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ABSTRACT
Invariants are concise and useful descriptions of a program’s
behaviour. As most programs are not annotated with in-
variants, previous research has attempted to automatically
generate them from source code. In this paper, we propose a
new approach to invariant generation using search. We reuse
the trace generation front-end of existing tool Daikon and
integrate it with genetic programming and a mutation test-
ing tool. We demonstrate that our system can find the same
invariants through search that Daikon produces via template
instantiation, and we also find useful invariants that Daikon
does not. We then present a method of ranking invariants
such that we can identify those that are most interesting,
through a novel application of program mutation.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering, and reengineering; I.2.8
[Problem Solving, Control Methods, and Search]:
Heuristic Methods

General Terms
Algorithms, Verification, Experimentation

Keywords
Invariants, Daikon, Genetic Programming,Mutation Testing

1. INTRODUCTION
Invariants are mathematical descriptions of a program’s

behaviour. They specify the state of a calculation at a spe-
cific point or set of points in a program. An example is given
in Algorithm 1, from [10, 14], where the process of summing
an array is described by a precondition, a postcondition and
a loop invariant. The program sums the contents of array
b into variable s. We consider pre- and post- conditions as
specific types of invariants.
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Algorithm 1 Array sum program

i,s := 0, 0;
do i 6= n→
i, s := i+ 1, s+ b[i]

od

Precondition: n ≥ 0
Postcondition: s =

∑n−1
j=0 b[j]

Loop invariant: 0 ≤ i ≤ n and s =
∑i−1

j=0 b[j]

Invariants provide information that may be used in many
types of program construction and analysis. For example, in
compiler optimisation, invariants support the application of
partial redundancy elimination [19]. Invariants are useful in
constructing or extending software in the paradigm of design
by contract [18]. They can be used in software testing, where
a tool may attempt to violate a given set of invariants.

Invariants are not always readily available: they must usu-
ally be specified manually at some point in the design pro-
cess, which is time-consuming, and most commercial soft-
ware is therefore not annotated by invariants. Thus, auto-
mated recovery of invariants from existing source code that
was developed without their explicit use deserves attention.

In this paper, we demonstrate a new method of generat-
ing invariants from source code. We compare our method to
the existing invariant generation tool Daikon, and then use
mutation testing to identify “interesting” invariants. Such
invariants are those that succinctly capture the intuition and
semantics behind a program. We find that these new appli-
cations of heuristic search and mutation testing are effective,
and suggest promising new lines of research.

1.1 Contributions
The main contributions of this paper are to present our

method of invariant recovery and to demonstrate that:

• Evolutionary search can be used to find program in-
variants such as those found by Daikon.
• Evolutionary search is able to consider a wider range

of invariants than template-based tools.
• Interesting invariants may be identified by combining

mutation testing with evolutionary search.

2. BACKGROUND
In this section, we describe the origins of program invari-

ants, the invariant tool Daikon, and give an overview of ge-
netic programming and mutation testing.
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2.1 Invariants
Invariants were originally devised as an aid to program

construction. By first specifying the pre- and post- condi-
tion of a procedure, several authors have argued the case for
systematic derivation of the program [8, 14]. In the 1990s
they were incorporated in object-oriented development [18].

Ernst et al. [11] assert that the presence of “explicit in-
variants can help programmers by characterising certain as-
pects of program execution and identifying program prop-
erties that must be preserved when modifying code”. They
give a small case study where programmers were presented
with invariants to aid them in modifying existing software.

2.2 Daikon
Daikon is an invariant detector [9, 10]. It generates invari-

ants based on execution traces, rather than through sym-
bolic execution or static analysis. It is divided between
a language-independent invariant detector and a language-
specific front-end that generates program traces [2].

Daikon uses a database of predefined templates, which are
instantiated to suggest invariants for the given trace data.
Templates are represented as Java classes; users may add
templates by creating a new class. For example, an invari-
ant checking a lower bound of a variable such as “x ≥ 0” is
represented by a single class, which we may extend to intro-
duce a new invariant “x ≥ 1”. Daikon will then consider all
instantiations of this invariant for a given method entry or
exit, by replacing x with each numeric variable in scope. To
make such an brute-force approach tractable, a maximum
of three variables can be involved in an invariant. Variables
used to instantiate these templates may actually be derived
from other variables, such as indexing an array, and there is
a limit to how “deeply” these derivations may proceed.

Each candidate invariant is tested against the data in the
program traces, consisting of state information at method
entry and exit points. By inserting extra method calls, loop
invariants can also be generated. The ability of Daikon to
find useful invariants depends upon the quality of the trace
data: if boundary cases are not covered then Daikon will be
unable to correctly specify partitions of a state space. This
limitation applies to any approach reliant upon test data.

The Daikon approach can be construed as a process of
brute force construction followed by data driven restriction.
Various heuristics have been applied to reduce the number
of invariants produced and to identify the most useful in-
variants to present to a programmer. A limitation of this
approach is that Daikon will only produce invariants that
correspond to instantiations of its templates. Thus there
may exist useful invariants that will not be found by Daikon.

2.3 Genetic Programming
Genetic programming (GP) [6, 16, 20] is a heuristic search

method that can be used to locate programs, formulae and
other expressions. It is an evolutionary algorithm, in that it
takes some inspiration from biology and maintains a popula-
tion of individual programs. Programs (or expressions) are
evaluated according to a fitness function, selected according
to their fitness values, and then recombined using operators
such as subtree exchange to create the next generation.

The most traditional form is tree-based genetic program-
ming, which is the type of GP used in this paper. Figure 1
gives an example of how we might represent the loop invari-
ant from Algorithm 1 in tree-based GP.
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Figure 1: An expression tree representing the loop
invariant from Algorithm 1

Many aspects of software engineering can be formulated as
a search problem [7]. Recently heuristic search methods such
as GP have been applied to program testing and analysis [22]
and manipulation of existing source code [13, 23]. Solutions
to such problems can be stated in an expression language,
and are often amenable to search.

Genetic programming can be used as an “invention ma-
chine”, in that it is relatively free of human assumptions
when searching for solutions. It has been used previously
for tasks that may be described as requiring insight, intu-
ition, and precisely the type of understanding involved in
manually creating invariants. The search space for the algo-
rithm is defined by the function set we have chosen, but the
search is free to find arbitrary invariants within that space.

2.4 Mutation Testing
Mutation testing [15] was devised as a method of measur-

ing the effectiveness of test data. Here we propose a very
different application of mutation testing, but it is instructive
to give a little background regarding its original purpose.

The principle behind mutation testing is that if a program
p is tested using test set T , then assuming that p is correct,
it should pass all the tests in T . However, if the program p is
mutated (a small syntactical change is applied) to produce
p′, then p′ should fail to pass the test set unless p and p′

are semantically equivalent. Through careful choice of mu-
tation operators, the purpose of mutation testing is to create
test sets that reflect program requirements and are specific
enough to fail when common programming errors are made.

Interestingly, one existing relationship between invariants
and mutation testing is the use of invariant generation to
eliminate semantic equivalents in order to improve the ef-
ficiency of mutation testing [21]. In this paper, we exploit
this relationship in the opposite direction: we use mutation
testing to improve the efficacy of invariant generation.

Many mutation toolkits exist for a variety of different pro-
gramming languages. The toolkits vary in terms of the mu-
tation operators employed, the level of abstraction at which
the mutation occurs and the testing framework used. µJava
[17] is a mutation tool for the Java language, and is the
toolkit used to generate mutants in this paper.

3. EVOLUTION OF INVARIANTS
We now provide an overview of the invariant generation

system that we have developed.
Rather than following Daikon’s method of brute force con-
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Figure 2: An overview of our method of invariant
construction

struction and data-driven restriction, we take a different
approach and use GP to construct candidate invariants in
the form of expression trees. The tree representation uses
program variables and constants as the leaves of the tree,
whereas non-leaf nodes are chosen from a set of building
blocks provided to combine variables and constants into in-
variants. A building block may be a simple mathematical
function, but we also provide more sophisticated operators.

There is no restriction on the number of distinct program
variables that can be involved in an invariant. The maxi-
mum size of an invariant is a parameter to the system limited
by memory requirements. This allows for the construction
of invariants that cannot be considered using Daikon. How-
ever, our approach does not necessarily ensure predictability:
running Daikon with the same input will always return the
same candidate invariants, whereas using GP does not guar-
antee this repeatability over different seeds. Also, as we will
see, a much larger number of invariants may be produced.

3.1 Process Overview
Figure 2 gives an overview of our method of invariant

construction. We take a program as input and sample test
cases from a simple uniform distribution, although specific
test data could be provided. Mutants of the original pro-
gram were generated using a customised version of µJava.
The original program and mutants were both run through
Chicory, Daikon’s front-end for Java. Chicory outputs the
trace files for each of the mutants and the original program.

The next stage is to create parameter files for the evo-

lutionary computation toolkit ECJ [3]. These files contain
standard parameters to the genetic programming algorithm
along with the trace data for the input program.

A GP search is then run for each method, including those
added to find loop invariants. Standard tree-based GP is
used, but mutation is favoured over crossover, with proba-
bility of mutation 0.9 and probability of crossover 0.1. A
high mutation rate was found to be favourable in initial ex-
perimentation. Focusing on mutation does not reduce GP to
a random search, rather it places the emphasis on individual
improvements more than on subtree exchange.

Archiving is also added such that if an invariant is found
that is consistent with all data points, it is added to a col-
lection: this collection constitutes the output of the search
process. Once an invariant has been encountered, the fitness
of syntactically equivalent invariants is reduced, to encour-
age further exploration of the space of possible invariants.

Finally, mutation testing is employed to sort these can-
didate invariants by an estimation of their “usefulness” to
a programmer. The candidate invariants found are passed
through what we refer to as a “Mutation Fragility test”. The
consistency of each invariant is checked against the mutant
trace data, and a record of the number of mutants that vi-
olate the candidate invariant is made. The intuition here is
that useful invariants are those general enough to be con-
sistent with the provided test data yet specific enough to be
inconsistent with the trace data of the mutant programs.

3.2 Evaluating Individuals
A fitness function must be provided to ECJ to estimate

the utility of a given invariant. We used the number of dat-
apoints within a trace that satisfied the candidate invariant.
We considered adding components such as a parsimony mea-
sure, and also using the addition of simple components to
the fitness function to locate“interesting” invariants, but did
not find them to be beneficial in our initial experimentation.

Once a fully consistent invariant has been found and added
to the collection, subsequent individuals representing the ex-
act same invariant are punished by reducing their fitness by
a small amount equivalent to being found to be false for one
trace data point. Semantic equivalents were not eliminated,
as such filtering was outside of the scope of this paper.

3.3 Which Invariants are Interesting?
All invariant generation techniques are faced with the

same concern: which candidate invariants are of most inter-
est to the user? To some extent this depends on the intended
use for the invariants, but there remains a large number of
candidate invariants that are not useful. Tautologies such
as T∨F are one example, but of greater concern are invari-
ants that are not tautologies and are also not particularly
descriptive, in that they could apply to many similar pro-
grams. The latter are much more difficult to eliminate.

Various techniques have been applied in previous work
using Daikon [12] to eliminate candidate invariants. These
methods are also applicable to our own work, but we adopt a
new method that will enable us to order invariants according
to some estimation of their interest to an end user. This ap-
proach is arguably more general than those used previously
with Daikon, and is likely to be more suited to the very large
numbers of invariants generated with search methods.

The feasibility of evolving invariants using GP, and the
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Example Inputs Description
Abs int x x set to abs(x)
ArraySum int[ ] b, int s s set to sum(b)
FourTupleSort int q0, q1, q2, q3 inputs ordered
GCD int x, y x set to gcd(x,y)
Max int x, y, z z set to max(x,y)
MinArray int[ ] b, int x x set to min. value in b
Perm int x, y x and y ordered by <

Table 1: Case Studies taken from Gries [14]

effectiveness of our prioritisation method, are examined in
the following section.

4. EXPERIMENTATION

4.1 Overview
In this section, we describe three experiments:

• Experiment A - comparing the output of our frame-
work to that of Daikon for a set of given example prob-
lems, mostly taken from Gries [14].

• Experiment B - investigating the ability of our frame-
work to produce the invariants actually specified by
Gries (which were not the same as those produced by
Daikon) for problems presented in that text.

• Experiment C - evaluating the extent to which muta-
tion testing provides a way of prioritising invariants by
their likely interest to a user.

4.2 Case Studies
We chose to test the system on two sets of examples.

Firstly, we used most of the examples from Gries [14] origi-
nally used to test Daikon [9], given in Table 1. This allowed
us to evaluate whether evolution can find the same kinds
of invariant as Daikon. Also, Gries provides loop invariants
and pre- and post-conditions, such that we can evaluate the
ability of search to find these key invariants. We can also use
them to asses whether we can distinguish them from other
candidates as potentially more “interesting” to a user.

Our second set of examples was taken from introductory
programming texts and includes the sorting algorithms bub-
blesort, insertion sort, quicksort and selection sort. These
examples are more complex than those given by Gries. Each
involves at least one loop invariant.

The source code for each example is too large to be pro-
vided here, but we have made it available online along with
all files needed to repeat our work [5]. The formal definitions
of the programs in Table 1 may also be found in Gries.

Most input data was generated randomly. Pre-conditions
specified by Gries were met in generating input data, and
arrays were randomly initialised to a length in [1,100]. Inte-
ger values were within the range [-100,100] (or [1,100] where
Gries had placed a constraint on those values). Limiting the
size of integers involved reduced the size of the test data,
simplified the programming involved, and made output more
readable. The only exception to the random generation of
input data was the GCD example, where 50% of the input
data (x, y) was generated such that gcd(x, y) 6= 1.

The source code of the examples does not (and cannot,
in Java) exactly correspond with the descriptions given by

Function Description
Functions over Variables
= Equals
= 0 Equals zero
> Greater than
≥ Greater than or equal to
≥ 0 Greater than or equal to 0
≥ 1 Greater than or equal to 1
% Modulo
6= Is not equal to
6= 0 Is not equal to zero
Functions over Arrays
ArrayElement Value at array position
ArrayLessThan Lexical comparison of two arrays
ArrayLEQ Lexical comparison of two arrays
ArraysEqual Numeric comparison of two arrays
IsMemberOf Membership of an array
LEQAllElements Compare value to all values in array
MaxIndex The last index of an array
NotNull Check if array is not null
PreviousElement Element at position prior to argument
Size Array size
SortedArray Is array sorted?
Functions used by Gries
AND Logical AND
ArraySum Array sum
GCD Greatest common divisor of variables
IsMemberSubArray Does the subarray contain this value?
LEQSubArray Compare value to subarray
≤ 0 Less than or equal to zero
Negative Multiply by -1
OR Logical OR
PermOfFour Permutation of four values
PermOfTwo Permutation of two values

Table 2: The Function Set

Gries. Certain implementation details such as wrapping
classes used to hold output variables are removed from our
analysis for clarity.

4.3 Evolutionary Algorithm Parameters
The function set supplied to GP was designed to allow the

expression of the kinds of invariants produced by Daikon for
the example programs we studied. The size of the invariants
was not controlled, beyond the maximum depth limit set by
ECJ to prevent exhaustion of RAM, and the implicit limi-
tations of the language defined by the return and argument
types of the function set.

Table 2 lists the functions provided to the search. In-
put programs are limited to those manipulating integers
and integer arrays. For a given program, only the rele-

Example Inputs Output
BubbleSort int[ ] x x ordered by <
InsertionSort int[ ] x x ordered by <
QuickSort int[ ] x x ordered by <
SelectionSort int[ ] x x ordered by <

Table 3: Sort Case Studies, taken from Swartz [4]
and Algolist.net [1]
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Repetition Number Found Percentage Found
1 280 83
2 287 85
3 283 84
4 285 85
5 285 85
6 283 84
7 285 85
8 284 84
9 280 83
10 279 83

Table 4: Number of Daikon Invariants found by evo-
lution

vant functions (for the available datatypes) were provided
to the search, and the functions specific to those examples
taken from Gries [14] were added for the relevant evolution-
ary runs.

The selection of these functions was made easier by know-
ing the types of invariants we were looking for: it is likely
that we may be able to suggest relevant functions to some
extent with any program, but certainly some manual guid-
ance has been given through this selection. Providing more
functions (for example, in the absence of any suggestions as
to which should be discarded) would result in a larger search
space, longer run times and a greater number of uninterest-
ing invariants produced.

We used a type hierarchy implemented using Strongly-
Typed GP, which relies on atomic and set types to restrict
the search space. There are six atomic types in the sys-
tem: Booleans, integers, arrays, derived integers, “conjunct
Booleans” and “disjunct Booleans”. The first three are self-
explanatory. Derived integers are returned by ArrayEle-
ment, MinIndex, PreviousElement, Size, ArraySum and Neg-
ative. A separate “derived variable” type is used to avoid
uninteresting comparisons between derived variables. The
special Boolean types restrict invariants to a limited sized
conjunctive normal form, to reduce the ability of search to
generate arbitrary-size tautologies such as s1 ∨ s2 ∨ . . . ∨T.
For full typing information, the parameter files are available
online [5].

4.4 Experiment A

4.4.1 Research Question
In this experiment, we investigated whether evolutionary

search could find the same kinds of invariants as Daikon for
the example programs, and whether it was able to find most
or all of the invariants suggested by Daikon.

4.4.2 Method
Each program from Tables 1 and 3 was run 10 times

through Chicory to create 110 trace files. We ran Daikon
4.6.4 on the trace data, using its default settings, which gen-
erated a total of 337 candidate invariants consistent with the
trace data over the 23 program points in the example pro-
grams. We ran ECJ using the array and variable functions
given in Table 2 (i.e. without the Gries-specific functions),
with population size and generations set to 100. Standard
tree-based GP was used, with probability of crossover 0.1
and probability of mutation 0.9. All other parameters were

Example Program Point Percentage Found
(Median)

Abs abs 100.00
ArraySum arraysum 100.00
ArraySum loop 92.86
BubbleSort bubblesort 100.00
BubbleSort inner loop 100.00
BubbleSort outer loop 100.00
FourTupleSort fourtuplesort 100.00
GCD gcd 100.00
GCD loop 66.67
InsertionSort insertionsort 100.00
InsertionSort inner loop 53.45
InsertionSort outer loop 86.84
Max max 100.00
MinArray minarray 100.00
MinArray loop 100.00
Perm perm 100.00
Quicksort dummy 100.00
Quicksort partition 63.56
Quicksort quicksort 100.00
Quicksort quicksortrecursive 62.50
SelectionSort selectionsort 100.00
SelectionSort inner loop 72.50
SelectionSort outer loop 100.00

Table 5: Percentage of Daikon Invariants found by
Example and Program Point

left at their defaults in ECJ: our purpose here was to discover
whether evolution could produce the same kind of invariants
as Daikon, rather than the optimality or robustness of spe-
cific parameter settings. After the run was complete, we
compared the output from the evolutionary search to that
of Daikon.

4.4.3 Results
The percentage of Daikon invariants reported by evolution

for each run is given in Table 4. The median percentage of
the invariants discovered is 84%, and this figure is robust
to the seed supplied. The results are grouped by example
in Table 5. For many examples, all invariants suggested
by Daikon were usually found by evolutionary search. It
may be that more compute power is required to reliably find
the “missing invariants”, however it is clear that the same
kind of invariants can be found using evolutionary search
as those produced by Daikon. Many more invariants were
produced by the evolutionary search than just those that
matched Daikon: for example, across the first repetition a
total of 17045 invariants were suggested, as opposed to 337
for Daikon. Many of these invariants could be eliminated via
the same techniques as Daikon uses. However, the number
produced by evolutionary search is markedly greater, and
increases with the amount of computational effort used.

As an example of the large number of invariants that may
be produced, examine Figure 3. The figure shows the me-
dian number of syntactically unique invariants over 10 runs
for population and generation sizes 100, 250, 500 and 1000.
The approach of searching for invariants necessitates a way
of filtering this large set. Many of these invariants could
be deemed uninteresting: some of them tautologies, some of
them inequalities between evidently unrelated variables.
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Program Point Invariant Success(%)
abs (x = orig(x) ∧ orig(x) ≥

x) ∨ (x =
−orig(x) ∧ orig(x) ≤ 0)

0%

arraysum orig(n) ≥ 0 100%

arraysum s =
∑n−1

k=0 b[k] 100%
arraysum.loop i ≥ 0 100%
arraysum.loop n ≥ i 100%

arraysum.loop s =
∑i−1

k=0 b[k] 100%
fourtuplesort q0 ≤ q1 100%
fourtuplesort q1 ≤ q2 100%
fourtuplesort q2 ≤ q3 100%
fourtuplesort {q0, q1, q2, q3} is perm. of

{orig(q1, q2, q3, q4)}
0%

gcd orig(x) ≥ 1 100%
gcd orig(y) ≥ 1 100%
gcd x = gcd(orig(x), orig(y) 100%
gcd x ≥ 1 100%
gcd x = y 100%
gcd gcd(x, y) =

gcd(orig(x), orig(y))
30%

gcd.loop x ≥ 1 100%
gcd.loop y ≥ 0 100%
gcd.loop gcd(x, y) =

gcd(orig(x), orig(y))
100%

max z ≥ x 100%
max z ≥ y 100%
max (z = x) ∨ z = y) 60%
minarray orig(n) ≥ 1 100%
minarray ∀k, 0 ≥ k ≤ n− 1, x ≤ b[k] 100%
minarray x ∈ b 100%
minarray.loop i ≥ 1 100%
minarray.loop n ≥ i 100%
minarray.loop ∀k, 0 ≥ k ≤ i− 1, x ≤ b[k] 100%
minarray.loop x ∈ b 100%
perm x ≤ y 100%
perm {x, y} is perm. of {y, x} 100%

Table 6: Success rates in finding Gries Invariants

There are two interesting observations to be made of the
comparison with Daikon. Firstly, Daikon did not report
most of the invariants that Gries used to derive the exam-
ple programs. It may be the case that previous experiments
that found the contrary relied on templates not supplied to
Daikon by default. Secondly, Daikon produces a large num-
ber of invariants in some cases: 64 invariants are produced
for the “partition” method in the quicksort example. Even
this number may be too many for a programmer, and so our
attempts at prioritising the most interesting invariants may
be worthwhile not only for filtering the results of evolution-
ary search, but also the output of Daikon itself.

4.5 Experiment B

4.5.1 Research Question
The invariants found by both Daikon and evolutionary

search in Experiment A are sometimes useful, but they are
usually not the invariants that Gries used to derive the pro-
grams, that is the invariants that succinctly capture the se-
mantics of the program. For example, in the case of the
“Max” program, Daikon tells us that the output is greater

or equal to both the original inputs, but that is not enough
to capture the full behaviour of the program. The invariant
(post-condition) we would prefer to discover is

(z ≥ x) ∧ (z ≥ y) ∧ (z = x ∨ z = y) (1)

In Experiment B, we attempted to discover this and sim-
ilar invariants. Perhaps Daikon could discover these invari-
ants with suitable templates, but evolutionary search does
not require such specific templates: we only need to add a
small number of functions to our function set, such as log-
ical OR and AND. This flexibility is the great benefit of
using a heuristic search method, at the cost of predictability
and the large number of uninteresting invariants generated
(although the latter will be addressed shortly).

4.5.2 Method
To allow for the larger size of such invariants, we increased

the computational effort to a population size and generation
number of 250. The run-time of the evolutionary search for
most problems was still a matter of seconds. The rest of
the evolutionary algorithm was unchanged. We reused the
trace data generated in Experiment A. We restrict ourselves
to the Gries examples given in Table 1. Along with the
function set used in Experiment A, we also included those
functions that were used by Gries to specify invariants for
these problems.

4.5.3 Results
The results are given in Table 6. Search manages to find

more of the Gries invariants than Daikon, although it fails to
find two of them. For the Abs and FourTupleSort examples,
there is unlikely to be much of a gradient for the search.
Although there may be some intermediate solutions that
are partially correct, these are likely to be dominated by the
number of other candidate invariants in the same population
that are successful on more test cases. It is clear that more
guidance must be given to the search, to punish the less
interesting invariants.

The final experiment in this paper suggests one method of
guidance, and the results in Table 6 are sufficient to enable
us to proceed with a test of this method.

4.6 Experiment C

4.6.1 Research Question
In Experiment C, we investigated the efficacy of mutation

testing to prioritise the invariants found in Experiment B by
their potential interest to a user.

4.6.2 Method
We re-ran the seventh repetition from Experiment B and

applied a mutant fragility test in order to highlight the Gries
invariants found. In this evolutionary run, a total of 45 997
invariants consistent with the trace data were discovered by
search. Gries specifies just 31 individual invariants. Is it
possible that a mutant fragility test could help us quickly
identify the 29 invariants from Gries found in that repetition
of Experiment B, constituting only a fraction of a percentage
of those invariants discovered by search?

To answer this question, we used µJava with its default
settings to generate “Traditional Mutants” (method muta-
tions) of the 7 Gries examples, giving a total of 310 compil-
able mutants. A single trace was generated for each mutant,
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Figure 3: Number of Invariants found by Evolution

and this data was encoded in the ECJ parameter file for that
problem. Using the same seed from the seventh repetition
of Experiment B, we attempted to prioritise the invariants
produced using mutation testing. At the end of the evolu-
tionary run, each invariant i in the archive was assigned a
priority score p(i) as follows:

p(i) =
1

|M |
∑
m∈M

1

|S|
∑
s∈S

c(i, s) (2)

Where M is the set of mutants for the relevant program
point, S is the set of non-empty samples for that program
point and c(i, s) is 1 if invariant i is consistent with the sam-
ple s and zero otherwise. Although we only created a single
trace for each mutant, three of the program points were
loop invariants and therefore potentially had zero, one or
more than one sample point. A lower value of p(i) indicates
that the invariant was broken by many mutants, intuitively
implying that it captures something particular to that pro-
gram, and that it is therefore a more interesting invariant.

4.7 Results
Table 7 gives the results. Each Gries invariant found in

Experiment B is listed. The “ranking” column indicates the
position of the invariant ordered by mutation score. With a
limited set of mutants, there were a limited number of unique
scores, and many invariants were ranked as equally interest-
ing. This can be seen by the limited number of rankings
in the table. The “depth” column indicates how far down
a list sorted by priority a user would have to read to find
the invariants. Without the priority score, the user would
have to examine the total number of invariants. Thus, by
comparing the last two columns, we can see how the priority
score has affected the amount of manual inspection needed.

The first observation we may make is that in general mu-
tation testing has greatly reduced the number of invariants a
user must check. In some cases, it has worked spectacularly
well: these figures are highlighted in the table. Consider
the last GCD loop invariant: from 3114 candidate invari-
ants, mutation testing ranks this important one specified
by Gries first. Similarly, the post-condition that most sum-
marises the behaviour of ArraySum is lifted to the top of

Method Invariant Ranking Depth Total
arraysum orig(n) ≥ 0 9/9 1837 1837

arraysum s =
∑n−1

k=0 b[k] 1/9 4 1837
arraysum.loop i ≥ 0 6/9 340 789
arraysum.loop n ≥ i 5/9 289 789

arraysum.loop s =
∑i−1

k=0 b[k] 1/9 13 789
fourtuplesort q0 ≤ q1 16/23 123 557
fourtuplesort q1 ≤ q2 19/23 136 557
fourtuplesort q2 ≤ q3 17/23 142 557
gcd orig(x) ≥ 1 26/26 1685 1685
gcd orig(y) ≥ 1 26/26 1685 1685
gcd x =

gcd(orig(x), orig(y)
2/26 15 1685

gcd x ≥ 1 25/26 1228 1685
gcd x = y 9/26 135 1685
gcd gcd(x, y) =

gcd(orig(x), orig(y))
11/26 243 1685

gcd.loop x ≥ 1 30/90 358 3114
gcd.loop gcd(x, y) =

gcd(orig(x), orig(y))
39/90 691 3114

gcd.loop x =
gcd(orig(x), orig(y)

1/90 1 3114

max z ≥ x 13/13 11055 11055
max z ≥ y 7/13 555 11055
max (z = x) ∨ z = y) 10/13 1172 11055
minarray n ≥ i 10/10 1506 1506
minarray ∀k, 0 ≥ k ≤

i− 1, x ≤ b[k]
2/10 22 1506

minarray x ∈ b 3/10 24 1506
minarray.loop i ≥ 1 12/25 571 2173
minarray.loop n ≥ i 12/25 571 2173
minarray.loop ∀k, 0 ≥ k ≤ i −

1, x ≤ b[k]
3/25 38 2173

minarray.loop x ∈ b 1/25 18 2173
perm x ≤ y 7/16 40 243
perm {x, y} is perm. of

{y, x}
1/16 8 243

Table 7: Prioritising Gries Invariants

the list, along with four others. Many more are in the top
10, 20, 30 or 40 invariants. These numbers are sufficiently
small enough to be practical.

There are some invariants that are not prioritised as we
may require. On closer inspection, some of these are invari-
ants that capture behaviour external to the method that
has been mutated, so it is impossible for these invariants to
be broken. We may also consider that such pre-conditions,
when they are not enforced in code internal to a method,
are uninteresting to us when thinking about that method in
isolation. Wider mutation testing across the test harnesses
used to generate traces would solve this problem.

This way of prioritising invariants seems promising. It
provides a way of filtering the output of the search pro-
cess, but it could also be used to guide the search process,
by incorporating the fragility test into the fitness function.
Furthermore, we suggest that this approach may be used
separately, for example in conjunction with Daikon, to re-
duce a list of invariants provided by another source.
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5. CONCLUSIONS & FUTURE WORK

5.1 Improving this Method
We have demonstrated that invariants can be found us-

ing search, and that the large number of invariants produced
may be prioritised through the novel application of mutation
testing. There are two outstanding problems to be solved:
firstly, to reduce the number of uninteresting invariants pro-
duced and secondly, to guide the search to invariants that
may be interesting but “deceptive” to the search.

Some techniques to reduce the number of candidate invari-
ants have already been implemented in Daikon, which could
be used here. We would like to focus the search on more
interesting parts of the search space. A scheme of reward-
ing invariants containing “interesting” functions was found
to be ineffective in some initial experimentation. We instead
suggest that the mutation testing part of our work is used
as a component of the fitness function, such that the search
favours those invariants broken by mutation. We may only
accept invariants above a certain level of interest.

This integration of mutation testing within the search pro-
cess may also improve the ability of search to find more
complex invariants, by focusing on those that are most in-
teresting. We also suggest that an improved representation
is adopted, to facilitate a gradient in the search space, and
that a richer function set is used. Furthermore, rather than
using the simple and discrete fitness function based on the
number of sample points consistent with the invariant, per-
haps fitness could be based upon a distance metric that rep-
resents how incorrect an invariant actually is.

5.2 Filtering Daikon Invariants
The particular application of mutation testing in this pa-

per is as far as we know unique, and it represents a substan-
tial advance in itself. We are currently applying this method
to rate the interest of invariants produced by Daikon, as of-
ten Daikon produces a large number of invariants itself. This
represents a very generally applicable way of isolating inter-
esting invariants from a crowd of candidates.

5.3 Trace Data Coverage
The quality of the invariants produced is heavily depen-

dent on the quality of test data. For example, if a boundary
case is not covered then a branch may be missed. By inte-
grating the search with software (even search-based) testing
methods, we could provide more accurate data both as in-
puts for our own framework and Daikon. Scalability could
be improved by co-evolving a subset of the samples.
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