (μ+λ)-ES

3. EXPERIMENT SETUP

In order to examine the performance of the Markov chain
Hyper-heuristic (MCHH) an experiment was conducted to
compare the MCHH with (1+1)-ES meta-heuristics employing 1
heuristic each, a random hyper-heuristic, and the TSRoulWheel
multi-objective hyper-heuristics from the literature. The aim of
this experiment was to examine the general performance of the
MCHH in addition to testing each hyper-heuristic's ability to cope
with a set of heuristics that vary in behaviour and performance;
including a completely ineffective heuristic.

3.1 Test Problems
In this experiment the DTLZ test problems [10], a well known

test problem suite from the literature, was used to compare the
meta- and hyper-heuristics. The heuristics were applied to DTLZ1
to 7. Two test problems are examined in detail (DTLZ1 and
DTLZ2) as they provided different levels of difficulty (hard and
easy) and varied problem features such as Pareto front geometry.
Both problems were formulated for 3 objectives with DTLZ1
taking 7 parameters and DTLZ2 taking 12 parameters, all within
the same domain.

The purpose of this experiment was to test the hyper-
heuristic's ability to optimise problems with a fixed set of
heuristics. As such basic (1+1)-ES meta-heuristics were used as a
basis for all algorithms to ensure a fair comparison between the
hyper-heuristics and against the performance of the heuristics
applied individually. The (1+1)-ESs were all limited in ability as
the DTLZ problems are best solved with advanced population
selection strategies and population based heuristics. In an ES, the
absence of a selection operator enhances the impact of the
heuristic variation operators on the search performance. This was

2005

done in these experiments to minimise the influence of factors
external to the hyper-heuristic heuristic selection techniques.

A fixed seed population of solutions with random parameters
were generated for all problems and used for every run on the
respective problems. Each meta- and hyper-heuristic was run for
1000 evaluations on both test problems and trialled 30 times on
both problems to ensure a fair comparison and to examine the
consistency in performances.

3.2 Heuristics

Four heuristics were created for this experiment: 3
perturbative heuristics and 1 ineffective heuristic. The three
perturbative heuristics were mutation, replication and
transposition. The mutation heuristic applies single point additive
mutation with random values drawn from a Gaussian distribution
with standard deviation of σ = 0.01. The replication heuristic
copies the value from one randomly selected parameter and
replaces another different randomly selected parameter with the
first value. The transposition heuristic swaps the values of a pair
of different randomly selected parameters twice, swapping two
different pairs. All three heuristics operate on one solution,
affecting only that solution's parameter values. The ineffective
heuristic returns a clone (exact copy of the original parameter
values) of any given solution, essentially performing no operation
and facilitating a test of the hyper-heuristics’ ability to discard
poor performing heuristics.

3.3 (1+1) Evolution Strategies

Four identical (1+1) Evolution Strategies (ESs) were created
following the UMMEA framework to examine the performance of
each heuristic applied individually. Each (1+1)-ESs employed one
of the four heuristics from section 3.2 to vary the population. Each
(1+1)-ES was given an unlimited archive of non-dominated
solutions and used an elitist solution selection policy. In the
selection policy, the parent is only replaced if the child dominates
the parent.

3.4 Hyper-heuristics

3.4.1 Markov chain Hyper-heuristic

The hyper-heuristic selection method outlined in section 2
was embedded in a hybrid (1+1) Evolution Strategy; the same as
in section 3.3. The hybrid (1+1)-ES was given an unlimited
archive and used the same elitist solution selection policy. The
MCHH learning parameters were set to γ = 0.25, α = 0.1 and β =
0.1 with ϵ = 5 generations per episode. The MCHH was given all
four heuristics at the start of the optimisation process.

3.4.2 Random Hyper-heuristic

A random heuristic selection method was used for comparison
with the MCHH. Again, the selection method was embedded in a
hybrid (1+1)-ES with an unlimited archive and the same elitist
solution selection policy. After each generation, the random
heuristic selection method chose at random a new heuristic to
apply in the next generation. The Random hyper-heuristic was
given all four heuristics at the start of the optimisation process.

3.4.3 TSRoulWheel

The TSRoulWheel hyper-heuristic presented in [11] was
implemented with a learning rate of 1. This optimiser was used to

compare the performance of the MCHH learning method with a
suitable example from the literature. As with MCHH and the
Random hyper-heuristic, TSRoulWheel strategy was embedded in
a (1+1)-ES and given all four heuristics at the start of the
optimisation process.

3.5 Quality Measures for Comparison
Generational distance and Hypervolume were used to

compare the performance of the meta- and hyper-heuristics. The
generational distance [15] was used to examine the convergence
of each method, calculating the average distance from the front
for each solution in the archive at each generation. The distance
measure was calculated using the minimum distance to a fixed
sample set on the Pareto front. The hypervolume was used to
examine coverage and population diversity. The hypervolume was
calculated by sampling in the range [0, 100] for all objectives
[16]. The generational distance of the final population was also
used to compare the consistency in performance of each
optimiser.

3.5.1 MCHH Learning

The sum of transition weights (averaged over the 30 trials) to
each heuristic from MCHH weight matrix was calculated for each
generation to examine the behaviour of the learning method used
in the MCHH. The final MCHH weight matrix (averaged over the
30 trials) was also recorded to examine the final population
weight matrices produced by the MCHH.

4. RESULTS
Sections 4.1 and 4.2 compare the algorithms on test problems

DTLZ1 and DTLZ2 respectively. Section 4.3 shows the final
generational distance results on DTLZ problems 1 to 7.

4.1 DTLZ1
Figure 4 and 5 show the generational distance for each

heuristic and hyper-heuristic on DTLZ1, averaged over 30 trials.
As expected, each of the heuristics perform with vary degrees of
quality, from clone (that does nothing) to the mutation heuristic
which outperforms both the random hyperheuristic and
TSRoulWheel. The MCHH works well, outperforming mutation
and getting closest to the true Pareto front. Interestingly, the
random hyper-heuristic is comparable to TSRoulWheel in terms
of averaged generational distance but actually achieves better
coverage and diversity, as indicated by the hypervolume.
Although, on average, the TSRoulWheel is less effective than the
random hyper-heuristic, the results are more reliable. This is
shown in Figure 6 which displays each algorithm's distribution of
final generation distances for each trial on DTLZ1.
The replication heuristic was shown in the experiment to be
highly exploitative, efficiently copying good parameter values
across the solution parameter vector. However, as with all greedy
heuristics, the algorithm quickly stagnates and reaches the best
possible result with the limited parameter values available to it.
Interestingly, although transposition did poorly in terms of
generational distance, it continued to improve the hypervolume
suggesting the heuristic increases diversity.

It is this range of behaviours that allows the hyper-heuristics,
like MCHH, to perform better than any one heuristic applied
alone. Furthermore, the results for the random hyper-heuristic
give support to the theory that any combination of heuristics, even
applied without learning, is better than the average of each used

2006

Figure 4. Generational distance over generations which was averaged over 30 trials of 1000 evaluations of DLTZ1.

Figure 5. Hypervolume over generations which was averaged over 30 trials of 1000 evaluations of DLTZ1.

Figure 6. Boxplot of the generational distance of the final
population from all 30 trials for all optimisers on DLTZ1.

Figure 7. Sum of normalised transition weights for moves to

each heuristic over generations for MCHH on DLTZ1.

2007

Figure 8. Generational distance over generations which was averaged over 30 trials of 1000 evaluations of DLTZ2.

Figure 9. Hypervolume over generations which was averaged over 30 trials of 1000 evaluations of DLTZ2.

Figure 10. Boxplot of the generational distance of the final
population from all 30 trials for all optimisers on DLTZ2.

Figure 11. Sum of normalised transition weights for each

heuristic over generations for MCHH on DLTZ2.

2008

alone. In this example, the continual mix of heuristics results in an
averaging of performance, improving on the worst heuristics but
not attaining the same performance as the very best.

One of the aims of the experiment was to examine how the
learning mechanism in the MCHH performs on a range of
heuristics, specifically how it copes with poor heuristics like
clone. Figure 7 and 12 display the weights generated by the
MCHH on DTLZ1. Figure 7 shows for each heuristic the sum of
income weights for DTLZ1 over generations. Interestingly, in the
first 250 generations the weighting of the mutation and replication
heuristics appear to oscillate. This could be a result of the MCHH
overweighting good performance of heuristics in the early stages
or a reflection of the actual performance of the individual
heuristics. The latter does match the results in 4 and 5, where the
replication heuristic is shown to perform very well in the early
stages of the optimisation process and then plateau. This is also
reflected in Figure 12 which shows the transition weight matrix
after optimising DTLZ1.

Although the clone heuristic was intentionally introduced as a
poor performer to examine the affect of ineffective heuristics on
the hyper-heuristics it doesn't appear to have a significant effect.
As is shown in Figure 12, the MCHH eliminates any weighting
for the clone heuristic which might be contributing to the
improved performance over random and TSRoulWheel.

Figure 12. Colour map of the final matrix of transition

weights between states in the MCHH averaged over 30 trials
of 1000 evaluations of DTLZ1.

4.2 DTLZ2

Figure 8 and 9 show the generational distance for each
heuristic and hyper-heuristic on DTLZ2, averaged over 30 trials.
The majority of heuristics maintain a similar performance on this
easier problem, which is shown in Figure 10. Although MCHH
doesn't perform as well as in DTLZ1 (relative to the other
heuristics), it still obtains the best final generational distance and
performs better than both the random and TSRoulWheel hyper-
heuristics throughout the search. In contrast, the random hyper-
heuristic initially performs poorly, reflecting the behaviour of the
transposition heuristic. However, after the first 100 generations,
the random hyper-heuristic's performance recovers and quickly
matches TSRoulWheel and the mutation heuristic by generation
500. In these circumstances, where a heuristic is adversely
affecting convergence, the positive effects of the learning applied
by TSRoulWheel and the MCHH are best demonstrated.

Other than the clone heuristic, the three other heuristics were
designed to operate with varying degrees of performance, whilst
still expecting dominating solutions to be produced occasionally.
However, the transposition heuristic appears to diverge, moving
away from the front for the first 150 generations before starting to
converge again. The final generational distance of the
transposition heuristic is in fact worse than the initial random
seed. However, whilst the generational distance is degrading, it

was noted that the transposition heuristic still generates new non-
dominated solutions and inserted them into the archive (which
will allow for the generational distance to diverge). The
hypervolume trend also indicates an increasing diversity in the
population, covering a larger proportion of objective space.

The behaviour of transposition can be explained by the natural
shape formed by Pareto fronts (given a random distribution of
points) and the geometry of the DTLZ2 problem. Pareto fronts
tend to form a rounded surface with a knee towards the
intersection of the axes as a result of the dominance function. In 3
dimensions, this creates a shape roughly similar to an octant of a
sphere with the centroid about the nadir (worst possible solution).
The DTLZ2 problem is artificially designed with the true Pareto
covering the surface of an octant of a sphere with its centroid at
the intersection of the axes – the inverse of the natural formation
of a Pareto front. Therefore, as solutions are found towards the
extremes of the current Pareto front (which are non-dominated
and inserted into the archive) they could, in fact, be further away
from the true Pareto front, degrading the generational distance
whilst improving the hypervolume. This unintentional behaviour
is a good demonstration of the problems that are be encountered
by meta-heuristics with fixed heuristic strategies. By employing
selective hyper-heuristics, like the MCHH, it is possible to
mitigate these problems and further improve performance.

Figure 13. Colour map of the final matrix of transition

weights between states in the MCHH averaged over 30 trials
of 1000 evaluations of DTLZ2.

Figure 13 shows the transition weight matrix after optimising
DTLZ2. In these weights, the MCHH has identified the poor
performance of the transposition heuristic and reduced weights
that might allow for moves to this heuristic, unlike on DTLZ1
where there was a chance of applying transposition. For the easier
problem, the MCHH gave a higher weighting to the mutation
heuristic, preferring to remain in that state for the majority of the
search. However, a small weighting is still given to the replication
heuristic, suggesting occasional use.

Figure 11 shows, for each heuristic, the sum of income
weights over generations for DTLZ2. As on DTLZ1, the
replication heuristic does well at the start of the search, with a
higher weighting than the mutation heuristic. However, as the
performance of mutation heuristic improves the relative weighting
is reversed. This demonstrates the ability of the MCHH in
adapting the weights for each heuristic as their relative
performances change and one heuristic becomes more optimal at
different stages in the search process.

4.3 Summary of DTLZ1-7

The final generational distance results for all algorithms on
the DTLZ test problems 1 to 7 are given in Table 1. As with the
results shown in Section 4.1 and 4.2, the results in Table 1 are
averaged over 30 trials with each heuristic starting with the same

C
u

rr
en

t
H

eu
ri

st
ic

Next Heuristic

Clone Mut. Rep. Trans.

Clone

Mutation

Replication

Transposition
0

0.2

0.4

C
u

rr
en

t
H

eu
ri

st
ic

Next Heuristic

Clone Mut. Rep. Trans.

Clone

Mutation

Replication

Transposition
0

0.2

0.4

0.6

2009

seed population. In these experiments, none of the heuristics or
hyper-heuristics outperformed the MCHH during both the short
1,000 generation runs and longer runs for each problem. The
MCHH achieved the best generational distance, even after 50,000
generations on DTLZ1.

Table 1. Final generational distance averaged over 30 trials
over 1,000 generations of (1+1)-ES. The best results are shown

in bold italics and the second best results in bold.
 Clone Mut. Rep. Trans. Rand. TSRW MCHH

DTLZ1 189.80 29.87 53.22 186.59 51.06 29.36 22.05
DTLZ2 0.13 0.025 0.023 0.072 0.013 0.026 0.012
DTLZ3 819.95 170.41 469.98 840.74 158.19 176.80 90.78
DTLZ4 27.19 5.78 15.28 27.49 5.21 5.95 3.08
DTLZ5 0.92 0.33 0.27 0.90 0.13 0.37 0.06
DTLZ6 1.05 1.46 1.42 0.64 2.36 1.38 0.63
DTLZ7 14.57 12.95 6.04 5.47 5.59 12.96 5.04

5. CONCLUSION
In this paper we presented a novel selective hyper-heuristic,

the Markov chain Hyper-heuristic (MCHH), and applied it to
multi-objective continuous problems. The hyper-heuristic applies
a reinforcement learning technique to update the transition
weights in a Markov chain [9]. An experiment was conducted to
compare the performance of the proposed technique against a set
of meta-heuristic (1+1) Evolution Strategies, a random selective
hyper-heuristic, and a multi-objective hyper-heuristic from the
literature [11].

The results demonstrate the efficacy of the method in terms of
its ability to learn good heuristic combinations, outperforming the
tuned heuristics. The MCHH is shown to effectively penalise poor
heuristics and learn good heuristic sequences. The TSRoulWheel
hyper-heuristic from the literature is shown to match the
performance of the best heuristic, but does not surpass it. The
MCHH outperforms the random hyper-heuristic - a surprisingly
good optimiser despite having no intelligent selection strategy.

In addition to applying the MCHH to the DTLZ problems (of
which two are shown in detail above), we applied the MCHH to
the more complex Walking-Fish Group (WFG) toolkit problems
[17]. The results also demonstrated the efficacy of the method but
highlighted the need for more advanced solution acceptance
strategies to further improve the search. Whilst intelligent
heuristic selection can greatly improve the optimisation process,
an optimiser is limited by the worst operating element and so it is
important to incorporate higher-level techniques like the MCHH
in effective meta-heuristics to achieve the best performance.

Although the MCHH is shown to be good at converging to the
front, there is no additional mechanism to encourage diversity.
Future work will look to explore diversity preserving mechanisms
and how they may be introduced into the MCHH. In addition, the
MCHH should be compared with single-objective hyper-heuristics
on traditional single-objective combinatorial hyper-heuristic
problems from the literature to better demonstrate the generality
of the method.

6. ACKNOWLEDGEMENTS
This work was supported by an EPSRC CASE award (Grant No.
CASE/CNA/07/100) and Mouchel Limited.

7. REFERENCES
[1] Booker, A. J., Dennis, J. E., Frank. P. D., Serafini, D. B.,

Torczon, V., and Trosset, M. W. A rigorous framework for
optimization of expensive functions by surrogates. Structural
and Multidisciplinary Optimization. 17 (1999), 1-13.

[2] Kazemi, G. M., Wang, G., Rahnamayan, S., and Gupta, K.,
Metamodel-Based Optimization for Problems With
Expensive Objective and Constraint Functions. J. Mech. Des.
133, 014505 (2011).

[3] Jones, D. R., Schonlau, M., and Welch, W. J.. Efficient
global optimization of expensive black-box functions. J. of
Global Optimization. 13, 4 (1998), 455-492.

[4] Vazquez, E., Villemonteix, J., Sidorkiewicz, M., and Walter,
E. Global optimization based on noisy evaluations: an
empirical study of two statistical approaches. J. of Global
Optimization. (2008).

[5] Villemonteix, J., Vazquez, E., and Walter, E. An
informational approach to the global optimization of
expensive-to-evaluate functions. J. of Global Optimization.
(2008), 26-34.

[6] Cowling, P., Kendall, G., Soubeiga, E. A Hyperheuristic
Approach to Scheduling a Sales Summit. In Practice and
Theory of Automated Timetabling III : Third International
Conference, PATAT 2000. Lecture Notes in Computer
Science. Springer, 2079 (2000), 176-190.

[7] Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E.,
and Woodward, J. A Classification of Hyper-heuristics
Approaches. Handbook of Metaheuristics, International
Series in Operations Research & Management Science.
Springer, 2009.

[8] Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E.,
and Qu, R. Hyper-heuristics: A Survey of the State of the Art.
Computer Science Tech. Rep. NOTTCS-TR-SUB-
0906241418-2747, University of Nottingham, 2010.

[9] J. G. Kemeny, and J. L. Snell. Finite Markov Chains.
Springer Verlag, Princeton, NJ, 1976.

[10] Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. Scalable
Test Problems for Evolutionary Multi-Objective
Optimization. Zurich, Switzerland, Tech. Rep. 112, 2001.

[11] Burke, E. K., Landa Silva, J. D., Soubeiga, E. Multi-
objective Hyper-heuristic Approaches for Space Allocation
and Timetabling, In Meta-heuristics: Progress as Real
Problem Solvers, Selected Papers from the 5th
Metaheuristics International Conference (MIC 2003),
Springer, 2005, 129-158.

[12] Goldberg, D. E. Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley, 1989.

[13] Meignan, D., Koukam, A., Creput, J. C. Coalition-based
metaheuristic: A self-adaptive metaheuristic using
reinforcement learning and mimetism. J. Heuristics. 16,
(2010), 859-879.

[14] Laumanns, M., Zitzler, E., Thiele, L. A unified model for
multi-objective evolutionary algorithms with elitism. In
Proceedings of the 2000 Congress on Evolutionary
Computation, 2000, (La Jolla, CA), 1, (2000), 46-53.

[15] Van Veldhuizen, D. A. and Lamont, G. B. Evolutionary
Computation and Convergence to a Pareto Front. In Late
Breaking Papers at the Genetic Programming 1998
Conference. (Stanford University), 1998, 221-228.

[16] Bader, J., Deb, K., and Zitzler, E. Faster Hypervolume-based
Search using Monte Carlo Sampling. In Conference on
Multiple Criteria Decision Making (MCDM 2008). Springer,
2008, 313-326.

[17] Huband, S., Hingston, P., Barone, L., While, L. A Review of
Multiobjective Test Problems and a Scalable Test Problem
Toolkit. In IEEE Trans. on Evolutionary Computation. 10, 5
(2006), 477 - 506.

2010

