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ABSTRACT

The challenging scientific field of self-reconfiguring modular
robotics (i.e., decentrally controlled ‘super-robots’ based on
autonomous, interacting robot modules with variable mor-
phologies) calls for novel paradigms of designing robot con-
trollers. One option is the approach of evolutionary robotics.
In this approach, the challenge is to achieve high evaluation
numbers with the available resources which may even af-
fect the feasibility of this approach. Simulations are usually
applied at least in a preliminary stage of research to sup-
port controller design. However, even simulations are com-
putationally expensive which gets even more burdensome
once comprehensive studies and comparisons between dif-
ferent controller designs and approaches have to be done.
Hence, a benchmark with low computational cost is needed
that still contains the typical challenges of decentral control,
is comparable, and easily manageable. We propose such a
benchmark and report an empirical study of its characteris-
tics including the transition from the single-robot setting to
the multi-robot setting, typical local optima, and properties
of adaptive walks through the fitness landscape.

Categories and Subject Descriptors: I.2.2 Artificial In-
telligence: Automatic Programming

General Terms: Theory

1. INTRODUCTION
Typical benchmarks in robotics research are rather practi-
cal and playful such as RoboCup [11], DARPA Grand Chal-
lenge [21], or see this list [3]. These are of limited applicabil-
ity to studies in evolutionary robotics [16, 4, 25] which is the
study of the synthesis of robot controllers by means of evolu-
tionary computation. Evolutionary robotics demands simple
domains [15] which can preferably also be simulated with low
computational cost. Studies in evolutionary robotics are dif-
ferentiated by the exclusive use of simulations [28, 29, 9], by
the combined use of simulations and robotic hardware [26],
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Figure 1: Two connected prototypes of the projects
SYMBRION [24] and REPLICATOR [20].

and by the exclusive use of hardware with either a single
robot [5, 10] or multiple robots [27].
An extremely challenging field within robotics is (multi-
)modular robotics [24, 20, 22, 14], which introduces a high
degree of flexibility not only in terms of freely programmable
agents (robotic modules) but also in terms of freely modifi-
able body forms (morphologies). In this field, autonomous
robotic modules are studied, that are able to physically con-
nect to each other, and can also establish a communication
and energy connection (see Fig. 1 for representative proto-
types of such modules). Hence, they form a super-robot
(‘organism’), that is able to re-configure its body shape,
see [22, 14] and Fig. 2. Such an organism could be con-
trolled centrally but, as it consists of several autonomous
entities already, an obvious approach with a much higher
degree of robustness is reached by a decentral (local) con-
trol paradigm. In order to reach a maximum of plasticity,
each module should have a controller, that is able to gener-
ate any necessary behavior, independently of the module’s
position within the robotic organism.
The variability of body forms of the robotic organism is
a strong argument against centralized control and against
human-engineered control software, as for every specific (class
of) body form different control algorithms or different con-
trol parameters need to be designed. In our specific case (see
Figs. 1/2), each robotic module has four docking ports, one
on each side, to connect physically to other modules. Neigh-
boring modules can dock with 4 orientations (N,E,S,W).
Thus, there are 4×4=16 configurations to dock two modules.
Neglecting the existence of physically unfeasible configura-

tions this gives 16
(n−1)

4
configurations for n modules con-

sidering that every configuration has 3 rotation-symmetric
equivalents. Although we only consider configurations in
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2-d, this gives 4 configurations for 2 modules, 1.72 × 1010

configurations for 10, and 2.08 × 1034 configurations for 30
modules. When considering 3-d body formations, the vari-
ability increases even more because modules bending their
hinges ‘fold’ whole organisms into different topologies.
In addition, similarities of organism topologies do not nec-
essarily correspond to similarities in the control algorithms.
Small changes in the topology (e.g., rotating one module by
90 degrees) might require very different control techniques.
This is all the more relevant once reconfigurations are al-
lowed at runtime.
All these requirements call for a control paradigm of self-
adaptivity as it is, for example, common in the field of evo-
lutionary robotics [16, 4, 25]. The robots’ modularity and
their vast variety of feasible topologies call for control para-
digms that allow the exploitation of self-organized processes
and combine changes of the topology inherently with a cor-
responding change in the control software. Possibly after
a transient, the controller should again reflect on the body
form in a way that allows efficient motion and control of the
organism.
Only a few and mostly rather novel controller approaches
actually try to address the above requirements (e.g., some
evolve artificial neural networks [7], gene regulatory net-
works [33], or hormone controllers [9]). Whether these ap-
proaches can meet these requirements is an open question.
Thus, it has to be investigated, if these control software
methodologies have enough potential concerning adaptabil-
ity, flexibility, robustness, self-organization, and evolvability.
The evaluations, necessary to select appropriate techniques
and to optimize controller designs in combination with one’s
own concepts, generate a strong demand for fast-evaluating
benchmarks which reflect key demands of multi-modular
robotics. On one hand, these benchmarks should allow for
hundreds of thousands of evaluations within reasonable time,
otherwise the evolutionary potential of controller techniques
could not be compared statistically. On the other hand,
the benchmark should incorporate physical constraints, as
the role of physics is fundamentally important in robotics.
Multi-modular robotic organisms consist of several physi-
cally joined modules, all acting autonomously but within
the constraints that are imposed by neighboring modules.
This is a crucial aspect which should be reflected in the
benchmark used to compare the evolutionary potential of
different control paradigms.
To the best of our knowledge, there is currently no well-
agreed standard benchmark for modular robotics. Only tests
are known that are motivated from the engineering side and
that are rather tests for robustness of the hardware itself.
Especially concerning evolutionary modular robotics the au-
thors are not aware of any standard benchmark besides the
probably too simple task of locomotion [33, 9] which is dif-
ficult to compare. Such tasks call for sophisticated simu-
lators [31] with physics engines because the behaviors of-
ten rely, for example, on friction. The computational cost
of such simulations are high and the speed-up of simulated
time vs. real time often drops below 1.
Modular or multi-modular robotics is a rather young sci-
entific field, compared to singular robotics. It is generally
characterized by a high degree of flexibility in terms of the
manifold forms of interaction between the autonomous robot
modules. These modules can operate solitarily, they can
interact and cooperate loosely (i.e., for a limited amount

Figure 2: Simulation of the prototypes shown in
Fig. 1 using the simulator Symbricator3D [31].

of time and without physical connection, cf., for example,
the stick-pulling experiment from the related field of swarm
robotics [13]), and they can cooperate by connecting phys-
ically (e.g., see [9]). Thus, modular robotics incorporates
many aspects from classical robotics, swarm or distributed
robotics, and in particular aspects from modular robotics
itself. We call these different degrees of cooperation the
‘coupling’ of modules. The coupling between modules is
a property that changes continuously (from no coupling in
solitary actions to a high degree of coupling in case of phys-
ically connected modules) and should be represented in the
benchmark.
Also communication is an essential feature of the modular
robotics domain. In loosely coupled, swarm-like groups of
modular robots the communication methods should be well
scalable with increasing module number. In case of tightly
coupled modules scalability will usually be a minor issue be-
cause high bandwidth communication is available. However,
the methods of communication should cope with changes in
the topology and also with module breakdowns.

2. DESCRIPTION OF THE COUPLED IN-

VERTED PENDULUMS BENCHMARK
The proposed benchmark is an extension of the well-known
inverted-pendulum benchmark (broom balancing). A pen-
dulum, mounted on a cart on a track (i.e., a 1-d world), has
to be balanced in the upper equilibrium position. Research
of synthesizing controllers for a single inverted pendulum
dates back at least to 1964 [30]. Applying evolutionary al-
gorithms to this problem dates back at least to 1990 [12].
During the last 20 years the problem was successfully solved
also for even more complex scenarios, such as the double
pendulum or the triple pendulum.
Before we explain the extension we applied to the bench-
mark, we give the equations that we use to simulate each
cart with a pendulum, see eqs. 1 through 5, for cart posi-
tion x, cart velocity v, angular velocity of the pendulum ω,
and motor control value u. For the used parameters, see
table 1.
We apply several changes to the standard inverted pendu-
lum scenario to increase its complexity and to increase its
similarity to challenges of modular robotics scenarios. The
most prominent change is that we use multiple carts (or
modules) that run all on a single track. The carts are cou-
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ẋ = v (1)

v̇ = motor(u, v) (2)

φ̇ = ω (3)

ω̇ =











3g/(2L) sin(φ)− 3/(2L)motor(u, v) cos(φ), if ω = 0

3g/(2L) sin(φ)− 3/(2L)motor(u, v) cos(φ)

−Kpω|ω| −Klω/|ω|, else

(4)

motor(u, v) =





















































































{

Vmotor, if v ≥ 0

Vbreak, else
, if u > v

{

−Vbreak, if v ≥ 0

−Vmotor, else
, else

, if |u− v| > ∆UV























{

Vmotor/∆UV (u− v), if v ≥ 0

Vbreak/∆UV (u− v), else
, if u > v

{

Vbreak/∆UV (u− v), if v ≥ 0

Vmotor/∆UV (u− v), else
, else

, else

(5)

Table 1: Parameter settings.
parameter value

gravitational acceleration g 9.81 m

s2

pendulum length L 0.5 m
max. pos. acceleration Vmotor 7.0 m

s2

max. neg. acceleration Vbreak 8.5 m

s2

world width w 2 m
chain length c 0.35 m

prox. sensor range 1 m
cart width 0.1 m

Kp 0.005
Kl 0.05 1

s2

∆UV 0.05 m
s

initial pos. xi(0) of cart i x(0) = (−0.4,−0.2, 0)
initial pos. φi(0) of pendulum i φ(0) = (0.8π, 0.9π, π)

initial cart velocities vi(0) v(0) = (0, 0, 0)
initial angular vel. ωi(0) ω(0) = (0, 0, 0)
evaluation length tmax 4000 time steps

pled by chains that allow the carts to approach each other
closely but the chain length c defines a maximally allowed
distance between the carts (see Fig. 3). Carts can move
independently as long as they do not pull a chain or run
into each other. Hence, each cart has to avoid other carts
and walls (cart track ends) and has to balance its pendulum
at the same time. Note the difference of this domain from
others that mount several pendulums on the same cart, for
example, see [32]. In our scenario this would correspond to
a chain length of c = 0. However, here we are able to define
degrees of coupling continuously.
The pendulums are started in lower positions, that is, we
include the nonlinear upswinging phase. We also restrict the
cart track length resulting in a scenario similar, for example,
to that reported in [1]. In combination with the limited
acceleration of the cart motor (see Vmotor in table 1) the
upswinging can only be managed by moving back and forth
multiple times which increases the complexity of the task.
In addition we limit the sampling rates of all sensors (i.e.,
a low controller sampling rate). The sampling rates are
low which is documented by the relation between the pre-

φ

cart
chain

pendulum

world
width w

L

Figure 3: Coupled inverted pendulum benchmark
with two carts, pendulums are free to move full 360◦

mounted on the carts that move in one dimension
(left/right) bounded by walls (track ends) and other
carts. Marked angle is pendulum angle φ.

defined cycle length τ of the controller and the pendulums’
maximally allowed angular velocity of 0.05π[1/τ ] = 9◦[1/τ ].
Hence, the pendulum can move up to 9◦ between two calls
of the controller and the controller has little time to adapt
to new configurations.
In order to adapt the sensor setting to those that are more
typical in robotic scenarios, the sensors do not deliver actual
angles and positions directly. These values are partitioned
onto several sensors and they are also relative rather than
absolute (distance to wall instead of the cart’s position etc.),
see Table 2 for details. This partition is visualized in Fig. 4.
For example, sensors S0, S1, S2, and S3 of the pendulum
angle φ cover 90◦ each. All sensor and actuator values have
low, discrete resolutions on the interval [0, 127]. In addition,
the proximity sensors (S4, S5) cannot distinguish neighbor-
ing robots from walls.
The controllers have two outputs, left actuator A0 and right
actuator A1 and the acceleration control of the cart is de-
termined by their difference (see Table 2).
In the following experiments we increase the module num-
ber (i.e., cart number) without changing the track length.
Hence, with increasing module number also the module den-
sity is increased which increases the difficulty even more.
The modules are controlled locally without global informa-
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Table 2: Sensor and actuator setting.
ID sensor name syst.-states-to-sens.-values map
S0 pend. angle 1 φ ∈ [0, 0.5π] → [127, 0], 0 else
S1 pend. angle 2 φ ∈ [π, 1.5π] → [0, 127], 0 else
S2 pend. angle 3 φ ∈ [0.5π, π] → [127, 0], 0 else
S3 pend. angle 4 φ ∈ [1.5π, 2π] → [0, 127], 0 else
S4 proximity 1 dist. left (max. 1) → [0, 127]
S5 proximity 2 dist. right (max. 1) → [0, 127]
S6 cart velocity 1 v ∈ [−2, 0] → [127, 0], 0 else
S7 cart velocity 2 v ∈ [0, 2] → [0, 127], 0 else
S8 angular vel. 1 ω ∈ [−5π, 0] → [127, 0], 0 else
S9 angular vel. 2 ω ∈ [0, 5π] → [0, 127], 0 else
Ai actuators Ai ∈ [0, 127], for i ∈ {0, 1}
u motor control 2(A0/127−A1/127) → [−2, 2]

cart
or
wall

cart
or
wall

detected
distance

detected
distance

φ

S0 S1

S2 S3

S4 S5
S6 : v < 0 S7 : v > 0
S8 : ω < 0 S9 : ω > 0

Figure 4: Sketched sensor setting.

tion, ID or positional information and all modules are con-
trolled by identical controllers.
We use an aggregate fitness function [15] which is basically
the percentage of time steps that all pendulums spent in the
upper equilibrium position (φ = 0):

F =

tmax
∑

t=0

M−1
∑

j=0

|φj(t)− π|

tmaxMπ
, (6)

whereas M is the number of modules and tmax is how long
an evaluation lasts in time steps (a typical value is tmax =
4000). Deviations from φ = 0 are linearly scaled, that is, φ =
0.5π, for example, is evaluated as ‘50% in upper position’.
A fitness of 1 means all pendulums spent all time in the
upper position, 0.5 can be interpreted as ‘the pendulums
spent half the time in upper position’, and a fitness of 0
means all pendulums spent all time in the lower equilibrium.
An evaluation run is aborted and the fitness is reduced pro-
portionally to the elapsed time once one of the following con-
straints is violated: cart runs into other cart, cart fully tight-
ens chain, cart runs into wall, pendulum angular velocity too
high (|ω| > 5π 1

s
), or cart velocity too high (|v| > 2m

s
).

The implementation of the cart-pole dynamics is calculated
by the Runge-Kutta method of third-order [17] with a dis-
crete time step of size ∆t = 0.01 and is provided online1.
Search algorithms operating on fitness landscapes related to
this benchmark seem to be prone to local optima. Early
in an evolutionary run, fast motion of the carts earns good

1http://heikohamann.de/coupledInvertedPendulums/

fitness improvements. Subsequently further improvements
in the fitness can be reached by spinning the pendulums
fast. In a third fitness increase the controller might manage
to slow down the pendulums’ speed when approaching φ =
0 but the pendulums still spin. Finally, in the absence of
noise an evolved controller could generate deterministic cart
trajectories that end up with all pendulums at φ = 0. This
can be viewed as a local optimum before a fully reactive
controller is evolved that actually controls the pendulums
also in noisy conditions.
Notice also that conflicting interpretations of sensor inputs
exist. A close-by, neighboring cart might be a safe condition
in case it moves in the same direction. In contrast a close-by
wall might be a dangerous condition.
The proposed benchmark can be extended in many ways.
The difficulty can be increased in an uncomplicated way, for
example, by upgrading the pendulums to double or triple
pendulums. Other useful extensions could be noise models
for sensors and actuators, adding static or moving obstacles,
or adding a second dimension (i.e., carts move in a plane
instead of on a track which introduces new possibilities of
collision avoidance). The difficulty could be decreased by
more sophisticated sensors, for example, sensors that allow
for a distinction between other robots or walls.

3. EMPIRICAL STUDY
In the following we report an empirical study of the bench-
mark based on our investigations using the Artificial Home-
ostatic Hormone Systems (AHHS, e.g., see [9, 8]). We report
the impact of varied module numbers and couplings, typical
local optima, and a fitness landscape analysis.

3.1 Transition from single cart to multiple carts
This benchmark is motivated by the special requirements
of decentral control of multiple, interacting modules. The
transition from a single- to a multi-module setting is accom-
panied by a remarkable transition in the performance of dif-
ferent controlling approaches [8]. This is definitely shown in
Fig. 5 where best evolved controllers based on the AHHS ap-
proach [8] and NEAT [23] are compared (for details see [8]).
NEAT’s performance for the single-module setting is close to
perfect and significantly better than AHHS, whereas AHHS
significantly outperforms NEAT in the multi-module setting.
This finding justifies the proposed benchmark and calls also
for in-depth comparisons of control approaches in modular
robotics.

3.2 Varying the module coupling
As discussed in the introduction the coupling of the modules
is an important feature of the benchmark. Weak coupling
causes the modules to be almost independent of each other,
almost comparable to a single robot setting. Medium cou-
pling corresponds in an abstract way to a swarm robotic
setting. Strong coupling corresponds to a modular robotics
setting because it models the physical connection without
forcing neighboring cars into full synchrony. The coupling
in the benchmark can be varied by the chain length c contin-
uously from very strong coupling (c ≈ 0) to weak coupling
(c ≈ w, w is world width).
In Fig. 6 the results of a study based on the AHHS ap-
proach [9, 8] is shown (2 modules, linear proportional se-
lection, 200 generations, population size 100). The fitness
of the best evolved controller per run for n = 30 runs is
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Figure 5: Box-and-whisker plots of the fitnesses of
best evolved controllers for AHHS and NEAT ap-
proach with 1 and 3 modules, n = 30 runs each.
Asterisks show significances of p < 0.05 using the
Wilcoxon rank-sum test; data from [8].
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Figure 6: Box-and-whisker plot of the fitness of
n = 30 evolutionary runs for several chain lengths c
(module coupling) using the AHHS approach [9, 8]
with 2 modules; significances not shown.

used to compare the complexity of settings with varied chain
length c (initial cart positions are adapted accordingly). The
task of evolving a successful controller becomes easier with
increasing chain length (i.e., decreasing coupling) which is
plausible. However, some of the behaviors that evolve for
the longer chain lengths would in principle (i.e., scaled to
shorter cart distances) also work for shorter chains. It seems
that strong coupling prohibits a necessary exploration of the
search space in earlier generations of evolutionary runs.
The qualitative change in the motion patterns during the
transition from strong to weak couplings is shown in Fig. 7
with the help of two example trajectories. The trajectories
are normalized and linearly scaled (see caption) for easier
comparison. In case of strong coupling (Fig. 7(a)) the carts
move either close to synchrony or asynchronous in form of a
simple phase shift. In case of weak coupling (Fig. 7(b)) the
carts sometimes move in synchrony as well but sometimes
also in independent patterns. The feasibility of this tem-

-0.05

 0

 0  1250  2500

t

x
0
,
x
1

(a) strong coupling, chain
length c = 0.075, F = 0.54

-0.05

 0

 0  1250  2500

t

x
0
,
x
1

(b) weak coupling, chain
length c = 0.5, F = 0.86

Figure 7: Trajectories of 2 coupled carts, plotted
as superposition with same starting point xi(0) = 0
(i ∈ {0, 1}) and linearly scaled to xi(2500)+xi(2500) = 0
for chain lengths c ∈ {0.075, 0.5} indicating the inde-
pendent motion in the weak coupling case c = 0.5.

porary independence seems to be one cause of the reduced
difficulty for bigger chain lengths as shown in Fig. 6.

3.3 Typical local optima
In previous studies of the AHHS approach and NEAT [23]
we have learned that the coupled pendulums benchmark (at
least in connection with methods of evolutionary computa-
tion) is especially prone to local optima. This is, for exam-
ple, evident in many discrete steps in the best fitness of a
single evolutionary run (see Fig. 9). The occurrence of such
steps is well known in both artificial and natural systems [2].
However, in this benchmark the local optima are often not
overcome which might indicate relatively deep valleys be-
tween neighboring local optima.
In Fig. 8 we show six typical local optima for a 2-module sce-
nario. Figs. 8(a) and 8(b) show a local optimum because the
behavior is based on a fast, unidirectional motion of the carts
to the farther bound of the arena which generates only small
angular velocities in the pendulums. No additional acceler-
ations are performed after the wall has been approached.
An improvement can only be achieved by evolving either an
altering stop-and-go motion or bidirectional motion.
Figs. 8(c) and 8(d) show a behavior that generates a uni-
directional stop-and-go motion of the carts but results not
in an overswinging of the pendulums. Fig. 8(e) and 8(f)
show also a unidirectional stop-and-go motion but about at
time step 2,300 a first overswinging of the pendulums is ob-
served. Beginning at that time step the stop-and-go motion
is slightly changed to keep the pendulums swinging.
Figs. 8(g) and 8(h) show a behavior that achieves the over-
swinging even before time step 2,000 with a back-and-forth
motion which is again adapted to the first occurrence of an
overswinging event.
Figs. 8(i) and 8(j) show a qualitatively different behavior
because the pendulums are occasionally close to the upper
equilibrium position (±0.05× 2π) for up to 160 time steps.
In case of the behavior shown in Figs. 8(k) and 8(l) this is
achieved in every cycle of the pendulums. The next improve-
ment to this behavior would be something close to the op-
timal solution, for example, a temporary balancing of both
pendulums. The behaviors, that correspond to each fitness
plateau, are indicated in Fig. 9.
Whether these local optima are typical for the benchmark
and controller–design independent is an open question but
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Figure 8: Angles φ of the pendulums and cart trajectories xi for typical local optima, captions give fitness F .
Note that keeping the pendulum angles close to φ = 0 = 2π is rewarded with highest fitness.

previous studies indicate this independence at least for two
controller designs (AHHS and NEAT, see [8]).
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Fig. 8(a)
Fig. 8(c)
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Fig. 8(g)

Fig. 8(i)

best fitness

avg. fitness

Figure 9: Evolutionary run showing many of the
typical local optima (steps in best fitness).

3.4 Fitness landscape analysis
We do adaptive walks through the fitness landscape for a
2-module setting. We start with a random AHHS controller
with 5 rules. Here, each rule has 7 relevant and independent
features (6 real, 1 discrete variable, sub-rule weights are set
to be binary, for details see [8]). This defines the d = 5×7 =
35 dimensions of the search space.
The definition of neighbors is not definite in the context of
genomes based on floating point values and the evolution
strategy [18, 19]. Here we define neighbors by adding and

subtracting a defined value ∆ > 0. In each step of the
adaptive walk we try to find a neighboring controller with
higher fitness. Neighboring controllers are reachable from
the current controller by changing only one feature by ∆ > 0
at a time. This change can be positive (∆) or negative (−∆),
hence, we get in general 35×2 = 70 direct neighbors (except
for cases when an addition of ±∆ would move parameters
out of their permitted interval).
In a first analysis, we simplify the benchmark significantly
by abandoning all constraints. The carts are allowed to run
through each other, the walls and the chains have no ef-
fect. The result for n = 11, 128 adaptive walks is shown
in the upper row of Fig. 10. The initial fitness of the ran-
dom controllers is shown in Fig. 10(a). The main peak at
0.06 < F < 0.07 with 4002 samples corresponds to an inac-
tive controller. The second peak is at 0.15 < F < 0.16 with
1762 samples. This fitness corresponds to a controller that
is active but moves only erratically.
The fitness of the local optima found at the end of the
adaptive walks are shown in Fig. 10(b). The main peak
at 0.34 < F < 0.35 with 1218 samples represents controllers
that manage to swing one of the two pendulums fast–a be-
havior that is difficult to achieve in the standard benchmark
due to the chains. In the standard benchmark usually both
pendulums or none are swung fast (cf. Fig. 8(e)).
We compare these results to the theoretical results reported
in [6] although these are based on Kauffman’s NK model.
Following [6] the average length of an adaptive walk is de-
fined by ln(d)/ ln(2), with d is the number of dimensions of
the feature vector (genome). For d = 35 we get ln(35)/ ln(2) ≈
5.129 which is satisfyingly close to the measured mean length
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of 5.803. In accordance with [6] the walk lengths are Pois-
son distributed except for the outlier of the first bin (walk
length 0, i.e., no improvement to the initial random con-
troller is found, see Fig. 10(c)).
In a second analysis, we apply the standard benchmark with
all its constraints (see Tab. 1). The result of n = 12, 468
adaptive walks is shown in the lower row of Fig. 10. In the
histogram of the initial fitness (Fig. 10(d)), the main peak at
0 < F < 0.01 with 7737 samples corresponds to a controller
that either runs the carts into each other or into the chains
almost instantly (which was not possible in the simplified
scenario). The second peak is at 0.06 < F < 0.07 with 4379
samples. This fitness corresponds to an inactive controller
as mentioned above.
The final fitnesses at the end of the adaptive walks are shown
in Fig. 10(e). Compared to the initial fitnesses there is only
little change. The main peak is now at 0.06 < F < 0.07
and about 4.6% of the samples reach a fitness above 0.1. It
follows that more complex behaviors can hardly be found by
pure local search. An additional indicator for a qualitative
change of the fitness landscape due to the constraints of
the benchmark is the distribution of the walk lengths shown
in Fig. 10(f) which is a distribution close to power-law in
contrast to the above Poisson distribution (Fig. 10(e)).

4. CONCLUSION
We have presented a novel benchmark for modular robotics
with low computational cost that is comparable and eas-
ily manageable. It incorporates the typical physical con-
straints of this field and module coupling is adjustable. The
proposed benchmark is a significant extension of the well-
known inverted-pendulum benchmark. We introduced mul-
tiple carts that are coupled by chains which limit the carts’
mobility. Changing the chain length corresponds to a con-
tinuous change of the coupling intensities. Weak couplings
(long chains) leave the carts almost independent of each
other (cf. classical robotics), medium couplings necessitate
some interaction between carts (cf. swarm robotics), and
strong couplings (short chains) forces the carts to synchro-
nize intermittently (cf. modular robotics).
Another significant addition to the standard benchmark of
a single pendulum is that the robots (carts) have to evolve
collision avoidance functionality in parallel to other tasks
because collisions of carts with other carts or walls (track
ends) early in the evaluation are punished by big cuts in the
fitness. Thus, in our benchmark with multiple carts, the
robots have to evolve three classical tasks in parallel, each
task posing significant constraints on the execution of other
tasks. First, as in the classical one-cart variant, the task
is to balance the pendulum as fast as possible. Second, all
carts have to avoid collisions. If one cart moves, this might
enforce other carts to move away, an effect which might ap-
pear in cascades throughout the group of carts. Third, a wall
following behavior (‘stay-away-but-not-too-far’ task) has to
be solved in parallel induced by the chains. The motion of
one cart might enforce a neighboring cart to follow.
Empirically we have shown that the benchmark is easier
to solve by evolved controllers with increasing chain length
as expected. We have reported behaviors that represent
typical local optima. In a fitness landscape analysis, we
have shown that the fitness landscape changes qualitatively
once the constraints of the benchmark are applied (different
distributions of adaptive walk lengths likely). In future work

we will investigate how manifold control paradigms scale to
the decentral multi-module setting as discussed in Sec. 3.1.
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[3] A. P. del Pôbil, R. Madhavan, and E. Messina, editors.
IROS 2007 Workshop: Benchmarks in Robotics Research,
2007.

[4] D. Floreano, P. Husbands, and S. Nolfi. Evolutionary
robotics. In B. Siciliano and K. Oussama, editors, Handbook
of Robotics, pages 1423–1452. Springer-Verlag, Berlin, 2008.

[5] D. Floreano and F. Mondada. Genetic evolution of a
neural-network driven robot. In D. Cliff, P. Husbands, J.-A.
Meyer, and S. Wilson, editors, From Animals to Animats 3,
pages 421–430, 1994. MIT Press.

[6] H. Flyvbjerg and B. Lautrup. Evolution in a rugged fitness
landscape. Physical Review A, 46(10):6714–6723, 1992.

[7] E. Haasdijk, A. A. Rusu, and A. Eiben. Hyperneat for
locomotion control in modular robots. In G. Tempesti,
A. M. Tyrrell, and J. F. Miller, editors, 9th International
Conference on Evolvable Systems (ICES 2010), pages
169–180. Springer-Verlag, 2010.

[8] H. Hamann, T. Schmickl, and K. Crailsheim. A
hormone-based controller for evaluation-minimal evolution
in decentrally controlled systems. Artificial Life, 2011.
submitted.

[9] H. Hamann, J. Stradner, T. Schmickl, and K. Crailsheim.
Artificial hormone reaction networks: Towards higher
evolvability in evolutionary multi-modular robotics. In
H. Fellermann, et al., editors, Proc. of the ALife XII
Conference, pages 773–780. MIT Press, 2010.

[10] G. Hornby, S. Takamura, T. Yamamoto, and M. Fujita.
Autonomous evolution of dynamic gaits with two
quadruped robots. IEEE Transactions on Robotics,
21(3):402–410, 2005.

[11] H. Kitano, M. Asada, I. Noda, and H. Matsubara.
Robocup: Robot world cup. Robotics & Automation
Magazine, IEEE, 5(3):30–36, 2002.

[12] J. R. Koza and M. A. Keane. Genetic breeding of
non-linear optimal control strategies for broom balancing.
In A. Bensoussan and J. Lions, editors, Analysis and
Optimization of Systems, volume 144 of LNCS, pages
47–56. Springer-Verlag, 1990.

[13] A. Martinoli, K. Easton, and W. Agassounon. Modeling
swarm robotic systems: A case study in collaborative
distributed manipulation. Int. Journal of Robotics
Research, 23(4):415–436, 2004.

[14] S. Murata, K. Kakomura, and H. Kurokawa. Toward a
scalable modular robotic system - navigation, docking, and
integration of m-tran. IEEE Robotics & Automation
Magazine, 14(4):56–63, 2008.

[15] A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness
functions in evolutionary robotics: A survey and analysis.
Robotics and Auton. Syst., 57:345–370, 2009.

[16] S. Nolfi and D. Floreano. Evolutionary Robotics: The
Biology, Intelligence, and Technology of Self-Organizing
Machines. MIT Press, 2004.

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C++. Cambridge Univ.
Press, 2002.

201



0.0 0.1 0.2 0.3 0.4

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

fitness F

fr
eq

u
en

cy

(a) no constraints, initial fitness

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

fitness F

fr
eq

u
en

cy

(b) no constraints, final fitness (local
optima)

0 5 10 15 20 25 30

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

walk length

fr
eq

u
en

cy

(c) no constraints, lengths

0.0 0.1 0.2 0.3 0.4

0
2
0
0
0

6
0
0
0

1
0
0
0
0

fitness F

fr
eq

u
en

cy

(d) with constraints, initial fitness

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
2
0
0
0

6
0
0
0

1
0
0
0
0

fitness F

fr
eq

u
en

cy

(e) with constraints, final fitness (local
optima)

0 5 10 15 20 25 30

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

walk length

fr
eq

u
en

cy

(f) with constraints, lengths
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