
The Road to VEGAS:
Guiding the Search over Neutral Networks

Marie-Éléonore Marmion
Université Lille 1

LIFL – CNRS – INRIA
marie-

eleonore.marmion@lifl.fr

Clarisse Dhaenens
Université Lille 1

LIFL – CNRS – INRIA
clarisse.dhaenens@lifl.fr

Laetitia Jourdan
Université Lille 1

LIFL – CNRS – INRIA
laetitia.jourdan@inria.fr

Arnaud Liefooghe
Université Lille 1

LIFL – CNRS – INRIA
arnaud.liefooghe@lifl.fr

Sébastien Verel
Univ. Nice Sophia-Antipolis

INRIA
sebastien.verel@inria.fr

ABSTRACT
VEGAS (Varying Evolvability-Guided Adaptive Search) is a
new methodology proposed to deal with the neutrality prop-
erty that frequently appears on combinatorial optimization
problems. Its main feature is to consider the whole eval-
uated solutions of a neutral network rather than the last
accepted solution. Moreover, VEGAS is designed to escape
from plateaus based on the evolvability of solutions, and on
a multi-armed bandit by selecting the more promising solu-
tion from the neutral network. Experiments are conducted
on NK-landscapes with neutrality. Results show the impor-
tance of considering the whole identified solutions from the
neutral network and of guiding the search explicitly. The
impact of the level of neutrality and of the exploration-
exploitation trade-off are deeply analyzed.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords
Neutrality, Local search, Evolvability, Adaptive search, Multi-
Armed Bandit

1. MOTIVATIONS
Due to their ability to find satisfying solutions with high

efficiency and effectiveness, the design of local search ap-
proaches is still a prominent issue for hard combinatorial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

optimization. This class of methods is also of strong in-
terest since they are generally quite simple to implement.
However, in some circumstances, these methods may have
more difficulties. One of the most critical situation arises
when the problem under study holds neutrality, which is
the case for many problems from combinatorial optimiza-
tion, like scheduling or satisfiability. This property means
that a lot of different solutions share the same fitness value.
In such a case, natural questions hold: Once the neutral-
ity of a problem is known, how could the search exploit it?
How could the search be guided to exploit this neutrality
with success? The aim of this article is to propose an effi-
cient approach, based on simple local search principles and
adaptive mechanisms, that exploits the inherent neutrality
to a problem, without inhibiting too much the search for
neutrality-free problems. Therefore, an experimental com-
parison will be driven between approaches that do or do not
exploit the neutrality explicitly during the search process.

The central idea of the article is based on two observa-
tions. On the one hand, up to now, the neutrality prop-
erty has been under-exploited on the design of search algo-
rithms, with the exceptions of a few examples that will be
detailed later in the paper. On the other hand, adaptive
search, based on a multi-armed bandit framework, has been
successfully applied to parameter control in the context of
evolutionary algorithms, in particular in adaptive operator
selection [7]. In this paper, the goal is not to adapt pa-
rameters along the search. Instead, we propose an original
adaptive algorithm, based on a multi-armed bandit frame-
work, to guide the search over neutral networks. When the
search is stuck on a plateau, VEGAS adaptively selects the
more-promising solution whose neighborhood has to be ex-
plored. Hence, two main questions are addressed in this
paper:

(i) How to consider neutrality, and then neutral networks,
during the search process? How to avoid an arbitrary
choice to be made during a neutral search?

(ii) How to guide the search adaptively over neutral net-
works in order to explore the neighborhood of a so-
lution that is more likely to escape a plateau by the
top?

The paper is organized as follows. Section 2 introduces
fundamental definitions together with previous works on

1979

neutrality-based and adaptive search methods. The pro-
posed VEGAS algorithm, where the search is adaptively
guided by the evolvability of solutions, is introduced in Sec-
tion 3. Section 4 presents experimental results on the per-
formance of VEGAS, on the influence of its single problem-
independent parameter and on the influence of the degree of
neutrality of the problem at hand. The last section gives a
summary of results and discusses future works.

2. BACKGROUND
This section introduces the main concepts dealing with

landscape analysis and the design of neutrality-based and
adaptive search methods.

2.1 Local Search, Neutrality and Evolvability
A fitness landscape [18] is a triplet (S,N , f) where S is

a set of admissible solutions (i.e. the search space), N :
S −→ 2S is a neighborhood structure, and f : S −→ IR is
a fitness function that can be pictured as the height of the
corresponding solutions, here assumed to be maximized. A
neighborhood structure is a mapping function that assigns a
set of solutions N (s) ⊂ S to any feasible solution s ∈ S.
N (s) is called the neighborhood of s, and a solution s′ ∈
N (s) is called a neighbor of s. We then may define a local
optimum as: solution s∗ is a local optimum iff no neighbor
has a better fitness value: ∀s ∈ N (s∗), f(s∗) ≥ f(s).

The importance of selective neutrality as a significant fac-
tor in evolution was stressed by Kimura [12] in the context of
evolutionary theory. The relevance and benefits of neutral-
ity for the robustness and evolvability in living systems have
been recently discussed by Wagner [23]. There is a growing
evidence that such large-scale neutrality is also present in
artificial landscapes. Not only in combinatorial fitness land-
scapes such as randomly generated SAT instances [8], cellu-
lar automata rules [22] and many others, but also in com-
plex real-world design and engineering applications such as
evolutionary robotics [17, 16], evolvable hardware [10, 21],
genetic programming [2, 24] and scheduling [14].

A neutral neighbor of a given solution s ∈ S is a neighbor-
ing solution s′ ∈ N (s) with the same fitness value: f(s′) =
f(s). Given a solution s ∈ S, the set of neutral solutions in
its neighborhood is defined by Nn(s) = {s′ ∈ N (s) | f(s′) =
f(s)}. The neutral degree of a solution is the number of its
neutral neighbors. A fitness landscape is said to be neutral
if there are many solutions with a high neutral degree.

A neutral network, or plateau, denoted here by NN, is a
connected sub-graph of solutions with respect to neighbor-
hood relation whose vertices are solutions with the same
fitness value. There exists an edge between solutions s and
s′ when s′ is a neutral neighbor of s. A portal in a NN is a
solution that has at least one neighbor with a better fitness
value, i.e. a greater fitness value in a maximization context.

2.2 Neutrality-based Search
When dealing with neutrality, two extreme local search

approaches are usually designed. The first one simply ig-
nores neutrality. One of the simplest algorithm is the first-
improvement hill-climbing (FIHC), where the first evaluated
neighbor that strictly improves the current fitness value is
accepted. In other words, the heuristic does not move on
a neutral neighboring solution, and prefers to keep explor-
ing the neighborhood of the current solution, assuming that
the neutral neighbor will not lead to better solutions. At

the opposite, some local search approaches always accept
the first visited neighbor with the same fitness value. A
typical example is the Netcrawler process [4], that consists
of a random neutral walk with a mutation mode adapted
to local neutrality. The per-sequence mutation rate is opti-
mized to jump from one NN to another. Stewart [19] also
proposed an Extrema Selection for evolutionary optimiza-
tion in order to move on promising solutions in a neutral
search space. The selection aims at accelerating the evolu-
tion during the search process once most solutions from the
population have reached the same level of performance. To
each solution is assigned an endogenous performance during
the selection step to explore the search space area with the
same performance more largely, with the assumption that it
will help to reach solutions with better fitness values. Addi-
tionally, the NILS (Neutrality-based Iterated Local Search)
algorithm, recently proposed in [13], shows interesting re-
sults and enhances the interest of taking neutrality into ac-
count for flowshop scheduling problems.

All those heuristics focus the search on the last solution
found along the NN. Their bet is that the new accepted so-
lution has more chance to lead to better solutions than the
previous one, because no better solution was (yet) evaluated
in its neighborhood. But, when no better neighbor has been
found again, the heuristic prefers to move to a new solution
(in another part of the search space) than to go back on
a previously accepted solution, even if it could seem more
promising a posteriori. Hence, nothing motivates the choice
of exploring the neighborhood of the last-accepted solution
from the NN rather than any other. Most of the time, such a
choice appears quite arbitrary. We believe that there might
exist a better trade-off between these two extreme cases (ig-
noring neutrality, and starting with the last-accepted neu-
tral solution), by keeping memory of the solutions evaluated
along the NN.

2.3 Adaptive Search
Autonomous self-management search receives more and

more attention from the past years due to the increasing
complexity of the search methods and problems. The gen-
eral goal of those methods is to automatically adapt their
mechanism to the changing problem conditions. The aim of
parameter control is the on-line setting of parameters such as
the representation of solution, the stochastic operators (mu-
tation, crossover), the selection operators, the application
rate of those operators, etc. [6]. In combinatorial optimiza-
tion, adaptive methods are often preferred over self-adaptive
ones which increase the size of the search space. From the
search history, adaptive methods select the new parameter
setting. Different rules are used for selection: probability
matching, adaptive pursuit [20] which attaches a probabil-
ity of success to each operator, the multi-armed bandit [5],
and so on. The multi-armed bandit framework is a sequen-
tial learning model, mostly studied in game theory, deal-
ing with the trade-off between exploration and exploitation.
It considers a set of K independent arms, each one having
some reward following an unknown distribution. An optimal
selection strategy maximizes the cumulative reward along
time. The Upper Confidence Bound (UCB) strategy [1],
which is asymptotically optimal, has been used in the con-
text of adaptive operator selection [5]. To each arm, which
is an operator in that context, is associated an empirical re-
ward which reflects its quality. Then, the operator (arm)

1980

Op2

Op1

AUC(Op1)=33

Fitness N° Op

10
9
8
7
7
7
7
5
4
4
4
3
2
1

1
1
2
1
1
2
2
1
1
2
2
1
2
2

Figure 1: Example of the AUC reward computed for
an operator op1. The list of fitness values produced
by each possible operator is sorted in the decreasing
order. A curve from the point (0, 0) is drawn accord-
ing to this list: When the operator op1 is concerned,
the curve follows the op1 axe, otherwise it follows the
other axe. The area under this curve is the reward
of the operator op1 [7].

with the best score is selected, where the upper confidence
bound of the reward defines this score:

scorei,t = r̂i,t + C

√
log

∑
k nk,t

ni,t
(1)

where for the time step t, r̂i,t is the empirical reward of op-
erator i, ni,t is the number of times that the operator i has
been tried. C is a problem-independent parameter repre-
senting a scaling factor which controls the trade-off between
exploitation and exploration.

The measure of the operator quality (reward) has an im-
pact on the efficiency of the method. Different measures
of reward have been proposed: the average fitness improve-
ment between parent and offspring, the maximum fitness
improvement from a time windows [5], or more recently the
Area Under the Curve [7]. This credit assignment uses the
comparison of solution fitness values produced by each op-
erator. This method uses the rank instead of a normalized
fitness improvement. Then, the bandit adaptive technique
becomes more invariant to fitness function transformation,
and the sensitivity according to the parameter C decreases.
The Figure 1 gives an example of AUC computation. The
details is not given due to space limitation, the reader is
refereed to [7].

3. VEGAS
This section presents the VEGAS (Varying Evolvability-

Guided Adaptive Search) algorithm. As seen in the previous
section, the First-Improvement Hill-Climbing (FIHC) algo-
rithm and the Netcrawler (NC) algorithm are based on dif-
ferent strategies. The first one does not take neutrality into
account, whereas the second one proposes a specific way to
deal with it (by always exploring the last accepted - better
or neutral - solution). The aim of VEGAS is to take the
neutrality explicitly into account and to propose an efficient
way to guide the search on NN. First, we reconsider the
search over a NN. Second, a guiding strategy, based on the
evolvability of solutions, is proposed.

Algorithm 1 VEGAS

S = {s0}
while ∃s ∈ S such that s is not visited do

s← select(S)
Choose a solution s′ ∈ N (s) at random (no repetition)
if f(s′) > f(s) then

S ← {s′}
else if f(s′) = f(s) then

S ← S ∪ {s′}
end if
Update rewards(s, s′)

end while
Return s ∈ S

3.1 Considering Neutral Networks
First, let us define some useful terms. A solution is said

to be evaluated if its fitness value has been computed. A
solution is marked as visited if its neighborhood has been
completely evaluated, otherwise it is non-visited. The neigh-
borhood of a solution is explored in a random order without
repetition. Let us remind that a NN, also known as plateau,
is a set of neighboring solutions with the same fitness value.
The set of evaluated solutions from the current NN is de-
noted by S.

Let us consider a simple local search algorithm that iter-
atively improves a current solution s by exploring its neigh-
borhood. As soon as a strictly improving neighboring solu-
tion is found, it is accepted and replaces the current solu-
tion. As long as a neutral neighboring solution is evaluated,
a particular strategy is applied in order to iteratively build
the set S. As opposed to a NC, the main idea of our ap-
proach is to consider the whole set of evaluated solutions
from the current NN (i.e. S) instead of a single one (the
last-evaluated solution). Now, the question is: Which solu-
tion s ∈ S to select in order to evaluate a new neighboring
solution? For instance, when no particular information is
computed, this solution can be selected at random. The
algorithm stops once all solutions from S are marked as vis-
ited, i.e. the neighborhood of all solutions from S has been
explored. When there is no neutrality, this algorithm be-
haves like a FIHC.

3.2 Guiding the Search over Neutral Networks
Instead of randomly choosing the next solution to explore,

the selection can be guided. Indeed, on a NN, |S| > 1 solu-
tions can be explored. Only one has to be chosen in order
to evaluate one of its neighbors. To do so, we here propose
to use the evolvability of solutions.

Algorithm 1 presents the general framework of VEGAS.
All the evaluated solutions of the current NN are recorded
in S. Then, a select method returns a solution s ∈ S. A
new neighbor s′ ∈ N (s) is evaluated (without repetition). If
s′ has a better fitness value, the set S becomes the singleton
{s′}. Otherwise, if s′ has the same fitness value than the
current fitness value, it is added to S. A reward is computed
for each solution from S, and the select method is applied.

The select method is one of the main component of VE-
GAS. For instance, if select(S) always returns the last neu-
tral solution evaluated, this algorithm behaves like a NC.
Here, we consider that the solution with the highest score,
as given by equation (1), is selected. Thus, every time a
new solution s′ is evaluated in the neighborhood of a so-

1981

lution s ∈ S, s′ is recorded to update the score values of
all solutions in S according to the credit assignment under
consideration. The reward is based on the AUC (see Sec-
tion 2.3). The arms are the solutions from S, and the fitness
values of the evaluated neighbors are used to compare solu-
tions. The AUC gives a way to compare the evolvability of
evaluated solutions on a NN. For instance, when the fitness
value of neighbors from solution s ∈ S are better than those
of solution s′ ∈ S, the AUC of s is higher than the one of s′.

The parameter C in (1) allows to tune the trade-off be-
tween exploration and exploitation. Here, it affects the ex-
ploration and the exploitation of the neighborhood of solu-
tions from the NN. When C is large, it gives more weight
to exploration: the search promotes the sampling of neigh-
borhoods with few solutions evaluated. When C is small, it
gives more weight to exploitation: the search promotes the
sampling of neighborhoods where the best neighbors have
been evaluated so far. This is based on the assumption that
solutions with a higher evolvability are more likely to find a
portal.

4. EXPERIMENTS

4.1 NK-Landscapes with Neutrality
The family of NK-landscapes is a problem-independent

model used for constructing multimodal landscapes [11]. Such
a model is of high interest in order to design new search
approaches. Parameter N refers to the number of bits in
the search space (i.e. the binary string length), and K
to the number of bits that influences a particular bit from
the string (the epistatic interactions). By increasing the
value of K from 0 to (N−1), NK-landscapes can be gradu-
ally tuned from smooth to rugged. The fitness function (to
be maximized) of a NK-landscape fNK : {0, 1}N → [0, 1)
is defined on binary strings of size N . An ‘atom’ with a
fixed epistasis level is represented by a fitness component
fi : {0, 1}K+1 → [0, 1), associated with each bit i ∈ N .
Its value depends on the allele at bit i and also on the
alleles at K other epistatic positions (K must be defined
between 0 and N − 1). The fitness fNK(x) of a solution
x ∈ {0, 1}N corresponds to the mean value of its N fit-

ness components fi: fNK(x) = 1
N

∑N
i=1 fi(xi, xi1 , . . . , xiK),

where {i1, . . . , iK} ⊂ {1, . . . , i−1, i+1, . . . , N}. In the orig-
inal NK-landscapes, the fitness components are uniformly
distributed in the range [0, 1), so that it is very unlikely that
the same fitness value is assigned to two different solutions.
In other words, the neutrality is null.

In our study, we will use an extension of this initial model
in which neutrality has been added. The way the neutrality
is artificially included has an important impact on the struc-
ture of the resulting landscapes. Several models of neutrality
have been proposed to generalize the initial NK-landscapes
by adding a tunable level of neutrality. Among others, there
are the NKp-landscapes (p is for probabilistic) [3], and the
NKq-landscapes (q is for quantized) [15]. NKp-landscapes
are very similar to NK-landscapes, except that the fitness
contribution are null with the rate p.In the NKq-landscapes,
that will be used in the paper, the fitness contributions are
integer values belonging to the range [0, q). The total fitness
is scaled by a factor 1/(q − 1) in order to translate it in the
range [0, 1]. As indicated by Geard et al. [9] in their com-
parison of neutral landscapes, NKq-landscapes are similar to
the NK-landscapes in several aspects. The NKq-landscapes

look like NK-landscapes in which rugged hillsides have been
flattened into plateaus. The smaller q, the higher the level
of neutrality.

4.2 Experimental Design
In order to study the performance of the proposed VEGAS

algorithm, we compare it with three other approaches:

• FIHC: a First-Improvement Hill Climbing algorithm,
that strictly improves the current fitness value during
the search;

• NC: a Netcrawler algorithm [4], that allows neutral
moves to be performed during the search.

• F2NS: a Fair Neutral Network Search algorithm, that
evaluates a random neighbor (without replacement) of
a random solution from the NN.

We experiment these algorithms on randomly-generatedNKq-
landscapes with N = 64, K ∈ {2, 4, 6, 8} and q ∈ {2, 3, 4}.
They will give us the opportunity to compare these algo-
rithms according to different configurations with respect to
neutrality and non-linearity. The neighborhood is defined
with the bit-flip operator of one bit. For every instance, 100
independent executions are performed.

All the algorithms start with a random solution. The
stopping condition is given in terms of a maximal number
of evaluations, set to 105. The four algorithms could con-
verge before the stopping condition. Thus, they have all
been included in a random-restart framework: when an al-
gorithm seems to have converged, the search restarts with a
new random solution (keeping the best ever found solution).
For the FIHC, the search stops when the current solution is
a local optimum (no neighbor has a strictly higher fitness).
For the NC, the search stops on solutions which are strict
local optima where the current can not be strictly improve.
For the NC, we fix a second maximal number of evaluations
denoted by k. This number has been set according to K
and q from preliminary experiments. For every instance,
30 independent runs have been performed. For each run,
the number of evaluations needed to converge is recorded.
The maximum of this number over the 30 is the value of k
(given in Table 1). For the F2NS and VEGAS, we consider
that the search converged when S cover the whole NN, and
no portal is available on this NN (local optimum plateau).
The VEGAS algorithm has a single problem-independent
parameter: C, which allows to control the trade-off between
the exploration and the exploitation of solutions neighbor-
hood from the NN. Following [7], multiple C-values are in-
vestigated: C ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 500}. Let
VEGASn denote a VEGAS instance with C = n.

Table 1: Maximum number of moves k on the same
NN for NC.

q \ K 2 4 6 8
2 23,772 27,950 7,733 6,143
3 1,891 1,648 1,987 1,921
4 8,198 2,000 3593 1189

1982

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2 3 4

A
ve

ra
ge

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

s

q

VEGAS100
F2NS
FIHC

NC
-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2 3 4

A
ve

ra
ge

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

s

q

VEGAS100
F2NS
FIHC

NC

(a) (b)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2 3 4

A
ve

ra
ge

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

s

q

VEGAS100
F2NS
FIHC

NC
-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2 3 4
A

ve
ra

ge
 n

or
m

al
iz

ed
 p

er
fo

rm
an

ce
s

q

VEGAS100
F2NS
FIHC

NC

(c) (d)

Figure 2: Average normalized fitness found according to parameter q after 105 evaluations for (a) K = 2, (b)
K = 4, (c) K = 6, (d) K = 8. Results for VEGAS100, F2NS, FIHC and NC.

4.3 Experimental Results and Discussion
The following experiments first deal with the overall per-

formance of the VEGAS algorithm against F2NS, FIHC and
NC. Next, the influence of the parameter C is deeply ana-
lyzed and first conclusions on the link between C-values and
the dynamics of the algorithm are given.

4.3.1 Performance Analysis
In this section, the four algorithms under study are com-

pared with each other. As far as VEGAS is concerned, only
one parameter (C) is to be set. The influence of this param-
eter is studied in the next section. Here we use a value of
C = 100, as it leads to overall good performance.

With respect to the non-linearity (K) and to the level
of neutrality (q), the fitness values of the solutions found
are not comparable. Hence, in order to compare the perfor-
mance of the four algorithms according to the parameters K
and q, the fitness values have been normalized using the av-
erage and the standard deviation of all fitness values found
for the same problem instance. Such an approach brings the
average performance around zero and enlarges the extreme
behaviors. The average value f̄ and the standard devia-
tion σf of all fitness values are computed with the 100 runs
performed by each algorithm. For a fitness value f , its nor-

malized value f̃ is set to: f−f̄
σf

. The performance of a given

algorithm on a particular NKq-landscape is given in terms

of this average f̃ -value over the 100 executions.
The respective performance of all the algorithms is given

in Figure 2. For each K-value, the performance is plotted

with respect to q. For K ∈ {4, 6, 8}, VEGAS100 and F2NS
clearly outperform FIHC and NC. The comparison of the
performance of VEGAS and F2NS is more difficult as, even
if VEGAS always outperforms F2NS, both are very close
and the difference may not be statistically significant (see
below). For K = 2, Figure 2 (a) does not show a clear result.
Indeed, for q = {2, 3}, NC gives the best performance, but
it becomes almost the worst approach for q = 4, where the
best approach seems to be FIHC.

In order to assess these results, a Wilcoxon two-sample
paired signed rank test is used with the null hypothesis that
the median performance of the paired differences of the two
algorithms under comparison is null. Table 2 gives the out-
put of the Wilcoxon test.

These results confirm that:

• Except for K = 2, VEGAS and F2NS always signifi-
cantly outperform FIHC and NC. It shows that (i) it
is worth exploring the NN (in contrast to FIHC), and
that (ii) the way to do it has a large influence. In-
deed, even if a method selects a solution at random on
the NN (like F2NS), it may outperform a method that
always selects the last-evaluated solution (like NC).

• VEGAS is never outperformed by F2NS. It shows that
guiding the search over a NN allows to obtain better
solutions.

In summary, exploring NN is a good way to guide the
search over neutral landscapes, at last for a reasonable level
of neutrality. However, this must be done carefully, and it

1983

Table 2: Wilcoxon paired tests on the 100 runs between the 4 algorithms. = means both algorithms are not
significantly different, > means the algorithm of the row outperforms the one of the column and < means for
the contrary.

q=2 q=3 q=4

VEGAS F2NS FIHC VEGAS F2NS FIHC VEGAS F2NS FIHC

K = 2 F2NS = = <
FIHC = = < < > >
NC > > > > > > < = <

K = 4 F2NS = < =
FIHC < < < < − < <
NC < < > < < > < < >

K = 6 F2NS < = =
FIHC < < < < < <
NC < < > < < > < < =

K = 8 F2NS = < =
FIHC < < < < < <
NC < < > < < > < < >

 0.959

 0.96

 0.961

 0.962

 0.963

 0.964

 0.965

 0.966

 0.0001 0.001 0.01 0.1 1 10 100 1000

A
ve

ra
ge

 p
er

fo
rm

an
ce

s

C

 0.887

 0.888

 0.889

 0.89

 0.891

 0.892

 0.893

 0.0001 0.001 0.01 0.1 1 10 100 1000

A
ve

ra
ge

 p
er

fo
rm

an
ce

s

C

 0.85

 0.851

 0.852

 0.853

 0.854

 0.855

 0.856

 0.857

 0.0001 0.001 0.01 0.1 1 10 100 1000

A
ve

ra
ge

 p
er

fo
rm

an
ce

s

C

(a) (b) (c)

Figure 3: Average fitness found by VEGASC as a function of C. K = 6 (a) q = 2 (b) q = 3 (c) q = 4. The
horizontal dotted line is the performance of F2NS.

seems to be better to randomly choose the next solution to
explore than making always the same arbitrary choice. An
alternative that shows interesting results is to pursue the
search from the solution with the best evolvability.

4.3.2 Impact of Parameter C

In this section, we analyze the performance of VEGAS
according to the setting of its (single) problem-independent
parameter: C. Comparing the results obtained for all the in-
stances, the efficiency of VEGAS does not seem to be clearly
sensitive to the parameter C. This is confirmed by the
Wilcoxon paired test that indicates that no general trend
can be found. However, for some instances, VEGAS with
exploration (C > 1) outperforms VEGAS with exploitation
(C < 1) in average.

This is illustrated in Figure 3 for K = 6, that gives the
average fitness values obtained according to parameter C.
Similar figures were obtained for K = 4 and K = 8. Indeed,
the exploration of NN (C > 1) gives better results than their
exploitation (C < 1). In Figure 3, there is also a dotted line
representing the average fitness value obtained with F2NS
(when a solution is chosen at random among the NN). This
confirms that VEGAS100 outperforms F2NS, but also that
both methods obtain good performance, F2NS may produce
better results than some versions of VEGAS, typically when
C < 1.

 1

 10

 100

 1000

 4 6 8 10 12 14 16 18 20 22

A
ve

ra
ge

 n
um

be
r

of
 s

ol
ut

io
ns

Neutral degree

Figure 4: Average number of evaluated solutions per
NN with respect to the neutral degree.

.

4.3.3 Impact of Neutrality
Table 3 gives the average value, over 10 000 random solu-

tions, of the neutral degree according to the NKq-landscape
under study. The neutrality decreases when K and/or q in-
crease. Figure 4 gives the average number of solutions evalu-
ated per NN by VEGAS100 according to the neutral degree.
It shows the influence of the neutrality on the number of

1984

Table 3: Average neutral degree of the NKq in-
stances.

q \ K 2 4 6 8
2 20.53 16.54 14.21 12.2
3 12.91 10.05 8.77 7.64
4 9.25 7.47 6.47 5.54

evaluated solutions on each encountered NN. This number
increases exponentially with the neutral degree. Let us in-
dicate that the two picks correspond to K = 2, q = {3, 4}.
As we already pointed out, when K = 2 (small epistasis),
VEGAS has a different behavior.

4.3.4 Exploration vs. Exploitation
Previous experiments show that the exploration of a larger

number of solutions from the NN gives, in general, better
performance. In order to analyze this in more details, some
statistics have been computed to study the dynamics of the
search. Two main statistics are computed here: (i) the num-
ber of NN evaluated, (ii) the number of solutions evaluated
on each NN, which corresponds to the size of the neutral
networks explored part.

Figure 5 gives (a) the average number of NN and (c) the
average number of solutions evaluated on each NN according
to C. First, there is a clear difference between VEGAS with
exploitation and VEGAS with exploration. Indeed, for C ≥
1, average values are similar. The same happens for C < 1.
The different curves may be cut around C = 0.5 into two
homogeneous parts. Second, the higher the average number
of NN, the smaller the average number of evaluated solutions
per NN. This attests a large difference on the behavior of the
VEGAS algorithm regarding the C-values. In other words,
when C is turned to exploration, more NN are explored,
but the portion of evaluated solutions is small. When C is
turned to exploitation, few NN are explored, but they are
deeply evaluated. Such dynamics may explain that VEGAS
with exploration gives, in some cases, a better performance
than VEGAS with exploitation.

Figure 5 (b) and (d) also gives the same values with re-
spect to q for different algorithms: VEGAS with exploration
(VEGAS100), VEGAS with exploitation (VEGAS0.01) and
F2NS (random choice). Let us remark that similar trends
happen for K ∈ {4, 8}. It appears that the F2NS approach
has a behavior “in-between” the two VEGAS algorithms. As
we previously seen on Figure 3, the performance of F2NS
is either below VEGAS or “in-between” the two VEGAS
variants. A natural conclusion is that this balance between
exploration and exploitation is a critical issue for the per-
formance of the algorithm.

5. CONCLUSIONS AND FUTURE WORKS
This work proposes a new methodology to deal with neu-

tral combinatorial optimization problems. In this approach,
all solutions identified on a plateau are considered in order to
help the search to progress. Then, the most promising solu-
tion evaluated on the plateau is selected adaptively, based on
the evolvability of solutions. VEGAS is an adaptive search
algorithm using the multi-armed bandit framework and the
‘area under the curve’ credit assignment principle [7].

An experimental study on NK-landscapes with neutrality

has been conducted. It first shows that randomly choosing
a solution on the plateau outperforms a netcrawler-based
multi-start local search for a reasonable level of neutrality.
The experimental analysis also shows that VEGAS gener-
ally gives better results than selecting a solution at random
on the plateau. The VEGAS dynamics is different depend-
ing on the level of neutrality. Moreover, VEGAS requires a
single problem-independent parameter, that allows to tune
the trade-off between the exploration and the exploitation of
the plateau. The influence of this parameter on the search
dynamics has been deeply analyzed.

This approach shows encouraging results and open future
research directions. As in adaptive operator selection [7],
we need to test others credit assignment methods, proba-
bly more specific to neutral landscapes. Moreover, similar
experiments will allow to better understand the dynamics
of the VEGAS algorithm on other combinatorial optimiza-
tion problems where neutrality arises, such as in flowshop
scheduling.

6. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multiarmed bandit problem. Mach.
Learn., 47:235–256, May 2002.

[2] W. Banzhaf. Genotype-phenotype-mapping and
neutral variation - a case study in genetic
programming. In PPSN III: Third Conference on
Parallel Problem Solving from Nature, p322–332,
London, UK, 1994. Springer-Verlag.

[3] L. Barnett. Ruggedness and neutrality - the
NKpfamily of fitness landscapes. In C. Adami, R. K.
Belew, H. Kitano, and C. Taylor, editors, ALIFE VI,
Proceedings of the Sixth International Conference on
Artificial Life, p18–27. ALIFE, The MIT Press, 1998.

[4] L. Barnett. Netcrawling, optimal evolutionary search
with neutral networks. In Proceedings of the 2001
Congress on Evolutionary Computation, CEC 2001,
p30–37. IEEE Press, 2001.

[5] L. Da Costa, A. Fialho, M. Schoenauer, and M. Sebag.
Adaptive operator selection with dynamic multi-armed
bandits. In M. K. et al., editor, GECCO’08: Proc.
10th Annual Conference on Genetic and Evolutionary
Computation, p913–920. ACM Press, July 2008.

[6] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E.
Smith. Parameter control in evolutionary algorithms.
In Parameter Setting in Evolutionary Algorithms,
p19–46. 2007.

[7] A. Fialho, M. Schoenauer, and M. Sebag. Toward
comparison-based adaptive operator selection. In J. B.
et al., editor, GECCO’10: Proc. 12th Annual
Conference on Genetic and Evolutionary
Computation, pages 767–774. ACM Press, July 2010.

[8] J. Frank, P. Cheeseman, and J. Stutz. When gravity
fails: local search topology. Journal of Artificial
Intelligence Research, 7:249–281, 1997.

[9] N. Geard, J. Wiles, J. Hallinan, B. Tonkes, and
B. Skellett. A comparison of neutral landscapes - nk,
nkp and nkq. In Proceedings of the Congress on
Evolutionary Computation, 2002. CEC ’02., p205–210,
2002.

[10] I. Harvey and A. Thompson. Through the labyrinth
evolution finds a way: a silicon ridge. In T. Higuchi,

1985

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0.0001 0.001 0.01 0.1 1 10 100 1000

A
ve

ra
ge

 n
um

be
r

of
 N

N

C

q=2
q=3
q=4

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 3 4

A
ve

ra
ge

 n
um

be
r

of
 N

N

q

VEGAS100
VEGAS0.01

F2NS

(a) (b)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0.0001 0.001 0.01 0.1 1 10 100 1000

A
ve

ra
ge

 n
um

be
r

of
 s

ol
ut

io
ns

 e
va

lu
at

ed
 o

f N
N

C

q=2
q=3
q=4

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2 3 4
A

ve
ra

ge
 n

um
be

r
of

 s
ol

ut
io

ns
 e

va
lu

at
ed

 o
f N

N

q

VEGAS100
VEGAS0.01

F2NS

(c) (d)

Figure 5: The average number of NN (top) and the average number of evaluated solutions of each NN
(bottom). On the left, the average quantities are compared according to C according to the parameter q. On
the right, they are compared according to q between 2 VEGAS algorithms (with C = {100, 0.01}) and F2NS.
for all plots, K = 6.

M. Iwata, and W. Liu, editors, Evolvable Systems:
From Biology to Hardware, First International
Conference, ICES 96, volume 1259 of LNCS,
p406–422. Springer, Berlin, 1996.

[11] S. A. Kauffman. The Origins of Order. Oxford
University Press, New York, 1993.

[12] M. Kimura. The neutral theory of molecular evolution.
Cambridge University Press., 1983.

[13] M.-E. Marmion, C. Dhaenens, L. Jourdan,
A. Liefooghe, and S. Verel. NILS: a Neutrality-based
Iterated Local Search and its application to flowshop
scheduling. In European Conference on Evolutionary
Computation in Combinatorial Optimisation
(EvoCop’2011), LNCS. Springer-Verlag, 2011.

[14] M.-E. Marmion, C. Dhaenens, L. Jourdan,
A. Liefooghe, and S. Verel. On the neutrality of
flowshop scheduling fitness landscapes. In Learning
and Intelligent OptimizatioN (LION 5), LNCS.
Springer-Verlag, 2011.

[15] M. Newman and R. Engelhardt. Effect of neutral
selection on the evolution of molecular species. Proc.
R. Soc. London B., 256:1333–1338, 1998.

[16] P. Smith, T.and Husbands, P. Layzell, and M. O’Shea.
Fitness landscapes and evolvability. Evol. Comput.,
10(1):1–34, 2002.

[17] T. M. C. Smith, P. Husbands, and M. O’Shea. Neutral
networks in an evolutionary robotics search space. In

Congress on Evolutionary Computation, CEC 2001,
p136–145. IEEE Press, 2001.

[18] P. F. Stadler. Towards a theory of landscapes, volume
461, p78–163. Springer Berlin / Heidelberg, 1995.

[19] T. Stewart. Extrema selection: Accelerated evolution
on neutral networks. In Congress on Evolutionary
Computation CEC2001, p25–29. IEEE Press, 2001.

[20] D. Thierens. An adaptive pursuit strategy for
allocating operator probabilities. In Conference on
Genetic and evolutionary computation, GECCO ’05,
p1539–1546, New York, NY, USA, 2005. ACM.

[21] V. K. Vassilev and J. F. Miller. The advantages of
landscape neutrality in digital circuit evolution. In
Springer, editor, 3rd International Conference on
Evolvable Systems: From Biology to Hardware.
LNCS., volume 1801, p252–263, 2000.

[22] S. Vérel, P. Collard, M. Tomassini, and L. Vanneschi.
Fitness landscape of the cellular automata majority
problem: view from the “Olympus”. Theor. Comp.
Sci., 378:54–77, 2007.

[23] A. Wagner. Robustness and Evolvability in Living
Systems. Princeton Uiversity Press, 2005.

[24] T. Yu and J. F. Miller. Neutrality and the evolvability
of Boolean function landscapes. In Eurogp01, 4th
European Conference on Genetic Programming,
p204–217. Springer, Berlin, 2001.

1986

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

