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ABSTRACT
We consider an optimization scenario in which resources are
required in the evaluation process of candidate solutions.
The challenge we are focussing on is that certain resources
have to be committed to for some period of time whenever
they are used by an optimizer. This has the effect that
certain solutions may be temporarily non-evaluable during
the optimization. Previous analysis revealed that evolution-
ary algorithms (EAs) can be effective against this resourc-
ing issue when augmented with static strategies for dealing
with non-evaluable solutions, such as repairing, waiting, or
penalty methods. Moreover, it is possible to select a suitable
strategy for resource-constrained problems offline if the re-
sourcing issue is known in advance. In this paper we demon-
strate that an EA that uses a reinforcement learning (RL)
agent, here Sarsa(λ), to learn offline when to switch between
static strategies, can be more effective than any of the static
strategies themselves. We also show that learning the same
task as the RL agent but online using an adaptive strategy
selection method, here D-MAB, is not as effective; neverthe-
less, online learning is an alternative to static strategies.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods, control theory

General Terms
Algorithms

Keywords
Evolutionary computation, reinforcement learning, bandit
algorithms, closed-loop optimization, dynamic optimization

1. INTRODUCTION
We are currently interested in applying evolutionary al-

gorithms (EAs) to optimization problems in which candi-
date solutions are evaluated by conducting experiments, e.g.
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physical or biochemical experiments (similar to [14]), includ-
ing: combinatory drug discovery [6], intrument configura-
tion optimization [12], and quantum control [17]. The par-
ticular challenge we are focussing on in this process is that
resources required to conduct certain experiments may not
be available at each time step during the optimization. This
may lead to situations where solutions �x that are feasible
candidate solutions to the problem may nevertheless be tem-
porarily non-evaluable. Alternatively, we can think of the
problems of interest as ones that feature a static fitness func-
tion f and feasible search region X but dynamic constraints
that restrict the set of solutions evaluable at each time step
during the optimization. We call these dynamic constraints
ephemeral resource constraints (ERCs), and the set of evalu-
able solutions (or evaluable search region) defined by the
ERCs at time step t we denote by Et. Figure 1 illustrates a
typical situation in ERC optimization problems (ERCOPs)
with respect to the distribution of solutions across Et and
X. The particular ERC type considered here is what we call
a commitment relaxation ERC. In instrument configuration
optimization, for example, this ERC may simulate scenarios
where certain instrument settings, once selected, cannot be
changed during a working day but only the next day after
relaxation of the instrument has taken place at night.

In recent papers [1, 2], we introduced different types of
ERCs, studied their effect on evolutionary search, and pro-
posed various (static) constraint-handling strategies — such
as repairing, waiting, and penalizing strategies — for use
within an EA for dealing with ERCs. An important obser-
vation arising from that was that patterns of performance
impact seen on the same ERC type, and independent of the
fitness landscape, are quite similar; whereas, between the
different ERCs they are much more different. This observa-
tion is good news as it means that one can perform an offline
analysis of ERCOPs, given the common case that the ERCs
are known in advance. For all material relating ERCOPs to
some other problem types [5, 4, 10], which we cannot cover
here, the reader is referred to [1].

Inspired by the above mentioned observation, this paper
investigates whether an EA that learns offline when to switch
between static strategies during the optimization process
is more efficient than the static strategies themselves. Of-
fline learning is performed by a reinforcement learning (RL)
agent, and this agent aims at optimizing the average fitness
of the final population (also known as the reward) by se-
lecting the most suitable static strategy (which serve as the
actions) in a given state during the optimization.

In the context of evolutionary search, RL has been used
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Figure 1: An illustration of how a population con-
sisting of the solutions 1,2,3,4,5,6,7 and 8 might be
distributed across the feasible search space X and
the evaluable search space Et. At time step t, only
solutions 2,5,6 and 7 can be evaluated while solu-
tions 1,3,4 and 8 must be repaired to be evaluable.
Each evaluation might cause a change in Et.

for both online [8] and offline learning [13]. However, while
previous work was mainly concerned with tuning and con-
trolling of EA parameter values and operators, we use RL
to control the selection of constraint-handling strategies. Al-
though this is somewhat similar to Zhang and Dietterich’s
work [20], which studies how to incrementally repair a single
infeasible schedule, our work is different mainly in that we
are not dealing with a scheduling problem. The fact that we
use RL in combination with a population-based optimizer
rather than a repair-based scheduler is another difference.

For different NK landscapes, we compare the performance
of the RL-based EA against each of the static constraint-
handling strategies and an EA that learns the same task
as the RL agent but online using an adaptive strategy se-
lection method based on the UCB algorithm [3, 7]. The
next section describes the commitment relaxation ERC in
more detail. The different constraint-handling strategies in-
cluding the learning-based strategies we consider are then
given in Section 3. An experimental study described in Sec-
tion 4 gives the results of the strategies and also a case study
that deals with the issue of selecting a suitable strategy for
an ERCOP with partially unknown search space properties.
Section 5 concludes the paper.

2. COMMITMENT RELAXATION ERCS
Generally speaking, a commitment relaxation ERC forces

or commits an optimizer to a specific variable value combi-
nation for some (variable) period of time whenever it uses
this particular combination. Consider the motivating exam-
ple of optimizing the configuration of an instrument, such
as a mass spectrometer. Here, a commitment relaxation
ERC can simulate the scenario where a particular instru-
ment property, such as the laser frequency of a mass spec-
trometer, once set to a particular setting H , cannot be
changed during the rest of the ‘working day’ but only the
next day after the instrument ‘relaxes’ during the night. We
refer to a ‘working day’ as an epoch, where V denotes its
duration, and the activation period k(j), 0 ≤ k(j) ≤ V, to
be the duration of the period of time we have to commit to a
particular setting H during the jth epoch. Note, the length
of the activation period may change with each new epoch de-
pending on when the particular setting H is selected by the
optimizer. To describe the setting H we can conveniently
use the notion of schemata. For example, assuming a binary
representation of solutions of string length l = 5, we would

t
0

V

T

k(1) k(2) ...

Figure 2: An illustration of how a commitment re-
laxation ERC may partition the optimization time
into epochs of length V , and how it may be poten-
tially activated. The activation period k(j) during
the jth epoch is represented by the dashed part.

Algorithm 1 Implementation of a comm. relax. ERC

1: commitmentRelaxationERC(�x, t){
2: if t− last activation ≥ k then
3: if �x ∈ H then
4: last activation = t; k = V − t mod V
5: return true // �x is evaluable
6: else if �x /∈ H then
7: return false; // �x is not evaluable
8: else
9: return true;} // �x is evaluable

use H = (∗1 ∗ ∗0) to state that a commitment is associated
with the instrument setting for which the value of bit posi-
tion 2 and 5 is set to 1 and 0, respectively; the ∗ is a wildcard
symbol which means that a bit position can have any value.
We refer to H as the constraint schema.

Figure 2 illustrates the partition of the optimization time
into epochs, and a possible distribution of activation peri-
ods. From this figure it is apparent that the total number
of constraint activations during the optimization can vary
between 0 ≤ j ≤ �T/V � (T is the total optimization time).
That is, we might be lucky and the ERC may be never ac-
tivated, e.g. if solutions belonging to H do not lie on an
optimizer’s search path, but already one activation may in-
troduce enough solutions from H into the population such
that future activations might be more likely.

The corresponding implementation of a commitment re-
laxation ERC is defined by Algorithm 1. The method com−
mitmentRelaxationERC (�x, t) is defined by the parameters V
and H , and it takes as input a candidate solution �x that is
to be checked for evaluability and the current (global) time
step t. The output is a boolean value indicating whether
�x is evaluable or not. The method maintains two auxiliary
variables, last activation and k, required to update the in-
ternal state of the constraint: Line 2 to 4 are responsible for
the activation of the ERC and the setting of the activation
period, while Line 6 ensures that solutions have to be in H ;
initially we set last activation = k = 0.

In future, we will denote a commitment relaxation ERC
of this form by commRelaxERC(V,H). In the experimen-
tal study we consider the case where several commitment
relaxation ERCs with different non-overlapping constraint
schemata Hi, i = 1, ..., r, coexist. In this case, we need to
consider three aspects: (i) a solution is non-evaluable if it
violates at least one ERC, (ii) a repaired solution has to
satisfy all activated ERCs and not only the ones that were
violated, and (iii) it needs to be checked whether a repaired
solution activates an ERC that was not activated before.
A repaired solution is one that has undergone repairing in
the sense that its genotype has been modified to make it
evaluable.
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3. CONSTRAINT-HANDLING STRATEGIES
FOR ERCOPS

This section introduces five static constraint-handling stra-
tegies and two learning-based strategies, which perform lear-
ning over the static strategies. The strategies are applicable
not only to commitment relaxation ERCs but (in similar
form) also to other ERC types. Three of the static strate-
gies (forcing, regenerating, and the subpopulation strategy)
apply repairing and two (waiting and penalizing) avoid it in
order to prevent drift-like effects in the search direction.

3.1 Static constraint-handling strategies
1. Forcing: This strategy forces a non-evaluable solution
�x into the constraint schemata Hi of all activated ERCs. In
other words, all bits that do not match the order-defining bit
values of the schemata Hi of all activated ERCs are flipped,
and the solution so obtained is returned for evaluation. Re-
pairing strategies of this kind have been used previously, e.g.
to solve combinatorial optimization problems (see e.g. [11])

2. Regenerating: Upon encountering a non-evaluable so-
lution, similar to the death penalty approach [10], this strat-
egy iteratively generates new solutions from the empirical
distribution of the current offspring population (i.e. it gen-
erates new offspring from the current parent set) until it gen-
erates one that is evaluable, i.e. falls into the schemata Hi

of all activated ERCs, or until L trials have passed without
success. In the latter case, we select the solution, generated
within the L trials, that has the smallest sum of Hamming
distances to the order-defining bits of the schemata Hi of
all activated ERCs and apply forcing to it; ties between sev-
eral equally-closest solutions are broken randomly. Thus the
method always returns an evaluable solution.

3. Subpopulation strategy: Let us assume there is only
one ERC, i.e. r = 1. In this case, alongside the actual pop-
ulation, this strategy maintains also a subpopulation SP of
maximum size J that contains the fittest solutions from H1

evaluated so far. A non-evaluable solution is then dealt with
by generating a new solution based on this subpopulation. If
the maximum population size of SP , J , is not reached, then
a new solution from H1 is generated at random, otherwise
we apply one selection and variation step using the same
algorithm as the one we augment the constraint-handling
strategies on; if the new solution is non-evaluable, which
may happen due to mutation, we apply forcing to it. If
r > 1, then the number of subpopulations we need is upper-
bounded by 2r, the power set of the total number of ERCs.
A solution is then generated using the subpopulation that is
defined by the (set of) schemata Hi of all activated ERCs.

4. Waiting: This strategy does not repair but it waits with
the evaluation of a non-evaluable solution and the generation
of new solutions until the activation periods of all ERCs that
are violated by the solution have passed; i.e. the optimiza-
tion freezes. The freezing period is bridged by submitting
as many what we are calling null solutions as required un-
til the solution becomes evaluable; null solutions have the
effect that the optimizer can ‘wait’ for a time step without
evaluating a solution. Note, in the implementation of this
strategy we use here we realize this by setting the (global)
time counter directly to the end of the longest activation
period of all violated ERCs (see Algorithm 2, Line 19).

5. Penalizing: Like waiting, this strategy does not re-

Algorithm 2 EA with static constraint-handling strategies

Require: ERC1,...,ERCr (set of ERCs), f (objective function),
T (time limit), μ (parent population size), #Strategy (num-
ber of selected static constraint-handling strategy)

1: t = 0 (global time counter), Pop = ∅ (current population)
2: while |Pop| < μ ∧ t < T do
3: generate solution �x at random
4: �x = functionWrapper(�x)
5: Pop = Pop ∪ {�x}, t++;
6: while t < T do
7: generate one offspring �x by selecting two parents from Pop,

and then recombining and mutating them
8: �x = functionWrapper(�x)
9: form new Pop by selecting the best μ solutions from the

union population Pop ∪ {�x}, t++;
10:
11: functionWrapper(�x, t){
12: yt = null
13: if �x satisfies the ERCs ERC1,...,ERCr then
14: �xt = �x; yt = f(�xt)
15: else
16: if #Strategy = 1∨#Strategy = 2∨#Strategy = 3 then
17: �xt = repair(�x, t); yt = f(�xt)
18: if #Strategy = 4 then
19: t = t + τ ; �xt = �x; yt = f(�xt) // τ is the number of

time steps we have to wait until �x is evaluable
20: if #Strategy = 5 then
21: �xt = �x; yt = c // c is a constant, representing poor

fitness

22: return �xt}

pair. However, instead of freezing the optimization, a non-
evaluable solution is penalized by assigning a poor objective
value c to it (which is similar to a static penalty function
method [10]), and the time counter is incremented as if it
had been evaluated. The effects are that evaluable solutions
may be accidentally generated during an activation period,
and that evaluated solutions coexist with non-evaluated ones
in the same population. However, due to selection pressure
in parental and environmental selection, non-evaluated so-
lutions are likely to be discarded as time goes by. As we will
use the strategy within an elitist EA, and because we use
a c that is the minimal fitness in the search space, a non-
evaluated solution will never be inserted into a population
that is filled with evaluated solutions in the first place.

The pseudocode in Algorithm 2 shows how we manage
commitment relaxation ERCs and how the different static
strategies are integrated into an EA with a (μ + 1)-ES re-
production scheme; this is the same EA as we will use later
in the experimental study. Time steps refer here to func-
tion evaluations of a single solution, but, alternatively, they
may refer, for example, to real time units (e.g. seconds),
a calender period (e.g. Tuesday 2-4pm), or something else.
Note, the method of Algorithm 1 is called at Line 13 of
Algorithm 2.

3.2 Offline learning: RL-based strategy
RL is a computational approach to learning from interac-

tion of an agent with an environment whereby the aim of an
RL agent is to learn some optimal policy π, a mapping from
an environmental state st ∈ S to an action at ∈ A(st), so as
to maximize some discounted return:

Rt =
∞∑
j=0

γjrt+j+1, (1)
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Table 1: EA parameter settings
Parameter Setting

Parent population size μ 50
Per-bit mutation probability 1/l

Crossover probability 0.7

where rt+1 ∈ � is a numerical reward received after taking
action at in state st, and γ (0 ≤ γ ≤ 1) is the discount rate.
In learning problems where the agent-environment interac-
tion can be divided into sub-sequences (known as episodes),
such as single runs of an EA, an agent aims at maximizing
the return at the end of each episode. For a comprehensive
introduction to the field of RL please refer to [18].

3.2.1 Algorithm
We use Sarsa(λ) [15] as the RL agent or algorithm to learn

when to switch between static constraint-handling strate-
gies during an EA run. An episode is a single EA run, and
the static strategies described above form the set of actions
A(s). In Sarsa(λ) the idea is to learn an action-value func-
tion Q(s, a) = Eπ{Rt|st = s, at = a}, a prediction of the
return obtainable after taking action a when in state s and
then following some policy π. This prediction is updated by

Q(st, at) = Q(st, at) + α(rt+1 + γQ(st+1, at+1) (2)

− Q(st, at))et(s, a),

where α is the learning rate. The eligibility trace e is a kind
of memory that keeps track of how eligible a previously vis-
ited state-action pair is for being updated based on currently
obtained rewards. There are various ways eligibility traces
can be updated. We use replacing traces, which are updated
as follows:

et(s, a) =

{
1 if s = st and a = at,

γλet−1(s, a) otherwise,
(3)

where λ is the decay factor of the trace. The trace e is set
to 0 at the beginning of each episode. The policy according
to which we select an action in a state is determined by
the ε-greedy method. This method takes a random action
a with probability ε, and with probability 1− ε it takes the
greedy action a∗ for which Q(st, a

∗) = maxa Q(st, a). A
more detailed description of Sarsa(λ) can be found in [18].

To characterize a state s we use two variables: the current
population average fitness and the current time step. The
fitness values are normalized so that they lie in the range
[0; 1], while the optimization time is limited by T . Each
of the two variables is binned into 5 equally-sized intervals,

resulting in the intervals
[
j
5
; j+1

5

]
and

[
T ·j
5
; T ·(j+1)

5

]
, j =

0, 1, 2, 3, 4, respectively. The only reward we provide is the
average fitness of the population at the end of an episode.

There are some further aspects related to the learning
problem and algorithm we want to mention. First, note
that a non-evaluable solution may be encountered at dif-
ferent stages of the optimization process or not at all in a
single EA run. In other words, the number of states visited
in an episode, and the number of non-evaluable solutions en-
countered in a state, may vary between episodes and states,
respectively. In the case where a non-evaluable solution is
encountered, the first action selected in a particular state
is applied to all non-evaluable solutions encountered in this

state. This selection approach tends to perform better than
allowing an optimizer to reselect actions when in one and
the same state, because it is more direct in terms of credit
assignment. Finally, to encourage exploration we use the
idea of optimistic initial values [16]. We initialize all entries
of Q(s, a) with value 1.0.

3.3 Online learning: UCB-based strategy
To learn online when to switch between different static

constraint-handling strategies, we use the dynamic multi-
armed bandit (D-MAB) algorithm [7]. The idea of this
adaptive strategy selection method is to consider the learn-
ing problem as a multi-armed bandit problem with the static
strategies serving as independent arms. D-MAB extends the
upper confidence bound 1 (UCB1) algorithm [3] with the sta-
tistical Page-Hinkley test, which has the purpose to detect
changes in the sequence of rewards obtained, and then to
restart the multi-armed bandit. The reader is referred to
the paper (ibid.) for a more detailed description of D-MAB.

D-MAB requires that the play of an arm is followed by a
subsequent reward. We provide a reward immediately after
the play of an arm, and it is the (normalized) raw fitness
of the resulting solution. Note that if the arm associated
with the strategy, waiting, is played, then the reward may
be available only a few time steps later. Also, in the case of
penalizing, the reward will always be some poor fitness value
c. However, this does not mean that penalizing is never se-
lected because (i) UCB1 maintains always a certain degree
of exploration, and (ii) a restart of the multi-armed ban-
dit triggered by the Page-Hinkley test puts all arms in the
same initial position. Alternative credit assignment schemes
and UCB algorithms were tested but the combination used
in this paper tends to perform, on average, best and most
robustly on the test problems considered.

4. EXPERIMENTAL ANALYSIS

4.1 Experimental setup
We augment the constraint-handling strategies on a ge-

netic algorithm with a (μ+ 1)ES reproduction scheme (see
Algorithm 2 of Section 3); this choice is guided by simplicity
but accounts for our beliefs that elitism is generally useful
in this domain. The algorithm also uses binary tournament
selection (with replacement) for parental selection, uniform
crossover [19], and bit flip mutation. The parameter settings
of the EA and the constraint-handling strategies are given in
Table 1 and 2, respectively. The parameters λPH and δ in-
volved in D-MAB are related to the Page-Hinkley test, while
the scaling factor C controls the balance between the ex-
ploration of currently poor (or unused) constraint-handling
strategies and the exploitation of the currently best strate-
gies; we tested different settings for these parameters but
the values given in Table 2 tend to perform, on average,
best and most robustly on the test problems considered.
For the RL-based strategy, denoted in Table 2 by RL-EA,
we use a training and testing scheme (similar to [13]). In the
training phase, the RL agent estimates the function Q(s, a),
while, in the testing phase, the Q-function is frozen and the
greedy actions a∗ are always selected. As specified in Ta-
ble 2, the testing phase involves 100 episodes or EA runs,
and this is also the number of runs for which we run the
other constraint-handling strategies; i.e. any results shown
are average results across 100 EA runs. To allow for a fair
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Table 2: Parameter settings of constraint-handling
strategies

Strategy Parameter Setting

Regenerating
Number of regeneration

100000
trials L

Penalizing
Fitness c assigned to

0
non-evaluable solutions

Subpopulation Maximal size of all
25

strategy subpopulations SPh, Jh

RL-EA

Decay factor λ 1.0
Discount rate γ 1.0
Learning rate α 0.1

Probability ε of selecting
0.1

a random action
#Training episodes 5000
#Testing episodes 100

D-MAB
Threshold parameter λPH 0.1
Tolerance parameter δ 0.01

Scaling factor C 1

comparison of the strategies, we use a different seed for the
random number generator for each EA run but the same
seeds for all strategies. We also use a different seed for each
episode of the training phase of RL-EA.

4.2 Experimental study
We treat this experimental study as a case study to demon-

strate both the performance of the different constraint-hand-
ling strategies and one way in which a suitable strategy for
an ERCOP may be selected in a real-world application. The
case study is based on a simplified version of a real-world op-
timization problem, involving the configuration of an instru-
ment (similar to [12]). Variables represent detector voltage,
temperature ramp, laser, and other settings of a mass spec-
trometer. The fitness of a configuration is determined by
running a sample through it, and measuring properties of the
instrument’s output signal. ERCs arise in this problem be-
cause certain instrument setting combinations once selected
for an experiment (an evaluation) can only be changed the
next day, after relaxation has taken place at night.

A configuration is represented by a binary string of length
l = 30. Available are T = 2000 time steps for the op-
timization, and the ERCs, which are known a priori , are
two commitment relaxation ERCs: commRelaxERC(V =
20, H = (10101∗∗∗ ...)) and commRelaxERC(V = 20, H =
(∗... ∗ ∗101)). Little is known of the fitness landscape before
optimization begins. However, as in [12], it would be ex-
pected that there is some degree of epistasis in the problem.
We would not know whether the two schemata represent
good or poor instrument configurations.

As algorithm designers, we are now faced with the chal-
lenge to select an optimization algorithm or constraint-hand-
ling strategy for the above described ERCOP. The common
approach is to first design appropriate problem functions
that simulate the problem at hand, and then to test several
algorithms on these functions and use the best one for the
real-world problem.

In terms of test functions f , we know from previous analy-
sis that the type of resourcing issue is largely responsible for
the effect on the performance, with similar effects observ-
able for different fitness landscapes. Nevertheless, selecting
or generating a fitness landscape that mimics the problem at

hand more accurately increases the confidence in the selected
constraint-handling strategy. In this case study, we know
about the fitness landscape that there is a certain degree of
epistasis and that multiple optima might exist. Hence, we
should be considering test functions that feature different de-
grees of epistasis. Suitable test functions are, for example,
NK landscapes [9], which involve two tunable parameters:
the total number of bits N , and the number of bits that in-
teract epistatically at each of the N loci, K. The parameter
K allows us to control conveniently the degree of epistasis,
whereby larger values of K represent more epistasis. We
consider four different settings for K, namely, K = 1, 2, 3,
and 4, while N is fixed by the instrument setup to N = 30;
these K values cover reasonable degrees of epistasis.

Figure 3 shows the population average fitness obtained
with the different constraint-handling strategies on the four
NK landscapes as a function of the time counter (we do not
show the standard error as it was negligible); the average fit-
ness of the best solution in a population is in alignment with
the population average fitness. From the plots we can see
that the ERCs affect the performance of an EA. Also, the
plots confirm what we mentioned before that similar pat-
terns are obtained for all the test functions. In fact, with
respect to the static strategies, we observe a trend that the
subpopulation strategy performs best in the initial stages of
the optimization, forcing and penalizing in the middle part
of the optimization, and waiting in the final stages of the
optimization. Also, the time step at which waiting outper-
forms penalizing shifts further to the right as the degree of
epistasis increases.

For RL-EA, the results in Figure 3 were obtained using a
training phase involving 5000 different NK landscapes with
N = 30 and K = 2. After that training phase, the same
frozen Q-function was used in the testing phase of all four
NK landscape types. Consequently, this allows us to as-
sess the robustness of the learnt control policy as training
and testing are done in environments with different prop-
erties (at least for the cases K �= 2). From the figure we
can see that RL-EA is the best performing strategy on all
four NK landscape types at T = 2000. For a low level of
epistasis, RL-EA is even able to match almost the perfor-
mance of an EA optimizing in an ERC-free environment.
We observe also that the performance advantage over wait-
ing, the second best strategy, tends to increase with the de-
gree of epistasis; when comparing the two strategies against
each other using more than 100 algorithmic runs, then, ac-
cording to the Kruskal-Wallis test (significance level of 5%),
RL-EA is also significantly better than waiting for K = 3
and K = 4. This aspect indicates the robustness of RL-EA.
On the other hand, although D-MAB is not able to perform
as well as RL-EA, it is able to match the performance of
waiting for N = 30, K = 4. Another benefit of offline learn-
ing is that if the optimization time would be shorter, say
around T = 500, then RL-EA would learn a different con-
trol policy, while D-MAB does not. That is, RL-EA adapts
to the real-world problem at hand; we have confirmed this
experimentally (results not shown).

Figure 4 shows the greedy action a∗ in each state s learnt
by the RL agent. From the plot it is apparent that the
agent learnt to use mainly waiting at the beginning of the
optimization process, penalizing in the middle part of the
optimization, and, depending on the population average fit-
ness, either forcing, waiting, or the subpopulation strategy,
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Figure 3: Plots showing the population average fitness obtained by the different constraint-handling strategies
on NK landscapes with N = 30 and K = 1 (top left), K = 2 (top right), K = 3 (bottom left), and K = 4 (bottom
right) as a function of the time counter t; results are averaged over 100 independent runs using a different
randomly generated NK problem instance for each run. All instances were subject to the commitment
relaxation ERCs commRelaxERC(20,H = (10101 ∗ ∗ ∗ ...)) and commRelaxERC(20,H = (∗... ∗ ∗101)). The results of
‘Unconstrained EA’ were obtained by running the EA on the same problem instances but without the ERCs.

in the final part of the optimization. From Figure 3 one may
conclude that a policy that uses a repairing strategy (forcing,
regenerating, or subpopulation strategy) at the beginning of
the optimization, and waiting or penalizing towards the end,
should also perform well. The agent did not learn this policy
because the repairing strategies may lead quickly to a homo-
geneous population containing many solutions that fall into
both or either of the constraint schemata. If the schemata
are poor, then one should escape from this population state
but this is difficult as diversity needs to be again introduced
into the population and this takes too long using waiting or
penalizing.

Figure 5 illustrates what strategies are used on average
by D-MAB during different periods of the optimization pro-
cess of N = 30, K = 4. From the plot we can see that
penalizing is selected least often, which is due to the low
fixed reward associated when playing the associated arm.
A trend is obvious that waiting is used less often than the
repairing strategies at the end of the optimization process,
which is in alignment with the policy learnt by the RL agent.
The reason that the performance of D-MAB is nevertheless

poorer than the one of RL-EA is that the repairing strate-
gies are used too often throughout the optimization process
but in particular at the beginning of the optimization. As
mentioned before, this may result in a homogeneous popu-
lation state from which it is difficult to escape; the fact that
the total number of plays increases towards the end of the
optimization confirms that D-MAB actually ends up in this
poor population state. On NK instances with less epistasis,
the Page-Hinkley test is triggered less often, and waiting is
used almost as often as the repairing strategies throughout
the optimization.

Overall, the strong performance of the RL-EA is encour-
aging, but we want to mention that in order to achieve that
performance, some tuning of the agent may be required.
This is due to two aspects. First, the stochastic nature of
an EA in the sense that: (i) taking the same action in a par-
ticular state but in different episodes may cause an EA to
end up in different future states, and (ii) visiting the same
state-action pairs in different episode may result in different
rewards obtained at the end of an episode. Second, since a
different problem instance is used in each training episode,
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Figure 4: A plot showing the greedy actions a∗ learnt
by the RL agent for each state s. Training was done
on NK landscapes with N = 30 and K = 2.
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the constraint schemata of the two ERCs may represent both
good and poor instrument configurations. Hence, as the
quality of a schema has an impact on what strategy is most
appropriate, the current optimal control policy learnt by the
RL agent may change constantly during training. The ap-
proach taken here to deal with these two issues was to train
the agent for different numbers of training episodes using
also different settings of parameters involved in the agent
algorithm. The parameter setting combination that per-
formed, on average, best and most robustly on the training
or validation problems is used in this paper. Figure 6 illus-
trates how the population average fitness may be affected
by the number of training episodes, and different settings of
the decay factor λ and the discount rate γ.

Overall, based on the results shown, we would select RL-
EA for the real-world instrument optimization problem as it
performs best after 2000 time steps. Let us assume that the
real-world problem is a NK landscape instance with N = 30
and K = 3. Hence, to verify our selection, we perform
one run with all strategies on a single newly generated NK
landscape instance with N = 30 and K = 3; the results
are shown in Figure 7, and note that RL-EA uses the con-
trol policy of Figure 4. The plot confirms the findings made
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Figure 6: A plot showing the population average fit-
ness obtained by RL-EA for different values of the
decay factor λ and the discount rate γ as a function
of the number of training episodes. The population
average fitness values themselves represent average
values across 30 learning trials; each trial used dif-
ferent randomly generated problem instances and
random number generator seeds for training and
testing, but the same instances and seeds for any
combination of λ and γ values. Training and testing
was done on NK landscapes with N = 30 and K = 2

on the test functions. In particular, RL-EA, D-MAB, and
waiting, perform best at the end of the run while the static
repairing strategies perform best at the beginning of the op-
timization. Clearly, the result on a single instance might still
be different from the result we obtained from averaging over
many instances, even though the same type of test function
is used for both experiments. Nevertheless, this case study
demonstrates how one can approach and solve an ERCOP
beginning with the definition of the ERCs, modelling the
simulated environment, selection of appropriate test func-
tions, and finally tuning and comparing different optimizers
and selecting the most suitable one to be used in real world.

5. CONCLUSION
In this paper we have considered an optimization scenario

in which resources are required in the evaluation process of
candidate solutions. The particular challenge we focussed
on was that certain resources had to be committed to or
used for some period of time whenever they have been used
by the optimizer; we referred to this type of resourcing
issue as a commitment relaxation ERC. Several strategies
to deal with this ERC have been proposed including static
strategies, such as repairing, waiting, and penalizing strate-
gies, and two learning-based strategies. The learning-based
strategies aim at learning when to switch between the static
strategies during the optimization process. However, while
one strategy learns this task offline using a reinforcement
learning (RL) agent, here Sarsa(λ), the other strategy per-
forms online learning using the UCB algorithm extended
with the statistical Page-Hinkley test to detect changes in
the sequence of rewards obtained. Offline learning is pos-
sible in this optimization scenario because the performance
of an EA depends largely on the type of ERC, with similar
effects observable for different fitness landscapes.
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Figure 7: A plot showing the population aver-
age fitness obtained in a single run on a ran-
domly generated NK landscape with N = 30 and
K = 3 as a function of the time counter t; the in-
stance was subject to the two commitment relax-
ation ERCs commRelaxERC(20,H = (10101 ∗ ∗ ∗ ...))
and commRelaxERC(20,H = (∗... ∗ ∗101)).

We analyzed the performance of the constraint-handling
strategies and demonstrated how one may approach and
solve a new ERC optimization problem (ERCOP) in the
common case where knowledge of the fitness landscape is
poor. The analysis concluded that ERCs affect the per-
formance of an EA but an RL-based strategy is able to get
close to the performance of an EA optimizing in an ERC-free
environment, particularly on fitness landscapes with little
epistasis. The online learning algorithm did not perform as
well as the RL-based algorithm, mainly because it does not
look ahead in the optimization process and so may end up
quickly in a poor population state from which it is difficult
to escape; this is a general issue of online learning within an
ERCOP scenario and it is yet unclear how to avoid it. Static
repairing strategies are well suited if little optimization time
is available, while a static waiting or penalizing strategy is
more suited for longer optimization times.

Our study has of course been very limited, and there re-
mains much else to learn about the effects of ERCs and
how to handle them. Our current research is looking at
the design and tuning of RL agents for dynamic optimiza-
tion problems that also account for the stochasticity present
in evolutionary search. Analyzing constraint-handling and
learning strategies on different and perhaps more realistic
fitness landscapes than NK landscapes is another avenue
we are pursuing.
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