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ABSTRACT
We propose a computational framework for the self-
generation of components used by an Ant Colony Optimiza-
tion algorithm. The approach relies on Strongly Typed Ge-
netic Programming to automatically seek for effective up-
date pheromone strategies. Best evolved strategies are then
inserted in an Ant Colony Algorithm used to find good qual-
ity solutions for the Quadratic Assignment Problem. Results
reveal that evolved update rules are competitive with human
designed variants and can be effectively reused on different
instances of the same problem. Moreover, we investigate the
possibility of evolving general strategies that can be used
across different optimization problems.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program modification, Program synthesis

General Terms
Algorithms, Design

Keywords
Self-Ant systems, pheromone update methods, self-generation

1. INTRODUCTION
Ant colony optimization (ACO) algorithms are a powerful

metaheuristic for global optimization. They were originally
proposed by Marco Dorigo and, as its name suggests, explore
the search space in a way loosely inspired by pheromone-
based strategies of ant foraging [1]. In simple terms, a set
of agents (i.e., ants) iteratively build solutions for a given
problem. Construction is guided by static problem-specific
information and by dynamic feedback from promising solu-
tions already discovered. Feedback is modeled as pheromone
information that ants deposit on components used to create
a solution. The amount of pheromone on each component is
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modified during the run and is proportional to the quality
of the solutions in which it appears. This procedure imple-
ments a mechanism for indirect communication and allows
ants to cooperatively solve a problem. Actually, there are
several variants of ACO algorithms with differences, e.g., in
the way pheromone levels are updated throughout the opti-
mization. Adjusting the key components of an ACO algo-
rithm may allow its application to new situations and/or en-
hance its effectiveness on problems that it usually addresses
[2]. However, performing the right modifications is far from
trivial and requires a deep understanding of both the algo-
rithm’s behavior and the properties of the problem to solve.

In this paper we propose and analyze a computational
model that implements the automatic programming of ACO
components. Research described here is a step towards the
development of a Self-Ant System that is able to generate
on-the-fly effective ACO frameworks to specific problems.
This will remove the need to carry out cumbersome manual
adaptations of algorithms and contribute to the appearance
of more robust ACO architectures. In concrete, we describe
an automated process to generate pheromone update strate-
gies. This process can be modeled as a search problem,
where one aims to discover a plan of action for a key step
of a global optimization algorithm. Genetic programming
(GP) [3] is adopted as the search method and it will seek
for promising update strategies that can be used by an ACO
algorithm when solving an optimization problem. There are
two key issues to address when developing this type of com-
putational prototype. First, one must select the composition
of the function and terminal sets granted to the GP algo-
rithm. This choice defines the primitives that can be used,
which, in turn, help to induce a bias on the kind of update
strategies that can be generated. Also, the existence of spe-
cific basic components may allow a proper tuning of some
control parameters (e.g., the evaporation rate). The evalua-
tion of individuals generated by the GP algorithm is another
crucial step, as it must reflect how well the encoded strat-
egy helps to enhance the effectiveness of ACO algorithms.
In our approach, the fitness assignment is accomplished by
inserting the update rule in an ACO method and verifying
how it behaves in a specific optimization situation.

The framework studied in this paper was proposed in a
recent work [4]. There, a strongly-typed GP variant (STGP)
was applied to evolve pheromone update rules that helped
ACO algorithms to discover good solutions for the Travel-
ing Salesman Problem (TSP). Results obtained showed that
the evolved strategies outperformed Max-Min Ant System
(MMAS), which is one of the most competitive ACO algo-
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rithms [5, 1]. Here we will apply the computational proto-
type to the Quadratic Assignment Problem (QAP), another
optimization problem for which ACO algorithms are consid-
ered state-of-the-art methods [1]. Our research study has
two main goals: first, we aim to verify if STGP is also able
to evolve effective update strategies for the QAP, thereby
gaining confidence that the proposed framework can be ap-
plied to different problems. However, our foremost goal is
to investigate the reusability of generated strategies. When
dealing with a single problem, we will provide evidence that
an update rule evolved for a single QAP instance maintains
its effectiveness when applied to other instances. Finally, we
study inter-problem generalization, where strategies gener-
ated for a specific situation are applied in the optimization
of a different problem. Analysis of the results helps to gain
insight on how evolved strategies can be reused on a different
optimization situation.

The paper is structured as follows: in section 2 we present
a general description of ACO algorithms. Section 3 com-
prises a detailed presentation of the system used to evolve
pheromone update strategies. Section 4 contains the exper-
imentation and analysis. Finally, in section 5 we summarize
the conclusions and highlight directions for future work.

2. ACO ALGORITHMS
The first ACO algorithm, Ant System (AS), was conceived

to find the shortest path for the well-known TSP, but soon
it was applied to several different types of combinatorial
optimization problems, such as the QAP or routing situ-
ations [1]. To apply an ACO algorithm to a given problem,
one must first define the solution components. A connected
graph is then created by associating each component with
a vertex and by creating edges to link vertices. Ants build
solutions by starting at a random vertex and iteratively se-
lecting edges to add new components. From a specific ver-
tex, ants make a probabilistic choice of the new edge to
cross. The probability of choosing an edge depends on static
heuristic information and the pheromone level of that spe-
cific path. Higher pheromone levels signal components that
tend to appear in the best solutions already found by the
colony. After completing a solution, ants provide feedback
by depositing pheromone in the edges they just crossed. The
amount of pheromone is proportional to the quality of the
solution. To avoid premature convergence, pheromone trail
levels are periodically decreased by a certain factor. Follow-
ing these simple rules until a termination criterion is met,
a solution to the problem will emerge from the interaction
and cooperation made by the ants.

MMAS is an ACO variant proposed by Stützle and Hoos
[5]. It focuses on the exploitation of recent search history
since only the best ant is allowed to update the pheromone
trail according to the following rule:

τij(t+ 1) = ρ× τij(t) +
1

f(sbest)
(1)

where τij is the pheromone level on edge joining solution
components i and j, ρ is the evaporation rate and f(sbest)
is the cost of the solution of the best ant. The selected ant
might be the one that found the best solution in the current
iteration or the one that found the best solution since the
beginning of the run. Additionally, MMAS has a mechanism
to limit the range of possible pheromone trail levels and it

may perform a restart when no improvement is seen in a
given number of iterations.

3. EVOLVING PHEROMONE TRAILS
UPDATE STRATEGIES

The framework we use to evolve pheromone update strate-
gies was proposed in [4]. It contains two components: a
STGP engine and an AS algorithm. The main task of GP
is to generate individuals that encode effective trail update
strategies, i.e., it aims to evolve a rule that replaces equa-
tion 1. It starts with a population of random strategies and
iteratively seeks for enhanced solutions. The job of the AS
algorithm is to assign fitness to each solution generated by
GP: whenever an evolved pheromone update strategy needs
to be evaluated, GP executes the AS algorithm to solve a
given QAP instance (using the encoded strategy as the up-
date policy). The result of the optimization is assigned as
the fitness value of that individual.

3.1 Strongly Typed GP Engine
The GP engine adopts a standard architecture: individ-

uals are encoded as trees and ramped half-and-half initial-
ization is used for creating the initial population. The al-
gorithm follows a steady-state model, tournament selection
chooses parents and standard genetic operators for manip-
ulating trees are used to generate descendants. STGP is
a variant of GP that enforces data type constraints in the
evolved programs [6]. In STGP, each terminal has an as-
signed type and every function has a return type and a spec-
ified type for each of its arguments. Restrictions enforced by
STGP provide an advantage over standard GP when deal-
ing with situations that consider multiples data types [7, 4].
This is what happens with the problem addressed in this
paper, as the GP algorithm must deal with, e.g., numeric
values or sets of ants. We adopt the strong typing princi-
ple and hence assure that GP only generates trees satisfying
type constraints. For details about the initialization proce-
dure and the application of genetic operators, consult [6].

The definition of the function and terminal sets used by
STGP is a key decision, since they determine which compo-
nents can be used in the design of strategies. We keep the
definition of the sets as simple as possible and consider two
different, although similar, possibilities. The first proposal,
identified as set 1, contains the following components:

• (prog2 p1 p2) and (prog3 p1 p2 p3): Sequential exe-
cution of two or three functions/terminals. The last
result is returned; all types are generic.

• (evaporate rate): Standard evaporation formula with
a given rate. The rate is of type real and the return
type is generic.

• (deposit ants amount): ants deposit a given amount of
pheromone (type integer). The parameter ants can be
an array of ants or a single one (type ant). The return
type is generic.

• (rank number): This function sorts the ants by de-
creasing quality and returns an array (type ant) of size
number (type integer) with the best ants.

• (best-ant), (rho): Return respectively the best ant found
so far (type ant) or a fixed evaporation rate (type real).
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Figure 1: An example of a strategy evolved by our
STGP system. It performs three evaporation ac-
tions interleaved with different deposit actions.

• (integer) and (real): Ephemeral constants.

The second proposal (set 2) is obtained from set 1 just by
making a simple modification. The function rank is trans-
formed into a terminal that always returns the 10% best
ants. The second set simplifies the task of obtaining a sub-
set of promising ants, as this information is readily available
in a terminal. The first set must compose an appropriate
subset of blocks to obtain this knowledge, but it has the
ability to deal with subsets of different sizes. Differences in
the performance of both sets, in what concerns the ability
to generate successful strategies, will help us to gain insight
into the key building blocks that must be granted to the
GP. The components available in both sets allow the de-
velopment of update strategies similar to those existing in
current ACO variants, such as the AS, Elitist AS or MMAS.
The analysis of experimental results will help to understand
if the GP evolution converges to existing designs and param-
eterizations or, on the contrary, generates new and improved
strategies for pheromone update.

In Figure 1 we can observe an example of an evolved
strategy (using set 2) for the TSP from [4]. The encoded
plan is different from existing human designs, but it is easy
to understand. In the beginning, the 10% best ants de-
posit pheromone to reinforce their paths and afterwards a
standard amount of pheromone is removed from the matrix.
Then, the last actions of the strategy induce a very greedy
behavior by promoting two large deposits of pheromone in
promising trails, interleaved with light evaporations.

3.2 Related Work
There are several efforts for granting bio-inspired ap-

proaches the ability to self adapt their strategies. On-the-fly
adaptation may occur just on the parameter settings or be
extended to the algorithmic components. One pioneer ex-
ample of self-adaptation is the well-known 1/5 success rule
used to control the mutation strength for the (1+1)-ES.

Hyper-heuristics [8, 9] and multimeme strategies [10] deal
with the development of the best combination of meth-
ods for a given optimization problem. The concept of
hyper-heuristics identifies a framework composed by a search
methodology that seeks for a combination of specific heuris-
tics that can be successfully applied to a given problem [9].
The suitability of adopting GP as the meta search method
inside a hyper-heuristic framework is discussed in [11], to-
gether with a comprehensive review of existing approaches.

As for multimeme strategies, they consist of memetic algo-
rithms that learn on-the-fly which local search component
should be used. Diosan and Oltean recently proposed an-
other interesting approach for the automatic adaptation of
an optimization algorithm [12]. In their work, an evolu-
tionary framework is used to generate a full-featured Evolu-
tionary Algorithm (EA), which is then applied to numerical
function optimization.

As for the Swarm Intelligence area, there are some re-
ports describing the self-adaptation of parameter settings
(see, e.g., [2, 13]). Additionally, a couple of approaches re-
semble the framework proposed in this paper. Poli et. al [14]
use GP to evolve the equation that controls particle move-
ment in Particle Swarm Optimization (PSO). Diosan and
Oltean also did some work with PSO structures [15]. Fi-
nally, Runka [16] applies GP to evolve the probabilistic rule
used by an ACO variant to select the solution components
in the construction phase.

4. EXPERIMENTS AND ANALYSIS
In this section we focus our attention on the generalization

ability of the computational framework. There is evidence
from previous works that competitive update strategies can
be evolved for the TSP (see [7, 4]). Here, we present a set
of results obtained with the Quadratic Assignment Problem
(QAP), which will enable us to verify if the approach can
be applied to a different optimization problem. Moreover,
we investigate how strategies evolved for a specific scenario
generalize to a different optimization situation.

4.1 Problem Description
Many real-world optimization problems, e.g., scheduling

and layout, can be formulated as QAPs. It is a NP-Hard
problem and it is considered one of the hardest optimization
problems since instances with size n ≥ 25 cannot be exactly
solved [17]. ACO algorithms are considered state-of-the-art
optimization methods for this problem [1, 17].

The QAP can be described as the problem of assigning
a set of facilities to a set of locations with given distances
between the locations and given flows between the facilities.
The goal is to assign facilities to locations, such that the sum
of the products between flows and distances is minimized.
Formally, given n facilities and n locations, two nxn matri-
ces A = (aij) and B = (brs), where aij is the flow between
facilities i and j and brs is the distance between locations r
and s, one aims to minimize the following expression :

minφ∈Φ(n)

n∑
i=1

n∑
j=1

aijbφiφj (2)

where Φ(n) is the set of all assignments permutations of the
integer set {1, . . . , n}, and φi gives the location of unit i in
the current solution.

4.2 Evolution of the Update Strategies
In the first set of experiments we aim to confirm the ability

of STGP to discover update strategies for the QAP. A single
instance is used to assign fitness to solutions generated by
the GP algorithm. We present results from experiments
performed with the two sets presented in section 3.1 and
using QAP training instances of different size, to study how
these choices affect performance. Six training instances from
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Figure 2: Evolution plots, on the nug20 instance, with the 2 sets with generations on the x axis and fitness
values on the y axis. Panels: a) Mean Best Fitness; b) Population Fitness; c) Tree Depth; d) Nodes count.

Table 1: Results from GP evolution for 30 runs with
25 generations in six QAP instances.

Instances Set Best Dist MBF Dev Depth Nodes

nug12 1 578.00 0.0 593.17 17.58 4.13 12.77
(578) 2 578.00 0.0 595.97 13.50 4.00 11.67
nug14 1 1028.00 1.4 1075.53 28.55 4.33 12.47
(1014) 2 1024.00 1.0 1100.07 41.12 3.37 9.43
nug15 1 1152.00 0.2 1204.40 42.10 4.20 12.80
(1150) 2 1166.00 1.4 1210.03 44.20 4.10 11.43
nug17 1 1840.00 6.3 1910.00 66.63 4.33 12.30
(1732) 2 1839.33 6.2 1912.76 60.82 3.80 10.90
nug18 1 2024.00 4.9 2107.67 49.27 4.83 15.63
(1930) 2 2054.00 6.4 2138.33 69.10 4.00 11.33
nug20 1 2696.00 4.9 2773.10 52.64 4.47 13.50
(2570) 2 2696.00 4.9 2780.91 92.55 4.07 12.67

the Nugent dataset of QAPLIB1 were selected, with sizes
n = 12, 14, 15, 17, 18, 20. For all tests, the GP settings are:
Number of runs: 30; Number of generations: 25; Population
size: 100; Initial tree depth: 2; Maximum tree depth: 5;
Crossover rate: 0.9; Mutation rate: 0.05; Tourney size: 3.
For the AS algorithm used to evaluate GP individuals we
adopt the standard parameters found in the literature [1]:
number of ants is the problem size, α = 1, β = 2, ρ =
0.5. Our goal in this paper is to focus on the influence
of pheromone update methods and not on the whole AS
architecture. Therefore, we do not address the issue of using
Local Search.

The main reason for choosing moderate size instances is
that the evaluation of each strategy generated by GP re-
quires the execution of an AS algorithm which can be com-
putationally expensive. Two parameters define the opti-
mization effort of the AS: the number of runs and the num-
ber of iterations per run. If we grant the AS a small op-
timization period to evaluate an STGP individual, then it
might not be enough to correctly estimate the quality of an
update strategy. However, a longer evaluation period can
increase computational costs to insupportable levels. Pre-
liminary experiments allowed us to conclude that a single
AS run with 1000 iterations is enough to evaluate a GP in-
dividual. The fitness value sent back to the GP engine is
given by the 15% best solutions found by the ants in the AS
(consult [7] for a discussion of other evaluation configura-
tions).

Table 1 contains the results of the STGP evolution. The
first two columns identify, respectively, the instance and the
component set used in the tests. The value in brackets below

1http://www.opt.math.tu-graz.ac.at/qaplib/

each instance name is the corresponding optimal solution.
Column Best displays the best solution found by STGP,
whereas column MBF is the Mean Best Fitness, i.e., the
mean of the best solutions found in the 30 runs. Columns
Dist and Dev contain the distance of the best solution to
the optimum and the standard deviation of the MBF. The
last two columns (Depth and Nodes) show the mean depth
and the mean number of nodes of the best solutions.

An overview of the results reveals that, for n = 12, 14, 15,
the system discovers individuals that help the AS algorithm
to find solutions with fitness values close to the optimum.
Then, as the size of the instances increases, the performance
of STGP decreases. For n > 15, the distance to the opti-
mal solution is usually above 5% and the MFB standard
deviation is also higher. This is a result of the hardness
of the training instances. Although they are still moderate
size problems, the increase in difficulty is not linear. Also,
these results are probably amplified by the sharp experimen-
tal conditions (low number of generations performed by the
STGP and small maximum tree depth).

Despite the decrease in absolute performance, the plots
in Figure 2 clearly show the usefulness of the STGP explo-
ration. The panels in this figure summarize the evolutionary
behavior of the framework for the nug20 instance: panels a)
and b) display, for the two sets, the evolution of the MBF
and of the mean fitness of the population. A brief overview
confirms that the STGP engine is gradually discovering en-
hanced update strategies for the QAP. For completeness,
panels c) and d) display the evolution of the tree depth and
of the average number of nodes.

Results obtained are not fully conclusive in what concerns
the efficacy of the two component sets used in the experi-
ments. There is a slight trend for set 1 to obtain better
MBF values, but differences are small. Further experiments
are needed to confirm if allowing the GP to learn the ideal
proportion of ants for the rank function indeed leads to bet-
ter strategies. On any case, this trend contrasts with our
previous work with the TSP [4], where a fixed proportion
of high quality ants simplified the generation of effective
strategies. These results support the idea that the evolution
of problem specific pheromone update rules might allow the
discovery of more effective strategies.

4.3 Validation and Comparison with the
Max-Min Ant System

To confirm the effectiveness of the best evolved solutions
we describe a set of additional experiments. Specifically,
we aim to: i) verify if update strategies can be effectively
reused in QAP instances different from the one selected for
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Table 2: Comparison of the best STGP Trees with MMAS, with 10000 iterations for 30 runs.

Update nug12 nug14 nug15 nug17 nug18 nug20
Strategy Best MBF Best MBF Best MBF Best MBF Best MBF Best MBF

MMAS 590 611.2 1076 1095.60 1222 1265.80 1884 1922.33 2118 2154.13 2846 2904.13
Tree 12124 578 597.00 1028 1052.80 1166 1197.33 1782 1838.13 1968 2049.20 2680 2751.60

(imp %) 2.03 2.32 4.46 3.91 4.58 5.41 5.41 4.38 7.08 4.87 5.83 5.25
Tree 12214 586 599.20 1036 1074.00 1190 1213.13 1836 1865.67 2066 2092.33 2738 2806.20

(imp %) 0.68 1.96 3.72 1.97 2.62 4.16 2.55 2.95 2.46 2.87 3.79 3.37
Tree 14123 578 595.20 1028 1063.80 1186 1220.87 1836 1873.00 2020 2098.07 2732 2822.67

(imp %) 2.03 2.62 4.46 2.90 2.95 3.55 2.55 2.57 4.63 2.60 4.01 2.81
Tree 14223 586 609.13 1064 1090.87 1186 1221.00 1794 1858.00 2034 2087.53 2754 2815.40

(imp %) 0.68 0.34 1.12 0.43 2.95 3.54 4.78 3.35 3.97 3.09 3.23 3.06
Tree 15111 582 606.53 1056 1091.13 1202 1248.07 1854 1912.87 2102 2134.13 2748 2871.87

(imp %) 1.36 0.76 1.86 0.41 1.64 1.40 1.59 0.49 0.76 0.93 3.44 1.11
Tree 15221 578 595.80 1018 1069.20 1150 1191.67 1752 1830.87 2012 2059.20 2656 2755.40

(imp %) 2.03 2.52 5.39 2.41 5.89 5.86 7.01 4.76 5.00 4.41 6.68 5.12
Tree 17108 578 595.47 1028 1061.13 1164 1202.67 1814 1863.93 2046 2089.73 2748 2813.80

(imp %) 2.03 2.60 4.65 4.56 4.58 5.51 6.37 4.72 5.85 4.21 6.04 4.94
Tree 17225 578 597.60 1032 1071.27 1170 1220.33 1834 1878.40 2032 2096.73 2734 2815.80

(imp %) 2.03 2.23 4.09 2.22 4.26 3.59 2.65 2.29 4.06 2.66 3.94 3.04
Tree 18124 578 595.33 1026 1045.67 1166 1196.00 1764 1831.53 1994 2063.47 2674 2760.60

(imp %) 2.03 2.60 4.65 4.56 4.58 5.51 6.37 4.72 5.85 4.21 6.04 4.94
Tree 18211 578 597.93 1022 1061.67 1184 1222.13 1806 1857.60 1996 2070.67 2714 2786.47

(imp %) 2.03 2.17 5.02 3.10 3.11 3.45 4.14 3.37 5.76 3.87 4.64 4.05
Tree 20128 586 596.40 1020 1046.00 1160 1195.07 1768 1825.60 1986 2055.47 2692 2751.73

(imp %) 0.68 2.42 5.20 4.53 5.07 5.59 6.16 5.03 6.23 4.58 5.41 5.25
Tree 20209 578 598.47 1040 1078.47 1220 1247.33 1832 1885.33 2028 2115.60 2736 2836.80

(imp %) 2.03 2.08 3.35 1.56 0.16 1.46 2.76 1.92 4.25 1.79 3.87 2.32

QAP Trees Avg 580.33 598.67 1033.17 1067.17 1178.67 1214.63 1806.00 1860.08 2023.67 2084.34 2717.17 2799.03
(imp %) 1.64 2.05 4.00 2.71 3.53 4.09 4.36 3.38 4.66 3.34 4.74 3.77
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Figure 3: Evolution of MBF and branching factor for the STGP trees and MMAS for 10000 iterations (x
axis) on the nug20 instance. Plots are representative for all instances.

training; ii) assess the absolute optimization performance of
evolved strategies, by comparing them with MMAS.

To focus our analysis, 12 trees were selected: the best tree
for each set and training instance combination. Trees are
identified with a numerical ID: the first two digits refer to
the QAP training instance and the third identifies the com-
ponent set used. The final digits indicate the run in which
the tree was discovered. To allow for a fair comparison, all
experiments presented in this section were performed in a
MMAS environment. Therefore, evolved strategies were run
in conjunction with a restart mechanism and a lower-upper
bound update of the pheromone limits. Since the training
process did not use these mechanisms, this is an additional
robustness test for the evolved strategies. The settings used
before are maintained, with just two exceptions: ρ is set to
0.02 (the recommended value for MMAS) and the number
of iterations is increased to 10000 to allow for a fair opti-
mization period.

Table 2 contains the results (Best solution found and MBF)

obtained by the 12 selected update strategies on all the QAP
instances. The first line contains the results obtained by the
standard MMAS variant. Then, every pair of rows displays
the outcomes of the selected trees. For a better understand-
ing of the results, each update strategy contains a row (imp
%) identifying the percentage of improvement over MMAS.
A positive value indicates that the evolved strategy performs
better and a negative value otherwise. For completeness, the
last two rows of the table exhibit average values of all the
evolved strategies.

In general, results show that evolved strategies perform
well across the instances and, thus, are able to generalize.
This is an important conclusion, as it confirms that strate-
gies trained on a specific situation can be reused on different
instances of the same problem. Another significant observa-
tion is that every single evolved strategy, in every instance,
outperforms the human developed strategy, MMAS, in terms
of best solutions found and MBF. On average, the improve-
ments obtained by the evolved strategies range from 2.05%
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Table 3: STGP Trees evolved for the TSP applied in the QAP instances, with 10000 iterations for 30 runs.

Update nug12 nug14 nug15 nug17 nug18 nug20
Strategy Best MBF Best MBF Best MBF Best MBF Best MBF Best MBF

MMAS 590 611.2 1076 1095.60 1222 1265.80 1884 1922.33 2118 2154.13 2846 2904.13
Tree 222 586 601.67 1024 1079.73 1182 1232.93 1838 1885.93 2044 2114.27 2788 2851.07
(imp %) 0.68 1.56 4.83 1.45 3.27 2.60 2.44 1.89 3.49 1.85 2.04 1.83
Tree 224 578 603.67 1056 1074.00 1182 1229.80 1816 1881.60 2054 2100.87 2782 2824.00
(imp %) 2.03 1.23 1.86 1.97 3.27 2.84 3.61 2.12 3.02 2.47 2.25 2.76
Tree 226 598 611.13 1048 1083.53 1222 1247.80 1852 1894.87 2068 2115.80 2786 2852.87
(imp %) -1.36 0.01 2.60 1.10 0.00 1.42 1.70 1.43 2.36 1.78 2.11 1.77
Tree 230 586 603.73 1056 1079.33 1210 1238.80 1830 1879.93 2072 2107.67 2804 2839.07
(imp %) 0.68 1.22 1.86 1.48 0.98 2.13 2.87 2.21 2.17 2.16 1.48 2.24
Tree 31 578 598.40 1034 1067.80 1182 1238.87 1842 1892.73 2058 2121.00 2794 2850.20
(imp %) 2.03 2.09 3.90 2.54 3.27 2.13 2.23 1.54 2.83 1.54 1.83 1.86
Tree 321 578 600.60 1046 1079.93 1198 1254.20 1864 1906.47 2090 2131.80 2746 2864.60
(imp %) 2.03 1.73 2.79 1.43 1.96 0.92 1.06 0.83 1.32 1.04 3.51 1.36
Tree 326 586 607.53 1024 1057.40 1176 1213.47 1836 1880.60 2056 2109.20 2748 2839.47
(imp %) 0.68 0.60 4.83 3.49 3.76 4.13 2.55 2.17 2.93 2.09 3.44 2.23
Tree 327 578 609.20 1044 1071.20 1166 1223.93 1844 1881.00 2080 2114.93 2764 2823.60
(imp %) 2.03 0.33 2.97 2.23 4.58 3.31 2.12 2.15 1.79 1.82 2.88 2.77
Tree 329 582 597.07 1022 1058.60 1194 1241.93 1830 1889.80 2066 2125.27 2786 2856.80
(imp %) 1.36 2.31 5.02 3.38 2.29 1.89 2.87 1.69 2.46 1.34 2.11 1.63
Tree 330 578 598.73 1034 1060.13 1214 1253.13 1838 1904.33 2006 2124.07 2744 2849.00
(imp %) 2.03 2.04 3.90 3.24 0.65 1.00 2.44 0.94 5.29 1.40 3.58 1.90

TSP Trees Avg 582.8 603.17 1038.8 1071.17 1192.6 1237.49 1839 1889.73 2059.4 2116.49 2774.2 2845.07
(imp %) 1.22 1.31 3.46 2.23 2.41 2.24 2.39 1.70 2.77 1.75 2.52 2.03

QAP Trees Avg 580.33 598.67 1033.17 1067.17 1178.67 1214.63 1806.00 1860.08 2023.67 2084.34 2717.17 2799.03
(imp %) 1.64 2.05 4.00 2.71 3.53 4.09 4.36 3.38 4.66 3.34 4.74 3.77

to 4.09% for MBF, and from 1.64% to 4.74% in terms of
best solutions found. These values increase when we look
at the best results obtained by the best trees (bold values).
For example, in instances nug17 and nug18, the improve-
ment rate for the best solution is around 7%. Overall, trees
evolved with set 1 tend to obtain better results than trees
generated with set 2, thereby confirming our previous find-
ing. Anyway, differences in performance are minimal and
further research is mandatory to clarify this issue.

Figure 3 displays the optimization behavior of the strate-
gies studied in this section. Results were obtained with
nug20, but the same trend is visible for other instances.
Panel a) shows the evolution of the MBF for the 12 trees
and for standard MMAS (the black straight line). In general,
the plot lines from the evolved strategies exhibit a steady de-
crease in the MBF until the end of the run. As for MMAS,
it is already the worst strategy in iteration 10 and it shows
signs of stagnation around iteration 1000.

The evolution of the branching factor (with λ = 0.05), a
measure to determine the convergence of the pheromone ma-
trix, is shown in panel b). Some strategies follow the pattern
of standard MMAS, exhibiting initial low diversity, followed
by a peak and subsequent stabilization. On the contrary, a
few other trees show different behaviors, either maintaining
a high diversity level throughout the run or never being able
to raise the branching factor. The impact of restarts is also
evident in some of the strategies, while for others is not so
visible.

4.4 Cross-problem Validation
Results presented in the previous section and in [4] con-

firm that the proposed framework is able to evolve update
strategies for specific problems, which are competitive with
state-of-the-art ACO variants. It is, however, important to
investigate if strategies evolved for a given scenario can be
reused in a different problem. In concrete, we will verify how

update rules evolved for the TSP behave with the QAP and
how strategies generated for the QAP perform on the TSP.

This cross-problem validation raises interesting research
questions. The most relevant is to assess the ability of STGP
to generate strategies that, despite being evolved in a specific
environment, generalize well to other situations. We already
provided evidence of reusability for other instances of the
same problem, but tests described in this section deal with
a more general framework. The outcomes of the experiments
will also help to gain insight into the structural similarity of
strategies evolved for different problems. The STGP engine
used the same basic components to build update rules for
the TSP and QAP. Cross testing will unravel the eventual
existence of problem-specific arrangements that maximize
adaptability to a given situation.

We start to answer these questions by selecting the best
10 trees evolved for the TSP [4] and apply them to the QAP.
We maintain the same experimental conditions adopted in
the previous sections to allow for a fair comparison. Table
3 contains the results obtained by these 10 trees in the 6
QAP instances. For easiness of comparison, we repeat the
outcomes obtained by MMAS and the average results of the
best trees specifically evolved for the QAP (last line). Two
noteworthy conclusions can be gathered from the informa-
tion contained in table 3. Strategies evolved for the TSP are
competitive with MMAS when solving QAP instances. With
just a few exceptions, results are better than those achieved
by this ACO variant: the average improvement rate for the
best solutions ranges from 1.22% to 3.46% with a mean of
2.46%, whereas for the MBF, the improvement rate averages
1.88%, within an interval from 1.31% to 2.24%.

The second important conclusion is that strategies specifi-
cally generated for the QAP obtain better results than those
achieved by trees evolved in a TSP environment. A brief pe-
rusal of the last rows containing the average results of both
sets of trees reveals that evolved QAP strategies achieve
higher improvements over MMAS in every single instance
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Table 4: STGP Trees evolved with the QAP applied in the TSP instances, with 10000 iterations for 30 runs.

Update eil51 kroA100 d198 lin318 pcb442
Strategy Best MBF Best MBF Best MBF Best MBF Best MBF

MMAS 426 427.23 21431 21553.97 16141 16276.23 45243 45912.77 58211 60009.20
Tree 12124 426 429.27 21442 22189.83 16403 17509.07 45142 48867.87 63007 67206.63

(imp %) 0.00 -0.48 -0.05 -2.95 -1.62 -7.57 0.22 -6.44 -8.24 -11.99
Tree 12214 426 427.73 21427 22106.23 16896 17136.30 47031 48094.63 61048 62191.30

(imp %) 0.00 -0.12 0.02 -2.56 -4.68 -5.28 -3.95 -4.75 -4.87 -3.64
Tree 14123 426 426.83 21518 21882.20 16914 17566.63 47897 52714.93 60641 62698.80

(imp %) 0.00 0.09 -0.41 -1.52 -4.79 -7.93 -5.87 -14.82 -5.86 -5.18
Tree 14223 426 428.13 21491 21838.17 16824 17132.57 47191 48618.37 61621 63117.83

(imp %) 0.00 -0.21 -0.28 -1.32 -4.23 -5.26 -4.31 -5.89 -5.86 -5.18
Tree 15111 430 450.77 22439 23645.17 17032 17710.63 49019 51739.43 58023 61973.27

(imp %) -0.94 -5.51 -4.70 -9.70 -5.52 -8.81 -8.35 -12.69 0.32 -3.27
Tree 15221 426 427.17 21479 21827.17 16765 17064.97 43578 48126.67 60950 62874.13

(imp %) 0.00 0.02 -0.22 -1.27 -3.87 -4.85 3.68 -4.82 -4.71 -4.77
Tree 17108 426 427.73 21585 21997.83 16955 17709.50 48697 51714.73 59013 61385.43

(imp %) 0.00 -0.12 -0.72 -2.06 -5.04 -8.81 -7.63 -12.64 -1.38 -2.29
Tree 17225 426 426.77 21460 21890.47 16338 16993.60 45619 47279.63 56208 63159.17

(imp %) 0.00 0.11 -0.14 -1.56 -1.22 -4.41 -0.83 -2.98 3.44 -5.25
Tree 18124 427 430.00 21483 22112.33 16714 17528.17 44909 51534.40 65137 67115.70

(imp %) -0.23 -0.65 -0.24 -2.59 -3.55 -7.69 0.74 -12.24 -11.90 -11.84
Tree 18211 426 426.90 21429 21706.37 16972 17219.90 44779 48871.10 60974 62540.77

(imp %) 0.00 0.08 0.01 -0.71 -5.15 -5.80 1.03 -6.44 -4.75 -4.22
Tree 20128 426 429.53 21332 21879.20 16837 17235.90 46974 49304.60 55507 59191.97

(imp %) 0.00 -0.54 0.46 -1.51 -4.31 -5.90 -3.83 -7.39 4.65 1.36
Tree 20209 426 426.80 21566 21895.40 16815 17133.07 44332 47079.63 61436 63579.80

(imp %) 0.00 0.10 -0.63 -1.58 -4.18 -5.26 2.01 -2.54 -5.54 -5.95

QAP Trees Avg 426.42 429.80 21554.25 22080.86 16788.75 17328.36 46264.00 49495.50 60378.75 63121.15
(imp %) -0.10 -0.60 -0.58 -2.44 -4.01 -6.46 -2.26 -7.80 -3.72 -5.19

TSP Trees Avg 426.00 428.48 21282.00 21368.97 15985.60 16110.34 42516.10 43000.90 54104.60 55079.25
(imp %) 0.00 -0.29 0.70 0.86 0.96 1.02 6.03 6.34 7.05 8.22

(both for the best solutions found and the MBF). A detailed
analysis of the best results in tables 2 and 3 leads to the same
conclusion. This result confirms that the framework evolves
strategies that are specific to the training optimization sit-
uation. There are, nevertheless, signs that the evolved solu-
tions can be reasonably generalized to other problems.

In the reverse experiment, the 12 best trees evolved for the
QAP are applied to the TSP. The five instances from the
TSPLIB2, used in [4], are selected to assess the optimiza-
tion performance of the evolved methods: eil51, kroA100,
d198, lin318 and pcb442. Results are presented in Table 4.
Once again, we include the outcomes from MMAS and the
average results of the best trees specifically evolved for the
TSP (taken from the above mentioned reference). A quick
overview of the table immediately reveals that QAP trees
are not successful in the TSP, as average results are always
worse than those obtained by MMAS (see line QAP Trees
Avg). This outcome contrasts with the performance of trees
specifically generated for the TSP. As it can be confirmed in
the last row of the table, evolved strategies clearly outper-
form MMAS (for more details consult [4]). In short, trees
evolved for the TSP perform reasonably well in the QAP,
while strategies trained with QAP obtain poor results with
the TSP. It is important to notice that the study is limited
just to two problems and it is, therefore, impossible to infer
definite judgements. Anyway, it is safe to conclude that the
training scenario creates a strong bias on the structure and
applicability of the evolved strategies. An inspection of the
best trees evolved for the TSP and the QAP reveals that
they have a different composition. Effective strategies for
the TSP usually contain a sequence of rank functions, each
one combined with a specific deposit action performed by a

2http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

subset of high quality ants. On the contrary, strategies for
the QAP tend to rely on the best ant, i.e., many deposits
are made just by the best ant. If we calculate the ratio of
the appearance of rank functions over best ant terminals in
evolved strategies, the distinction is clear: this value is 4.33
on trees evolved for the TSP, whereas it drops to 1.07 for
the QAP trees. The evolutionary process discovered strate-
gies specific for a given problem, providing no assurance that
they can be effectively applied to distinct optimization sce-
narios. Given the training environment proposed, this is the
desired outcome. Our future research will address what are
the minimal conditions that might allow the development of
strategies that can be applied to different problems.

4.5 Scalability
Until this point, the evolved strategies were only tested in

small and moderate QAP instances (n ≤ 20). The scalabil-
ity of the rules discovered by STGP is an important issue and
we will present a final set of experiments where they are ap-
plied to larger (and harder) QAP instances. This goal is ac-
complished by selecting six instances from the Skorin-Kapov
dataset (also available at the QAPLIB), with n = 100. Due
to space reasons, in table 5 we present the outcomes ob-
tained only with 4 trees, but the same trend is visible for
other strategies: two of the trees were trained with the TSP
(Ids 224 and 329) and the other two were evolved with QAP
(Ids 15221 and 18124). Clearly, evolved strategies achieve
competitive results, as they outperform MMAS in all 6 in-
stances selected. Anyway, it is important to notice that the
improvement rate is small. The mean improvement for the
best solution is 0.63% and for the MBF is 0.74%. A closer
look to the results reveals that TSP trees generalize well to
large QAP instances and confirm that strategies specifically
trained for QAP tend to obtain better results.
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Table 5: Results with the best trees and MMAS in the 100 size instances, with 10000 iterations for 30 runs.

Update sko100a sko100b sko100c sko100d sko100e sko100f
Strategy Best MBF Best MBF Best MBF Best MBF Best MBF Best MBF

MMAS 171290 171976.60 173266 173911.27 167306 168232.27 168106 169377.60 168992 169765.86 167426 168398.86
Tree 224 169892 170872.14 172128 171280.00 166184 167133.86 167750 168256.60 168244 168716.47 166464 167290.33
(imp %) 0.82 0.64 0.66 1.51 0.67 0.65 0.21 0.66 0.44 0.62 0.57 0.66
Tree 329 169998 171192.27 172634 172046.00 166756 167364.00 168030 168553.33 168200 168922.94 167116 167649.47
(imp %) 0.75 0.46 0.36 1.07 0.33 0.52 0.05 0.49 0.47 0.50 0.19 0.45

Tree 15221 170068 170733.80 171280 172537.86 166198 166794.06 167144 168001.27 167616 168328.06 166324 166936.40
(imp %) 0.71 0.72 1.15 0.79 0.66 0.85 0.57 0.81 0.81 0.85 0.66 0.87

Tree 18124 169638 170649.40 172046 172628.86 165660 166903.14 166646 168069.80 167510 168477.86 166256 167060.94
(imp %) 0.96 0.77 0.70 0.74 0.98 0.79 0.87 0.77 0.88 0.76 0.70 0.79

Avg 169899.00 170861.90 172022.00 172123.18 166199.50 167048.77 167392.50 168220.25 167892.50 168611.33 166540.00 167234.29
(imp %) 0.81 0.65 0.72 1.03 0.66 0.70 0.42 0.68 0.65 0.68 0.53 0.69

5. CONCLUSIONS
We proposed a STGP framework to accomplish the auto-

matic evolution of update pheromone strategies, a key com-
ponent in the design of ACO algorithms. Results obtained
with the QAP confirm that evolved strategies are effective,
as they are competitive with state-of-the-art ACO variants.
The STGP algorithm relies on a single QAP instance of
moderate size to generate promising update rules. In any
case, experiments described in this paper clearly show that
strategies are robust and scalable, maintaining effectiveness
when reused in different instances. Moreover, and despite
the adoption of high level components that appear in exist-
ing ACO variants, evolution did not fully converge to stan-
dard methods and, instead, found novel designs in structure
and parameters.

An inspection of evolved trees reveals that its composition
is dependent on the training problem. The STGP framework
is successful in identifying important features of the problem
being addressed and generates tailored strategies for that
particular situation. This specificity prevents inter-problem
generalization and further research is needed to understand
the requirements that might allow the development of such
general strategies.

The study presented here raises several other questions
that we intend to address in the near future. Evolved strate-
gies tend to exhibit a greedy behavior, which might compro-
mise robustness and scalability. We intend to investigate if
changes in the training process (e.g., relying on several in-
stances) can contribute to alleviate this limitation. Also, we
aim to perform a detailed analysis that allows the identifica-
tion of a minimal component set required to evolve successful
update strategies for different optimization problems. These
are all important aspects and this paper is a step forward in
the effort of developing Self-Ant Systems.
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