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ABSTRACT
The aim of our research is to find an efficient solution to the
services QoS optimization problem. This NP-hard problem
is well known in the service-oriented computing field: given
a business workflow that includes a set of abstract services
and a set of concrete service implementations for each ab-
stract service, the goal is to find the optimal combination
of concrete services. The majority of recent proposals in-
dicate the Genetic Algorithms (GA) as the best approach
for complex workflows. We propose a new approach, based
on Differential Evolution (DE) and a new genome encoding.
The results show that proposed algorithms converge faster
than the existing ones based on Genetic Algorithms with
integer genome encoding.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Algorithms, Experimentation, Performance

Keywords
Services, Composition, QoS, Optimization, Selection,Genetic
Algorithms, Differential Evolution

1. INTRODUCTION
Service Oriented Architecture (SOA) implementations have

become more and more popular, diverse and widespread in
enterprise distributed environments. This fact is due to their
technical advantages over more traditional methods of dis-
tributing computing. These advantages include: delivering
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application functionality as services across several platforms,
providing location independence, authentication and autho-
rization support and dynamic search and connectivity to
other services.

New services can be created by combining the functional-
ity of existing services. This process is called service compo-
sition and the resulted services are called composite services.
An important requirement for a composite service is to be
able to efficiently select and integrate, at runtime, heteroge-
neous services from different providers.

Quality of Service (QoS) properties are part of the Ser-
vice Level Agreement (SLA) between a service provider and
a service requester. Two services that provide the same func-
tionality may have different QoS properties. For example,
one may be cheaper, but have a higher response time, while
the other may be more expensive, but have a lower response
time.

Given a composite service described by a business work-
flow that includes a set of abstract services, where each ab-
stract service can be realized by several concrete services,
the QoS optimization problem is to find the optimal com-
bination of concrete services (having the best QoS). This
problem is NP-hard.

Numerous existing proposals for this problem indicate Ge-
netic Algorithms (GA) as the preferred approach. Services
QoS optimization is usually done at runtime, where a fast
algorithm is preferred, but GA may be slow for such a task.
This fact and also the need to improve the accuracy and the
exploration of the solutions space motivated us to propose a
new approach, based on Differential Evolution (DE). We also
propose a new genome encoding for solving a discrete prob-
lem using a continuous function optimizer, like DE. Com-
parative experiments are conducted. The results show that
proposed algorithms converge faster than the existing ones
based on Genetic Algorithms with integer genome encoding.

The next section presents the problem statement and some
of the existing solutions. Section three gives some details
about Differential Evolution. Section four presents the pro-
posed approach based on DE. In section five we show some
numerical experiments and we compare the results obtained
using different DE and GA-based evolutionary algorithms.
Some statistical validation tests were also performed. The
last section contains the conclusion and future work.
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2. SERVICES QOS OPTIMIZATION
This section presents briefly the most important service

technologies, the QoS problem representation and depicts
some of the solutions that were proposed for this problem.

2.1 Services technologies
Several technologies for service composition exist: WS-

BPEL (Web Services Business Process Execution Language)[10],
WSCI (Web Service Choreography Interface), and others.
When composing a service, two types of requirements need
to be considered [1]: a) functional requirements (FR), which
specify the service behavior and b) non-functional require-
ments (NFR), which refer to the quality of a service (QoS).
But the orchestration and choreography technologies con-
cern only the functional requirements of a composite ser-
vice. That is why we need to add dedicated mechanisms for
handling the QoS requirements.

The most widely used standard for composing services,
WS-BPEL, was chosen as service model. In WS-BPEL, a
composite service is a business process (workflow) that con-
sists in a set of activities. Such a workflow may include con-
trol structures like: flow, sequence, switch and while. Flow is
used to define concurrent activities. A flow completes when
all its activities did complete. A sequence is a set of activ-
ities that are executed one after the other. Switch selects
between any number of case branches based on a condition.
While is used to create conditional loops.

2.2 Problem statement
A composite service can be described as a process that

involves the execution of several activities according to a
workflow. An example workflow for a flight booking process
is depicted in figure 1.

This workflow consists of the following activities: Find
Nearest Airport for identifying the airport that is closest
to the desired departure or destination location, Propose
Flight for finding all flights that match a certain criteria,
Book Flight for the actual purchase of the flight tickets and
Delivery for mailing the tickets and the receipt.

Executing an activity means invoking a service. For each
activity, which is assimilated to an abstract service (S1, S2,
... in fig. 1), several concrete services exist. Each con-
crete service has different QoS properties. For describing
the QoS we use the following (widely used) parameters: re-
sponse time, reliability (r), availability (a) and cost (c).

The response time (t), sometimes called latency is a mea-
sure for the performance of a service. It represents the
round-trip time between sending a request and receiving the
response. Reliability (r), usually measured as the number of
failures per unit of time (month or year), represents the ca-
pacity to ensure reliable message delivery for services. The
probability of a service to be ready for immediate use is
called availability (a). The cost (c) is the price to pay for
each service request.

The QoS of the composite service is obtained by aggre-
gating the QoS of the component services. The aggregation
rules are described in the section 4.2.

Given m abstract services and n concrete services for each
abstract service, there are nm possibilities. The search space
is a discrete one since for each abstract service we need to
chose one concrete service and any combination is possible.
We have a combinatorial optimization problem here. An
exhaustive search algorithm is very inadequate because the

solution should be found at runtime. Finding the solution
with the optimal QoS is an NP-hard problem.

2.3 Related work
The problem stated previously is well known in domains

like Service Oriented Computing (SOC) and Search-based
Software Engineering (SBSE). We found it discussed in [2],
[14], [7], [3] and other papers. In the literature, various solu-
tions are proposed based on different approaches such as: in-
teger programming (greedy algorithms), genetic algorithms
and hill climbing algorithms. In this section we present what
we considered the most relevant of these proposals.

Genetic algorithms versus linear programming. G. Can-
fora et al. [2] have compared an integer linear programming
[17] based algorithm with a genetic algorithm. As a case
study, they considered a workflow containing 8 distinct ab-
stract services. The number of available concrete services
per abstract service was set to: 5, 10, 15, 20 and 25. The
comparison was based on the convergence time that was
considered proportional to the CPU user time.

The authors used an elitist GA where only the best 2 indi-
viduals are copied to next generations, a crossover probabil-
ity of 0.7, a mutation probability of 0.01 and a population of
100 individuals. The selection mechanism adopted was the
roulette wheel selection.

Their conclusion was that, in contrast with linear integer
programming (the widely adopted approach at the moment),
GA is able to deal with QoS attributes having non-linear ag-
gregation functions. Also, GA can scale-up when the num-
ber of concrete services per abstract service increases. When
the workflow size and the number of concrete services per
abstract service are limited and there is no need to use non-
linear aggregation functions, integer programming is how-
ever preferable.

A genetic algorithm for services deployment optimization.
Yves Vanrompay et al. [14] also propose to use genetic algo-
rithms for mobile service composition and deployment. In
this case, the problem is formulated slightly different: there
is a system consisting of several nodes on which a composite
service can be deployed in a distributed manner. The goal
is to deploy the composite service onto a set of connected
nodes in a way that the allocation meets the given QoS
constraints and minimizes the communication cost between
the nodes. A set of constraints are added to the problem
model for specifying if a certain component can be deployed
on a specific node. The authors prove that GAs provide a
scalable mechanism which offers improvements over relevant
solutions.

Genetic algorithms versus greedy algorithms. Liu Xiang-
wei et al. [7] also suggest that genetic algorithms are a good
approach for semi-automatic service composition. The pa-
per presents an independent global constrains-aware Web
service composition method based on extended Color Petri
net (eCPN) and a genetic algorithm (GA). The authors com-
pared the genetic algorithm with a greedy algorithm and the
conclusion was that GA has higher execution efficiency and
success rate.

Weise et al. [15] also compare genetic algorithms with
greedy algorithms and conclude that GAs offer a good ex-
ploration of the solutions space but they are slower than
the greedy algorithm. Other advantages of the genetic algo-
rithms approach are the generality and the extensibility.

The large majority of existing proposals indicate genetic
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Figure 1: A flight booking abstract process

algorithms as the best approach for large search spaces:
complex composite services with numerous abstract services
and numerous concrete services. One of the main advantage
of the GA is scalability.

Some existing research, as for instance Tusar and Filipic
[13], show that for some general optimization problems, the
algorithms based on Differential Evolution (DE) [11] per-
formed significantly better than the corresponding genetic
algorithms. This fact motivated us to chose a DE-based
approach.

The next section introduces Differential Evolution and
some of its discrete variants.

3. DIFFERENTIAL EVOLUTION
This section presents briefly some of the most important

aspects about differential evolution.

3.1 Differential Evolution for continuous do-
mains

The DE algorithm was introduced by Storn and Price [11].
DE is a population based, stochastic, and continuous func-
tion optimizer [12] where distance and direction information
from the current population is used to guide the search pro-
cess [4]. DE is known to be able to handle non-differentiable,
nonlinear, and multimodal objective functions, to be easy to
use, and to converge consistently to the global optimum in
consecutive, independent trials.

Essentially, for each individual of the population (target
vector xi(t)), a mutant vector mi(t) is first generated by
adding the weighted difference (difference vector) between
two randomly chosen vectors (parameter vectors pi1(t) and
pi2(t)) to a third chosen vector (base vector bi3(t)) as follow:

mi(t) = bi3(t) + F · (pi1(t)− pi2(t)) , (1)

where i 6= i1 6= i2 6= i3; i1, i2 are randomly and uniformly
chosen between 1 and the population size and F ∈ R+ is
scaling factor, controlling the amplification of the differential
variation.

Secondly, one child, called trial vector, is obtained by
crossover of the mutant vector and the target vector. Fi-
nally, the target vector is replaced by the best of either the
trial or target vector.

Depending on how the base vectors are selected, on how
many differences contribute to the differential and on the

type of crossover used, there are several strategies that can
be adopted for DE. A short notation is used for each strat-
egy. For example, one strategy can be DE/rand/1/bin. This
means that the base vectors are randomly selected from the
population, one difference vector is considered for generat-
ing the new vector and uniform crossover is used, based on
a binomial distribution. See [12, 4] for a more detailed ex-
planation.

One issue in using Differential Evolution derives from the
fact that DE was originally proposed to solve problems de-
fined in a continuous domain and the problem we want to
solve is discrete. Since the objective functions we want to
optimize are of the form f : D → R , where D is a discrete
domain, DE cannot be used in its canonical form.

Several methods to apply differential evolution for discrete
variables were proposed in the literature. Some of these
methods are discussed below.

3.2 Discrete Differential Evolution
Most Discrete Differential Evolution (DDE) approaches

fall into one of the following categories:
a) methods that use a mapping between the discrete do-

main and the continuous domain, allowing an unmodified
DE strategy to be run. Two solutions from this category
are discussed: TruncDE and BinDE.

b) methods that modify the original DE algorithm to
evolve discrete variables. In DE, the basic idea is to adapt
the search step along the evolutionary process. At the be-
ginning, when the individuals are spread all over the search
space, the search step is big. With each generation, the pop-
ulation converges towards a smaller region and the search
step becomes smaller. Based on these premises, modified
versions of DE for discrete domains replace the canonical
mutation operator with a discrete one, which resembles the
DE concept. Two such approaches are presented: XueDE
and HammingDE.

1. TruncDE. Lampinen and Zelinka [6] propose a method
to apply DE for integer-valued problems. They maintain
floating-point variables for internal DE computations, and
truncate the values when evaluating the cost-function fcost(yi),
where

yi =

{
xi for continuous variables

INT (xi) for discrete variables
(2)
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xi∈ R and INT is a function that converts a floating-point
number to an integer by truncation.

For finite discrete domains, the authors propose that in-
stead of attributing the actual discrete values to xi, this
should store the index of the discrete value in the corre-
sponding subset of values. Then, this problem can be han-
dled as an integer problem.

For problems that require discrete variables and ordered
sequence, rather than relative position indexing, the solution
proposed by Onwubolu and Davendra [9] - based on a more
elaborate transformation - can be used.

2. BinDE is inspired by the binary particle swarm op-
timization (BinPSO) method developed by Kennedy and
Eberhart [5]. The main idea of BinDE consists in interpret-
ing the floating-point DE individuals as probabilities that
the corresponding component of the solution vector is bit 0
or 1.

yi,j =

{
0, f(xi,j(t)) > 0.5
1, f(xi,j(t)) ≤ 0.5

(3)

where xi,j (j = 1,..,nx) are the floating-point components
of the xi individual, nx is the dimension of the binary-valued
problem and:

f(x) =
1

1 + e−x

3. XueDE. Xue et al. [16] replace the mutation operator
of DE with a conditional operator based on three probabil-
ities: greedy probability pg, mutation probability pm and
crossover probability pc. A new individual is generated with
the following rule:

yi =


xbestj r ≤ pg

rand(Ωj) pg < r ≤ pg + pm
xaj pg + pm < r ≤ pg + pm + pc
xj otherwise

(4)

where r is a random number, xbestj is the individual with
the highest fitness value from the population, Ωj contains
all the possible values for allele j, xaj is a randomly selected
individual from parent population that is distinct with xj .

4. HammingDE. Zhang et al. [18] adopt a binary en-
coding scheme for the discrete DE strategy. An individual
is represented as a binary string, composed of the binary
sub-strings obtained by encoding the components of the so-
lution. The difference of two binary individuals is defined
as a normalized Hamming distance between them, and is
used to obtain the mutation rate pr. This value is used to
randomly disturb a third individual: implement the uniform
mutation operation whose probability is pr.

4. PROPOSED APPROACH
This section describes the proposed method based on Dif-

ferential Evolution. To find the best approach, we explore
3 DE variants: TruncDE [6], XueDE [16], which were dis-
cussed in the previous section, and a new method that we
introduce in this section, called LongDE.

The next two sub-sections present the considered geno-
type for each method and the fitness assignment.

4.1 Genotype
Let SA={SA1 , SA2 , .., SAm} be the set of abstract ser-

vices from a business workflow and SCi={SCi,1 , SCi,2 , ..,
SCi,n} the set of concrete services that can realize the ab-
stract service SAi and Qi,j=(t, r, a, c) the vector of QoS
properties (response time - t, reliability - r, availability - a
and cost - c) for SCi,j .

For the problem of services QoS optimization, the genome
is usually encoded as a vector of integers: the ordinal value
represents the identity of the abstract service and the car-
dinal value corresponds to the concrete service or to the
execution node.

The genome we use for TruncDE and XueDE is depicted
in figure 2 and was initially proposed in [2]. It consists in
an array of integer values and has the length equal to the
number of abstract services in SA. Each gene stores the
index of the concrete service that realizes the corresponding
abstract service.

SA1 SA2 SA3 ... SAm

S
C1,1

S
C1,2

S
C1,3

S
C2,1

S
C2,2

S
C2,3

S
C2,4

S
Cm,1

.

.

.

S
Cm,n

genome

concrete
services

Figure 2: Genome encoding for TruncDE and
XueDE [2]

Almost all DE discretization approaches involve either a
bi-directional transformation from the discrete domain D to
the continuous domain R (e.g. TruncDE) or attempt to
modify the canonical form of DE (e.g. XueDE).

In this paper, we consider a new genome that facilitates
discretization without changing the original DE algorithm
or requiring any data transformation.

Figure 3.a depicts a representation of the proposed genome.
A gene encodes each concrete service in SCi that can realize
the abstract service SAi . The value stored in the gene repre-
sents the preference for choosing the corresponding concrete
service.

For example, if the business process consists in 2 abstract
services SA1 and SA2 , and for SA1 there are 3 alternatives
(SC1,1 , SC1,2 and SC1,3) and for SA2 there are 2 alternatives
(SC2,1 and SC2,2), then the genome would be similar to the
one depicted in figure 3.b. The greater the value of the allele,
the most likely the corresponding concrete service will be
selected. In our example, the preferred alternative for SA1

is SC1,2 , while for SA2 is SC2,1 .
The preferences values are initialized randomly between 0

and 1. On each generation, these preferences are updated
according to the DE algorithm (see section 3.1).

For convenience, we will refer to the DE approach that
uses the proposed genome with the name LongDE. The total
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S
C1,1

S
C1,2

S
C1,3

S
Cm,1

S
Cm,n

a)

SA1

S
C2,1

S
C2,2

S
C2,3

S
C2,4 ... ...

SA2 SAm

b)

0.5 1.2 -0.7

SA1

0.63 -0.4

SA2

Figure 3: Solution encoding for LongDE - a) pro-
posed genome, b) an example for two abstract ser-
vices

number of genes required for LongDE’s genome is given by
the formula:

L =

m∑
i=1

ni (5)

where m is the number of abstract services and ni is the
number of alternatives for the abstract service i.

If ni and m are about 10, as in a typical scenario, the
genome length will be LLongDE = m×n = 100. In the case
of TruncDE (or XueDE) the genome length is LTruncDE

= m = 10 for the same problem. Since LLongDE is about
10 times bigger than LTruncDE , LongDE will operate on
a search space more complex than the one of TruncDE or
XueDE. We study the behavior of this genotype in the next
section.

4.2 Fitness assignment
The fitness is assigned to a composite service function

of its QoS attributes. But the composite service QoS is
not given. Thus, it is necessary to compute the QoS of
a composite service starting from the QoS of the concrete
services called by that composite service. This operation is
called QoS aggregation [2].

The aggregation operations depend on the composite ser-
vice architecture. Table 1 shows how the aggregate QoS is
computed for each control structure.

For flow and sequence the QoS vector for individual ser-
vices is sufficient to evaluate the aggregate QoS. For exam-
ple, since flow means executing several activities in parallel,
the total response time (R) is given by the maximum re-
sponse time of all executed activities.

In case of the switch construct, the BPEL process needs to
be monitored at runtime during multiple executions, to de-
termine the probabilities pi associated to each case branch,∑m

i=1 pi = 1. pi represents the probability to select case
branch i. In case of the while loop, the average number of
iterations k is also determined during monitoring.

To evaluate the quality of each potential solution, we con-
sider an aggregate objective function (AOF):

F (y) = w1 ·R+ w2 ·A+
w3

T
+
w4

C
(6)

where wi are the weights that correspond to the impor-
tance of each QoS property to the user and R, A, T, C are
the aggregate QoS values for the business workflow.

QoS Property Flow Sequence Switch While

Response Time (T) max
i∈1..m

{ti}
m∑
i=1

ti

m∑
i=1

pi·ti k · t

Reliability (R)
m∏
i=1

ri

m∏
i=1

ri

m∑
i=1

pi·ri rk

Availability (A)
m∏
i=1

ai

m∏
i=1

ai

m∑
i=1

pi·ai ak

Cost (C)
m∑
i=1

ci

m∑
i=1

ci

m∑
i=1

pi·ci k · c

Table 1: QoS Aggregation

5. NUMERICAL EXPERIMENTS AND EVAL-
UATION

In order to test our solution, we implemented the following
algorithms:

- TruncDE - the DE algorithm based on Lampinen and
Zelinka’s proposal [6] (see 3.2) with the parameters:
scaling factor F = 0.65, jitter FNOISE = 0.1 and crossover
constant Cr = 0.92. The strategy used for Differen-
tial Evolution is DE/best/1/bin. This means that the
base vector is the best vector from the population, one
difference vector is considered for generating the new
vector and uniform crossover is used, based on a bino-
mial distribution.

- XueDE - the DE algorithm proposed by Xue et al. [16]
with the following parameters: DE/best/1/bin strat-
egy, scaling factor F = 0.95, jitter FNOISE = 0.25
and crossover constant Cr = 0.95. The probabilities
for the conditional operator in equation (4) are: greedy
probability pg = 0.1, mutation probability pm = 0.65
and crossover probability pc = 0.2.

- IntGA - the GA algorithm proposed by Canfora et al.
[2] with the parameters: uniform crossover where one
parent is selected using tournament selection and the
second parent is selected using roulette-wheel selection,
the tournament size is 5. The mutation probability
suggested in [2] is pm = 0.01.

- LongDE - the DE algorithm based on the proposed
genotype, with the parameters: DE/best/1/bin strat-
egy, scaling factor F = 0.75, jitter FNOISE = 0.15 and
crossover constant Cr = 0.9.

- LongGA - a genetic algorithm similar to IntGA with
the difference that is uses the long genome that we use
for LongDE. The parameters used for testing LongGA
are: two-point crossover where the parents are selected
using tournament selection, the tournament size is 5
and the mutation probability is pm = 0.025.
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Figure 4: The evolution of the best fitness over 500
generations for m=10 abstract services and n=20
concrete services

For all these algorithms, the population was limited to 100
individuals, which were evolved for 500 generations.

We conducted experiments for 25 scenarios that include
all combinations of m ∈ {10, 20, 30, 40, 50} abstract services
and n ∈ {10, 20, 30, 40, 50} concrete services. The data for
the considered scenarios was generated based on a normal
distribution. Each scenario ran 100 times and the results
were averaged.

All algorithms were implemented using ECJ [8] version
20.

Figures 4-6 show the evolution of the best fitness of the
population for three most significant test scenarios.

A case with a business workflow consisting in m=10 ab-
stract services, each of them having n=20 concrete alter-
native services was evaluated. The results are depicted in
figure 4. We notice that all algorithms converge within 100
generations, but LongGA and LongDE are the first.

A more complex scenario, involving a business workflow
consisting in m=20 abstract services, each of them having
n=40 alternatives (figure 5) was tested. To converge, all
algorithms require about 200 generations. LongGA has the
best performance, while TruncDE is the last one that con-
verges. LongDE quickly finds good individuals, but then the
fitness increases at a slow rate.

For our last experiment we used a business workflow that
generates a very complex optimization problem: m=40 ab-
stract services, each of them having n=40 alternatives (fig-
ure 6). The results were similar to the previous scenarios,
with the following differences: in long term ( 300 genera-
tions) LongGA and LongDE are slightly surpassed by XueDE
and IntGA. Also, as the complexity increases, TruncDE’s
rate of convergence decreases.

Of more practical interest is the time required to find a
good solution. For this purpose, we measured the time nec-
essary for each algorithm to find an individual that has a
fitness value over a predefined threshold. Results are shown
in figure 7. We notice that LongGA is the fastest for the ma-
jority of the considered scenarios, while IntGA is the slowest.

Statistical experiments were conducted using the data from
the first 500 generations of the 25 considered scenarios in
order to test the significance of the results. For each gener-

0 100 200 300 400 500

0.
03

4
0.

03
8

0.
04

2

TruncDE XueDE LongDE IntGA LongGA

Figure 5: The evolution of the best fitness over 500
generations for m=20 abstract services and n=40
concrete services

0 100 200 300 400 500

0.
01

6
0.

01
9

0.
02

2

TruncDE XueDE LongDE IntGA LongGA

Figure 6: The evolution of the best fitness over 500
generations for m=40 abstract services and n=40
concrete services

ation, the best and the mean fitness was considered. These
values, from a series of 100 test runs were averaged. The
mean (µ) and the standard deviation (σ) of the best and
the mean fitness for 9 most significant scenarios are shown
in table 2.

6. CONCLUSION
This paper proposes a new solution, based on Differential

Evolution, for the well known NP-hard problem of composite
services optimization based on QoS properties. To solve this
problem, we implement two Discrete DE algorithms from
the literature (TruncDE [6] and XueDE [16]), then we pro-
pose a new DE variant – which we call LongDE, based on a
genotype that facilitates discretization. We compare these
algorithms with the genetic algorithm proposed by Canfora
et al. in [2] – IntGA – and a modified version of it that uses
the proposed genotype – LongGA.

The results show that the algorithms based on the pro-
posed genotype outperform algorithms for scenarios of low
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TruncDE TruncDE XueDE XueDE IntGA IntGA LongDE LongDE LongGA LongGA
m/n mean best mean best mean best mean best mean best

10/10 µ 7.85E-02 7.85E-02 7.86E-02 7.86E-02 7.86E-02 7.86E-02 7.81E-02 7.86E-02 7.66E-02 7.81E-02
σ 1.91E-04 1.91E-04 9.29E-05 9.29E-05 1.24E-05 0.00E+00 1.15E-04 0.00E+00 7.76E-04 7.95E-04

10/20 µ 7.54E-02 7.54E-02 7.54E-02 7.54E-02 7.54E-02 7.54E-02 7.50E-02 7.54E-02 7.42E-02 7.54E-02
σ 1.88E-05 1.88E-05 8.13E-05 7.94E-05 1.22E-06 0.00E+00 1.06E-04 0.00E+00 2.91E-04 0.00E+00

10/40 µ 9.00E-02 9.00E-02 8.96E-02 8.98E-02 8.81E-02 8.95E-02 8.92E-02 9.01E-02 8.74E-02 9.00E-02
σ 2.57E-04 2.52E-04 4.94E-04 4.68E-04 8.23E-04 5.34E-04 2.48E-04 4.00E-05 5.65E-04 3.22E-04

20/10 µ 3.92E-02 3.92E-02 3.93E-02 3.93E-02 3.87E-02 3.92E-02 3.90E-02 3.93E-02 3.80E-02 3.88E-02
σ 1.48E-04 1.48E-04 3.92E-05 3.92E-05 4.25E-04 1.92E-04 5.27E-05 0.00E+00 4.24E-04 4.60E-04

20/20 µ 3.77E-02 3.77E-02 3.77E-02 3.77E-02 3.77E-02 3.77E-02 3.75E-02 3.77E-02 3.71E-02 3.77E-02
σ 7.98E-06 7.98E-06 4.44E-05 4.40E-05 2.13E-05 0.00E+00 4.38E-05 0.00E+00 1.48E-04 0.00E+00

20/40 µ 4.47E-02 4.47E-02 4.46E-02 4.47E-02 4.38E-02 4.43E-02 4.46E-02 4.50E-02 4.31E-02 4.47E-02
σ 3.30E-04 3.29E-04 3.23E-04 3.16E-04 4.14E-04 2.17E-04 1.36E-04 7.56E-05 7.52E-04 7.69E-04

40/10 µ 1.96E-02 1.96E-02 1.96E-02 1.96E-02 1.84E-02 1.90E-02 1.95E-02 1.96E-02 1.87E-02 1.92E-02
σ 6.55E-05 6.58E-05 2.04E-05 2.04E-05 1.58E-04 2.27E-04 1.93E-05 0.00E+00 2.61E-04 2.67E-04

40/20 µ 1.81E-02 1.84E-02 1.88E-02 1.88E-02 1.87E-02 1.88E-02 1.87E-02 1.88E-02 1.85E-02 1.88E-02
σ 1.09E-04 1.05E-04 1.83E-05 1.81E-05 2.94E-05 2.89E-05 1.73E-05 1.87E-06 7.59E-05 1.54E-05

40/40 µ 2.13E-02 2.17E-02 2.23E-02 2.23E-02 2.16E-02 2.20E-02 2.22E-02 2.24E-02 2.10E-02 2.18E-02
σ 2.54E-04 1.82E-04 1.31E-04 1.14E-04 3.75E-04 2.41E-04 8.66E-05 8.10E-05 4.09E-04 4.91E-04

Table 2: The mean (µ) and standard deviation (σ) of the best and the mean fitness for each test scenario
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Figure 7: Time (in milliseconds) required to reach
the specified fitness threshold for each scenario

and medium complexity: up to 40 abstract services, each
of them having up to 40 concrete implementations. Since
nowadays a typical composite service contains no more than
10 abstract services, LongDE or LongGA are the fastest op-
tions for optimization based on QoS properties.

Of all implemented DE variants, XueDE proved to be the
most robust, having a constant behavior relative to varia-
tions of the problem complexity, the changes of evolutionary
parameters (population size, mutation probability, etc.) or
the QoS properties distribution. While IntGA’s convergence
is very similar to the one of XueDE, the later is faster.

As future work, we intend do some more comparative ex-
periments with other meta-heuristics such as: hill-climbing,
simulated annealing and others. Another future direction is

to develop a solution based on multi-objective optimization
algorithms.
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