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ABSTRACT
We propose two adaptive variants of a multiple neighborhood iter-
ated local search algorithm. These variants employ online learning
techniques, also called adaptive operation selection, in order to se-
lect which perturbation to apply at each iteration step from a set of
available move operators. Using a common software interface (the
HyFlex framework), the proposed algorithms are tested across four
hard combinatorial optimisation problems: permutation flow shop,
1D bin packing, maximum satisfiability, and personnel scheduling
(including instance data from real-world industrial applications).
Using the HyFlex framework, exactly the same high level search
strategy can be applied to all the domains and instances. Our re-
sults confirm that the adaptive variants outperform a baseline iter-
ated local search with uniform random selection of the move oper-
ators. We argue that the adaptive algorithms proposed are general
yet powerful, and contribute to the goal of increasing the generality
and applicability of heuristic search.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic methods

General Terms
Algorithms, Design.

Keywords
Combinatorial optimization, iterated local search, hyper-heuristics,
meta-heuristics, adaptive.
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1. INTRODUCTION
The idea of increasing the generality of heuristic search algo-

rithms is appealing, as their potential applicability would increase.
Researchers pursuing this direction, are sometimes limited on the
number and complexity of problem domains for testing their gen-
eral purpose methods. This can be explained by the substantial ef-
fort required for implementing the required problem-specific data
structures, search operators, constraints, and objective functions.

Hyper-heuristics [11, 12, 28] are search methodologies that are
motivated by the goal of producing more generally applicable, au-
tomated methods. Selective hyper-heuristics are a widely studied
method [12]. They attempt to automatically select which heuris-
tic (from a given set) to apply at each decision point during the
search process. A hyper-heuristic framework has access to a set of
such problem specific low level heuristics (or search operators), and
the goal is to combine them to produce an effective self-configured
algorithm. In order to facilitate the research and further develop
generally applicable cross domain heuristic search methods, a soft-
ware benchmark framework (HyFlex) has recently been developed
[5]. This framework is supporting an exciting international research
competition: The First Cross-Domain Heuristic Search Challenge
[10]. HyFlex is a modular Java class library for supporting the
design of cross-domain heuristic search methods. The library pro-
vides a number of problem domain modules (for selected hard com-
binatorial problems), which encapsulate, using a common software
interface, all the algorithm components that are problem-specific:
namely, the data structure for representing candidate solutions, the
objective function, and a repository of associated problem specific
low level heuristics of different types. Therefore, for designing a
complete and general search heuristic, the user only needs to pro-
vide the high-level control strategy that will manage and configure
the provided algorithmic building blocks. Notice that the frame-
work allows the interesting possibility of implementing a high-
level search controller that can successfully solve instances of hid-
den/unseen problem domains.

This paper uses HyFlex in order to test the generality and cross-
domain abilities of two adaptive variants of iterated local search.
The proposed variants incorporate adaptive mechanisms for select-
ing among a set of available neighborhoods. They improve the best
performing method presented in [6], which can be considered as an
iterated local search (ILS) algorithm with multiple neighborhoods.
Iterated local search is a relatively simple but successful algorithm.
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It operates by iteratively alternating between applying a move op-
erator to the incumbent solution and restarting local search from
the perturbed solution. This search principle has been rediscovered
multiple times, within different research communities and differ-
ent names [1, 26]. The term iterated local search was proposed
in [25]. In [36], an adaptive operator selection method, adaptive
pursuit [35], is successfully applied to automatically select the ILS
perturbation step size of a single move operator when applied to
a single instance of the single-constraint knapsack problem. The
variants presented in this article, instead, adapt the choice among
different neighborhood structures. Furthermore, their consistency
and robustness is tested across several domains and a number of
instances for each domain.

2. THE HYFLEX FRAMEWORK
HyFlex (Hyper-heuristics Flexible framework) [5] is a Java ob-

ject oriented framework for the implementation and comparison of
different iterative general-purpose heuristic search algorithms (also
called hyper-heuristics). The framework appeals to modularity and
is inspired by the notion of a domain barrier between the low-level
heuristics and the hyper-heuristic [14, 11] . HyFlex provides a con-
trolled communication protocol (a software interface) between the
problem specific components and the domain independent algo-
rithm components. The purpose is to support researchers in their
efforts to develop generally applicable search heuristics. The cre-
ative efforts can focus in the design of intelligent and adaptable
cross-domain search controllers.

HyFlex extends the conceptual hyper-heuristic framework dis-
cussed in [14, 11] by maintaining a population (instead of a sin-
gle incumbent solution) in the problem domain layer. Moreover,
a richer variety of low-level heuristics is provided. A relevant an-
tecedent to HyFlex is PISA [3], a text-based software interface for
multi-objective evolutionary algorithms. PISA provides a division
between the application-specific and an the algorithm-specific parts
of a multi-objective evolutionary algorithm. In HyFlex the interface
is not text-based. Instead, it is given by an abstract Java class. This
allows a more tight coupling between the modules and overcomes
some of the speed limitations encountered in PISA. While PISA
is designed to implement evolutionary algorithms, HyFlex can be
used to implement both population-based and single point meta-
heuristics and hyper-heuristics. Moreover, it provides a rich va-
riety of combinatorial optimisation problems including real-world
instance data. Each HyFlex domain module encapsulates the prob-
lem model and the data structure for encoding a candidate solution.
It also provides: (i) a routine to initialise randomised solutions, (ii)
an objective function for evaluating the quality of solutions, and
(iii) a set of varied instance data sets from different sources that
can be easily loaded. More importantly, HyFlex provides a rich
set of useful low level heuristics, which can be classified into the
following types:

mutational heuristics: these are perturbation or mutation heuris-
tics which induce a small modification to the current solu-
tion.

ruin-recreate heuristics: these are large neighborhoods or con-
struction and destruction heuristics. They operate by ran-
domly destroying part of the solution and then rebuilding it
using a greedy or constructive procedure. They differ from
mutational heuristics not only on the extent of the change,
but also because problem specific constructive heuristics are
used to recreate the partially destroyed solutions.

hill-climbing heuristics: operate by iteratively perturbing an in-

cumbent solution, accepting improving or non-deteriorating
solutions, until a local optimum is found or a stopping con-
dition is met. They differ from mutational heuristics in that
they incorporate an iterative improvement process; therefore
there is a guarantee that a non-deteriorating solution will be
produced.

crossover heuristics: widely used in evolutionary approaches, cross-
over or recombination heuristics take two solutions and com-
bine them to produce an offspring solution.

Finally, HyFlex provides two control parameters (intensity-of-
mutation and depth-of-search), which can be used to control the
behavior of some of the provided heuristics. The precise function-
ing of the parameters would depend on the specific heuristic and
problem domain. This information is available on the technical re-
ports available for each problem domain [22, 23, 17, 37].

Currently, four problem domain modules are implemented (which
can be downloaded from1): permutation flow shop, one-dimensional
bin packing, maximum satisfiability (MAX-SAT) and personnel
scheduling.

2.1 Permutation flow shop
In the permutation flow shop problem, a set of n jobs are to be

processed in m machines. Jobs are processed first in machine1,
then in machine2, and so on. The constraint is that the initial se-
quence of the jobs at machine1 must be kept in all machines, i.e.
jobs cannot jump other jobs. Additionally, no machine is allowed
to remain idle when a job is ready for processing. All jobs and ma-
chines are available at time 0, and each job i requires a processing
time on machine j denoted by pij .The most widely considered ob-
jective function is to minimise the length of the schedule, i.e. the
makespan.

Initialisation: Solutions are created with a randomised version
of the widely used NEH algorithm [27], which works as follows.
First a random permutation of the jobs is generated. Second, a
schedule is constructed from scratch by assigning the first job in
the permutation to an empty schedule; the second job is then as-
signed to places 1 and 2 and fixed where the partial schedule has
the smallest makespan; the third job is assigned to places 1, 2 and
3 and fixed to the place where the partial schedule has the smallest
makespan, and so on.

Low-level heuristics: 14 low level heuristics are provided for
this domain: specifically, 5 mutational, 2 ruin-recreate, 4 local
search, and 3 crossover heuristics. The mutational and local search
heuristics are inspired by those proposed in [30, 29]. The crossover
heuristics are widely known recombination operators for the per-
mutation representation. The ruin-recreate heuristics incorporate
the successful NEH procedure in the construction process. For
more details, see [37].

Objective function: The objective function to be minimised cor-
responds to the makespan, i.e., the overall completion time for all
the jobs.

Instance data: The five instances used are taken from the widely
known Taillard set [33]. We selected one instance of 100 jobs and
20 machines, and four instances of 500 jobs and 20 machines. The
job processing times, pij , in all these instances are randomly gener-
ated integer numbers that follow a Uniform distribution in the range
1, . . . , 99.

1http://www.asap.cs.nott.ac.uk/chesc2011/

1988



Table 1: Bin packing instances
instance name and source capacity no. pieces

1 falkenauer/falk500-1 [18] 150 500
2 falkenauer/bpt501-1 [18] 100 501
3 schoenfield/schoenfieldhard1 [2] 1000 160
4 1000/10-30/instance1 [13] 150 1000
5 2000/10-50/instance1 [13] 150 2000

2.2 One dimensional bin packing
In the one-dimensional bin packing problem, a set of integer-

size pieces, L, must be packed into bins of a given capacity C. The
objective is to the minimise the number of bins used to pack the
pieces. This can also be formulated as follows. A set of integers
must be divided into the smallest possible number of subsets, so
that the sum of the values in a subset does not exceed a given value
C.

Initialisation: Solutions are initialised by a randomised version
of the the widely known ‘first-fit’ heuristic [24]. First-fit packs the
pieces one at a time, each into the first bin that they will fit into,
opening a new bin when necessary.

Low-level heuristics: 7 low-level heuristics are available for this
domain: specifically, 2 mutational, 2 ruin and recreate, repacked
with best-fit, 1 crossover and 2 local search heuristics. For more
details see [23].

Objective function: The objective function to be minimised
favours bins that are filled completely, or nearly so (i.e. which have
the least wasted space). It returns a value between zero and one,
where lower is better, and a set of completely full bins would re-
turn a value of zero. For more details, see [23].

Instance data: The five problems used are summarised in Table
1. The first 3 instances can be downloaded from the ‘EURO Special
Interest Group on Cutting and Packing’ website 2)

2.3 Maximum satisfiability (MAX-SAT)
The propositional satisfiability problem (SAT) can be formulated

as follows. Given a formula in Boolean logic, decide whether there
is an assignment of truth values to the variables in the formula un-
der which the formula evaluates to ‘true’. SAT is a decision prob-
lem. We consider here one of its related optimisation problems, the
maximum satisfiability problem (MAX-SAT), in which the objec-
tive is to find the maximum number of clauses of a given Boolean
formula, that can be satisfied by some assignment. The problem
can also be formulated as a minimisation problem, where the ob-
jective is to minimise the number of unsatisfied clauses. This last
formulation is the one considered in the HyFlex framework.

Initialisation: Solutions are initialised uniformly at random as-
signing a true or false value to each variable in the formula.

Low-level heuristics: 9 low-level heuristics are available for this
domain: specifically: 2 mutational, 1 ruin and recreate, 2 crossovers,
and 4 local search heuristics. The mutational and ruin-recreated
heuristics correspond to simply flipping a number (which could be
one) of randomly selected variables. The crossover operators are
the standard one and two-point crossovers for binary representa-
tion. The local search heuristics are based on efficient algorithms
from the literature: specifically, GSAT [32], HSAT [20], and Walk-
SAT [31]. See [22] for more details.

Objective function: The objective function to be minimised cor-
responds to the number of unsatisfied clauses.

2http://paginas.fe.up.pt/~esicup/tiki-list_file_
gallery.php?galleryId=1

Table 2: MAX-SAT instances
instance name no. variables no. clauses

1 uf250-01 250 1065
2 sat05-486.reshuffled-07 700 3500
3 blocksworld/huge 459 7054
4 flat200-1 600 2237
5 s2w100-2 500 3100

Table 3: Personnel scheduling instances
instance name staff shift types length (days)

1 BCV-1.8.2 8 5 28
2 BCV-3.46.1 46 3 26
3 BCV-A.12.2 12 5 31
4 ERRVH-B 51 8 48
5 MER-A 54 12 48

Instance data: The five problem instances were taken from
‘SATLIB’ [21]. They are summarised in table 2.

2.4 Personnel scheduling
In a personnel scheduling problem, decisions should be made

about which times and on which days (i.e. which shifts) each em-
ployee should work over a specific planning period. Most of the
personnel scheduling instances can be considered as a new and dif-
ferent problem rather than just a different instance. This is because
most instances contain unique constraints and objectives, character-
istics of the given organisation or workplace, and not just different
instance parameters (such as the number of employees, shift types,
planning period length, constraint priorities, etc). In consequence,
implementing a problem domain module for personnel scheduling
brings additional challenges. In HyFlex this was handled with a
specially designed data file format with which each instance can se-
lect a combination of objectives and constraints from a wide choice.

Initialisation: Solutions are initialised using a local search heuris-
tic with a neighbourhood operator that adds new shifts to the roster.

Low-level heuristics: 12 low level heuristics are provided for
this domain: specifically, 1 mutational, 5 local search, 3 ruin and
recreate, and 3 crossover heuristics. These heuristics are incorpo-
rated from previously proposed successful metaheuristic approaches
to nurse rostering problems [4, 7, 8, 9]. For more details, see [17].

Objective function: The constraints are transformed to objec-
tives with very high weights. As the weight is very high it is simple
to tell if a solution is feasible or not just by examining the objective
function value. The overall objective function (to be minimised) is
a weighted sum of all the sub-objectives.

Instance data: The five problem instances were taken from the
‘Staff Rostering Benchmark Data Sets’ [16], which is a repository
of diverse and challenging benchmark test instances from various
sources including industrial collaborators and scientific publica-
tions. This is an interesting domain as most of the of the instances
correspond to real world scenarios with different constraints and
planning horizons. The five problem instances selected are sum-
marised in Table 3. More details can be found in [17].

3. THE PROPOSED ALGORITHMS
Two adaptive algorithms are proposed. They extend, by incorpo-

rating an adaptive layer, the best performing heuristic presented in
[6], which can be considered as an ILS algorithm with both multi-
ple perturbation operators, and multiple hill-climbing (local search)
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heuristics. Before discussing the adaptive variants, we describe be-
low the baseline ILS algorithm.

3.1 The baseline ILS algorithm
The ILS implementation proposed in [6] contains a perturbation

stage during which a neighborhood move is selected uniformly at
random (from the available pool) and applied to the incumbent so-
lution. This perturbation phase is then followed by an improve-
ment phase, in which all local search heuristics are tested and the
one producing the best improvement is used. If the resulting new
solution is better than the original solution then it replaces the orig-
inal solution, otherwise the new solution is simply discarded. This
last stage corresponds to a greedy (only improvements) acceptance
criterion. The pseudo-code of this iterated local search algorithm
is shown below (Algorithm 1). It is worth mentioning that, dur-
ing our implementation, alternative more sophisticated acceptance
criteria were tested, such as simulated annealing and great deluge.
However, the incorporation of these acceptance mechanisms did
not improve the overall results, and they added additional control
parameters that require tuning. Therefore, we opted for using the
simple greedy acceptance mechanism.

Algorithm 1 Iterated Local Search.
s0 = GenerateInitialSolution
s∗ = LocalSearch(s0)
repeat

s′ = Perturbation (s∗)
s∗
′

= LocalSearch(s′)
if f(s∗

′
) < f(s∗) then

s∗ = s∗
′

end if
until time limit is reached

3.2 The adaptive ILS algorithms
The adaptive ILS algorithms proposed in this article substitute

the uniform random selection of neighbourhoods in the perturba-
tion stage, by online learning strategies. Specifically, we imple-
mented the following strategies: choice function [14] (from the
hyper-heuristics literature), and extreme value based adaptive oper-
ator selection [19] (from the evolutionary computation literature).

3.2.1 Choice function
The choice function was proposed in [15], as a method for select-

ing low-level heuristics in a hyper-heuristic. The method gathers
and uses information about the performance of individual heuris-
tics, the performance of pairs of heuristics when performed in suc-
cession, and on the amount of time that has elapsed since a heuris-
tic has been called. The final selection mechanism uses these three
measures, in a weighted sum, to determine the heuristic to choose.

The first, f1, measures the recent success of a single low-level
heuristic. This is measured by recording the change in objective
function value. The immediate information from the last applica-
tion of the heuristic is used in conjunction with information from
further back to form the final value for f1. The second, f2, mea-
sures the effect of applying one heuristic after another. This cap-
tures greater information about the relationship between heuristics
and allows for more intelligent heuristic selection. The final mea-
sure, f3, is a simple measurement of the amount of time that has
elapsed since a certain heuristic was last called.

These are brought together by means of a function, F, to give a
final score. With this, the best performing heuristic will most likely
be chosen. However, there is still a chance for worse heuristics to

be chosen to allow for diversification. Once these values have been
determined for each heuristic, it must be decided how to select a
heuristic using the values. In [15], three methods are proposed.
For our implementation, a roulette wheel choice was used. This
works by effectively allocating a chunk of a ‘roulette wheel’ to each
heuristic, with size proportional to that heuristic’s value of F.

3.2.2 Extreme value based adaptive operator selec-
tion

As discussed in [19] an adaptive operator selection scheme con-
sists of two components, described as credit assignment and se-
lection mechanism. Credit assignment involves the attribution of
credit (or reward) to variation operators, to be determined by its
performance during the search process. Here, we used the scheme
proposed in [19]: extreme value credit assignment, which is based
on the principle that infrequent, yet large, improvements in the ob-
jective score are likely to be more effective than frequent, small
improvements. Therefore, it rewards operators which have had
a recent large positive impact on the objective score, while con-
sistent operators that only yield small improvements receive less
credit, and ultimately have less chance of being chosen. Follow-
ing the application of an operator to the problem, the change in
objective score is added to a window of size W, which works on
a FIFO mechanism. The credit for any operator is the maximum
score within the window. Window size plays an important part in
the mechanism. If it is too small then the range of information on
offer is narrowed, meaning that useful operators are missed. If it is
too large then information is considered from many iterations ago,
when the position in the search space might have meant that the
operator performed differently to how it would at the latest itera-
tion. However, the window size is the only parameter that needs to
be tuned, which is a desirable property when the goal is to achieve
robust and general algorithms. After testing several values of (W ),
we decided upon a value of 25.

The credit assignment mechanism is combined with a selection
strategy that uses the accumulated credits to select the operator to
apply in the current iteration. Operator selection strategies in the
literature, generally assign a probability to each operator and use a
roulette wheel-like process to select the operator according to them.
We use here one of these rules, namely, adaptive pursuit, originally
proposed for learning automata and adapted to the context of op-
erator selection in [35]. With this method, at each time step, the
operator with maximal reward is selected and its selection proba-
bility is increased ( follows a winner-take-all strategy.), while the
other operators have their selection probability decreased.

4. EXPERIMENTS AND RESULTS
Five problem instances were selected for each domain, as de-

scribed in section 2 (Tables 1, 2, and 3). For each instance and
algorithm variant, 10 runs were conducted, each lasting 10 CPU
minutes. The experiments were conducted on a PC (running Win-
dows XP) with a 2.33GHz Intel(R) Core(TM)2 Duo CPU and 2GB
of RAM.

Three algorithm variants are compared: the baseline iterated lo-
cal search implementation with uniformly at random selection of
neighborhood operators: Uniform (described in section 3.1), and
two adaptive variants incorporating online learning mechanisms for
operator selection, namely, choice function:Adap-CF, and extreme
value based: Adap-EV (described in section 3.2). The exact same
algorithms were used for each domain and instance, no domain-
specific (or instance-specific) tuning process was applied.

The following subsections present our results from three differ-
ent perspectives: (i) ordinal data analysis, (ii) distribution of best
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objective function values, and (iii) percentage deviation of best-
known solutions on the personnel scheduling domain.

4.1 Borda count
Since our study involves different domains and instances with

varied magnitudes and ranges of the objective values, we selected
ordinal data analysis to compare the alternative algorithms. If m
is the number of instances (considering all the domains) and n the
number of competing algorithms. For each experiment (instance)
an ordinal value ok is given representing the rank of the algorithm
(1 ≤ ok ≤ n). These methods can be used to compare the perfor-
mance of competing search heuristics, as discussed in [34]. They
aggregate and summarise m linear orders ok into a single linear or-
der O. We selected a straight forward ordinal aggregation method:
the Borda count voting method, first purposed by Jean-Charles de
Borda in 1770. An algorithm having a rank ok in a given instance
is simply given ok points, and the total score of an algorithm is
the sum of its ranks ok across the m instances. The methods are,
therefore, compared according to their total score, with the smallest
score representing the best performing algorithm. In our compara-
tive study, the number of instances, m, is 20 (5 for each domain).
Therefore, for a given domain the best possible score is 5, while
the best possible total score (considering all the domains) is 20.
The ranks were calculated using as a metric the average best objec-
tive function (at the end of the run) obtained across the 10 runs per
instance.

Figure 1 shows the total Borda scores for the three competing
algorithms, including the total score per domain. The first point
to note is that the two adaptive algorithms outperform the baseline
ILS with uniformly at random operator selection. Secondly, the ex-
treme value based mechanism produced a better total Borda score
than the choice function method. It is worth mentioning that the ex-
treme valued based method is a more recent approach, it has a sin-
gle control parameter which may be an advantage over the choice
function method that has three parameters that need to be tuned.
However, as shown in Figure 1, the choice function produced the
best results for the flow shop domain. We need to explore further
why this is the case. One possible explanation is the fact that the
flow shop instances all come from the same source (the Taillard set
[33]) and they are generated using a similar procedure. It may be
the case that the choice function parametrisation is well suited for
this set of instances.
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Figure 1: Borda results for all domains

Tables 4, 5, 6, and 7, show the Borda count (ranks) for each in-
stance on the four domains, respectively. These results are useful

Table 4: Borda count results for flow shop
Instance Adap-EV Adap-CF Uniform

1 3 1 2
2 2 1 3
3 2 1 3
4 2 1 3
5 3 1 2

Total 12 5 13

Table 5: Borda count results for bin packing
Instance Adap-EV Adap-CF Uniform

1 1 2 3
2 2 3 1
3 1 2 3
4 1 3 2
5 1 2 3

Total 6 12 12

to assess how homogeneous the results are for the five instances on
each domain. For example, it can be noticed that for flow shop (Ta-
ble 4), Adap-CF consistently ranks first on all the instances. We be-
lieve that this is due in part to the lack of diversity in the instance set
for this domain. In comparison, the personnel scheduling domain,
which provides instance data from a variety of sources, shows a
less homogeneous distribution of ranks.

4.2 Distribution of the best objective function
values

In addition to the Borda aggregation method presented in the
previous section, boxplots 2, 3, 4, and 5, illustrate the magnitude
and distribution of the best objective values (at the end of the run)
for a selected instance of each domain. We arbitrarily took instance
number 2 of each domain, but similar trends can be observed in the
other instances.

Figures 3, 4, and 5 suggest that Adap-EV produces significantly
better results on three of the tested domains, namely, bin packing,
MAX-SAT, and personnel scheduling. With the performance dif-
ferences being more marked on bin packing and personnel schedul-
ing. The adaptive algorithm using the choice function mechanism,
Adap-CF, was better for the flow shop domain (Figure 2). This de-
serves future investigation. In particular, we should explore whether
increasing the variety of the instance data set would have an impact
on the results.

4.3 Comparison against best-known solutions:
personnel scheduling domain

Finally, in order to assess the performance of our best adaptive
algorithm, Table 8 compares the best solution obtained by Adap-EV
against the best-known solutions of the five instances of the person-
nel scheduling domain. We selected this domain as it contains real-

Table 6: Borda count results for MAX-SAT
Instance Adap-EV Adap-CF Uniform

1 1 2 2
2 1 3 2
3 2 1 3
4 2 3 1
5 2 1 3

Total 8 10 11
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Table 7: Borda count results for personnel scheduling
Instance Adap-EV Adap-CF Uniform

1 1 3 2
2 1 3 2
3 2 3 1
4 1 2 3
5 3 2 1

Total 8 13 9

Adap−EV Adap−CF Uniform

6315
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Figure 2: Distribution of the objective function values for the
flow shop instance 2 (500 jobs and 20 machines).

Adap−EV Adap−CF Uniform

0.0105

0.011

0.0115
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0.0125

Figure 3: Distribution of objective function values for the bin
packing instance 2: falkenauer/bpt501-1

world instances, and it is the least studied of the HyFlex domains.
Moreover, with the exception of instance ERRVH-B, which is a rela-
tively new addition to the the benchmark, the best-known solutions
are available in the ‘Staff Rostering Benchmark Data Sets’ [16].

Adap−EV Adap−CF Uniform

36
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40

42

44

46

Figure 4: Distribution of objective function values for the
MAX-SAT instance 2: sat05-486.reshuffled-07.

Adap−EV Adap−CF Uniform
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3340
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3380
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Figure 5: Distribution of objective function values for the per-
sonnel scheduling instance 2: BCV-3.46.1.

For the new instance ERRVH-B our solution represents the current
best-known.

We were surprised to realise that our Adap-EV approach obtained
a new best-known solution for instance MER-A (instance 4 in Table
8), it also matched a previous best-known result (instance 1). This
is unexpected as our approach was designed as a general-purpose
method. The favourable results can be explained as follows. First,
the personnel scheduling domain module contains powerful move
operators taken from state-of-the art metaheuristic approaches to
nurse rostering problems [4, 7, 8, 9]. Second, the adaptive ap-
proaches proposed are able to learn on the fly and select an ade-
quate operator at each decision point.
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Table 8: Personnel scheduling best-known solutions
Inst. Name Adap-EV Best-known %deviation

1 BCV-1.8.2 853 853 0
2 BCV-3.46.1 3301 3280 0.64
3 BCV-A.12.2 2003 1953 2.56
4 ERRVH-B 3177 3177 0
5 MER-A 9888 9915 -0.27

5. CONCLUSIONS
We have incorporated online adaptive operator selection tech-

niques into a multiple neighborhood iterated local search algorithm.
Using the HyFlex software framework, these adaptive algorithms
were tested across four distinct hard combinatorial optimisation
problems (permutation flows hop, 1D bin-packing, MAX-SAT, and
personnel scheduling), with some of these domains including real-
world instance data. Two online adaptive mechanisms, coming
from distinct research communities, were implemented and com-
pared. These were, the extreme value based adaptive operator se-
lection technique from evolutionary algorithms, and the choice func-
tion from hyper-heuristics. Both of these techniques outperformed
a baseline ILS implementation that selects uniformly at random
among the available neighbourhood operators. The extreme value
based mechanism produced the best overall results, which makes
this algorithm the currently best performing hyper-heuristic imple-
mented with the HyFlex framework.

We can see two clear possible extensions to this work. First,
more sophisticated online learning mechanisms can be tested for
selecting not only the perturbation operator, but also the local search
heuristic in the improvement phase of the ILS algorithm. The HyFlex
framework allows the implementation of population based and memetic
algorithms. Therefore, an interesting direction would be to com-
pare adaptive population based algorithms against single-point based
ones. Second, the HyFlex framework can be extended in many
ways to include new domains, additional instances and operators in
existing domains, and multi-objective and dynamic problems. In
particular, our study suggests that the instance data set for the flow
shop domain should be extended to include more variety.

It is our vision that the HyFlex framework can be used as a
benchmark for testing the robustness and generality of heuristic
search methods, and thus can serve as a tool to promote further
research in this area.
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