
Multiobjective Simulation Optimisation in Software Project
Management

Daniel Rodríguez
∗

Dept of Computer Science
University of Alcalá

28871 Alcalá de Henares,
Madrid, Spain

daniel.rodriguezg@uah.es

Mercedes Ruiz∗

Dept of Computer Science
University of Cádiz
11002 Cádiz, Spain

mercedes.ruiz@uca.es

José C. Riquelme
Dept of Computer Science

University of Seville
41012 Seville, Spain
riquelme@us.es

Rachel Harrison
School of Technology

Oxford Brookes University
Oxford OX33 1HX, UK

rachel.harrison@brookes.ac.uk

ABSTRACT
Traditionally, simulation has been used by project managers
in optimising decision making. However, current simulation
packages only include simulation optimisation which con-
siders a single objective (or multiple objectives combined
into a single fitness function). This paper aims to describe
an approach that consists of using multiobjective optimi-
sation techniques via simulation in order to help software
project managers find the best values for initial team size
and schedule estimates for a given project so that cost, time
and productivity are optimised. Using a System Dynamics
(SD) simulation model of a software project, the sensiti-
vity of the output variables regarding productivity, cost and
schedule using different initial team size and schedule es-
timations is determined. The generated data is combined
with a well-known multiobjective optimisation algorithm,
NSGA-II, to find optimal solutions for the output variables.
The NSGA-II algorithm was able to quickly converge to a
set of optimal solutions composed of multiple and conflict-
ing variables from a medium size software project simula-
tion model. Multiobjective optimisation and SD simulation
modeling are complementary techniques that can generate
the Pareto front needed by project managers for decision
making. Furthermore, visual representations of such solu-
tions are intuitive and can help project managers in their
decision making process.

∗Part of this work was carried out while visiting Oxford
Brookes University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

Track
Search Based Software Engineering

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem solving, control,
methods and search—Heuristic Methods; I.6.6 [Simulation
and Modeling]: Simulation Output Analysis; D.2.9 [Software
Engineering]: Management—Cost estimation, productiv-
ity, time estimation

General Terms
Management

Keywords
Software Project Management, Simulation Optimisation, Mul-
tiobjective Genetic Algorithms, NSGA-II

1. INTRODUCTION
Project managers face multiple and conflicting decisions

during the execution of a project in order to successfully
develop it within the specified time span, budget and quality.

Among the decisions that need to be made in a software
development project, estimating not only the average team
size but the initial team size needed to develop the project
can be placed among the most influential decisions regarding
the productivity of the team and, eventually, the cost and
time required to carry out the project.

Project team size has drawn a lot of attention over the
years. Basically, large teams have been considered ineffec-
tive while small teams are perceived as better at delivering
results. Brooks [7] already claimed in 1975 that assigning
more programmers to a project running behind schedule will
make it even later, due to the time required for the new pro-
grammers to learn about the project, as well as the increased
communication overhead. Furthermore, team size does not
remain stable throughout the project lifecycle. On the con-
trary, project planning needs to determine the initial team
size and the policies and schedule required to add or remove

1883

people to or from the initial team. Accordingly to Brooks,
the loss of productivity suffered when staff are added directly
affects key project performance indicators such as schedule,
quality and cost.

Therefore, project managers need reliable ways to decide
about the effects of their decisions regarding the rate of
change in development teams on the software products, pro-
jects and processes in general. From the pioneering appli-
cation of Forrester’s System Dynamics (SD) simulation ap-
proach to software project modeling by Abdel-Hamid and
Madnick [1], SD simulation modeling has been applied to
many aspects of software development and management.
Simulation enables project managers to build and run the
models to better understand the implications of candidate
project strategies and decisions.

However, a simple evaluation of the simulation outputs
of a model is often not enough to determine the best deci-
sions that maximise project performance. Usually, a more
exploratory and in-depth study is required to determine the
most suitable combination of decisions that lead the best
project results. Simulation optimisation can be defined as
the process of finding the best values of some decision vari-
ables for a system where the performance is evaluated based
on the output of a simulation model of this system [20].
Currently, simulation optimisation functionalities are often
found as part of simulation packages, being the metaheuris-
tics approach among the most used methods for simulation
optimisation. Metaheuristic techniques are a family of ap-
proximate (stochastic) optimisation algorithms that search
iteratively in the solution space for a good enough solution.

However, while the approaches already implemented in
the simulation packages often provide robust results when
focussing on finding the optimal solution for an given objec-
tive, they do not usually provide the functionality of mul-
tiobjective optimisation, that is, simultaneously optimising
two or more conflicting objectives. For instance, Vensim c©1,
claimed to be the most used simulation tool for software
project simulation modelling [25] uses the Powell hill climb-
ing algorithm to search through the parameter space looking
for the largest cumulative payoff. The payoff function is a
user-defined function that is maximised or minimised and
groups together the simultaneous objectives of the model
user. AnylogicTM2 is a new tool in the arena of software
project simulation. It uses the built-in OptQuestR© opti-
miser to search for the best solution, given the objective
function, constraints, requirements, and parameters that can
be varied. Once again, it is the user who needs to provide a
single objective function for maximisation or minimisation.
Since software project management is a field where optimis-
ing conflicting objectives is one of the most frequent tasks
that project managers need to face, it would be interesting
to provide them with this facility.

This paper describes an approach that consists of using a
multiobjective optimisation technique based on genetic algo-
rithms for simulation optimisation in order to help software
project managers to find the best values for initial team size
and time estimates for a given project so that cost, time and
productivity are optimised.

The phases carried out in this work are as follows. First,
we developed a SD simulation model based on the litera-

1http://www.vensim.com/
2http://www.xjtek.com/

ture and previous work. Second, we generated a database
with all possible inputs combinations of the simulation runs.
Although, in theory, the multiobjective genetic algorithm
should call the simulation tool (i.e., the model corresponds
to the fitness function) as many times as necessary while
converging to the optimum values, this is not possible due
to licence issues. Therefore, in the process of generating the
database with input and output results, we have probably
executed the simulation tool many more times than really
necessary. Third, we ran several executions of the genetic al-
gorithm with different multi-objectives as well as constraints
obtained from the sensitivity analysis performed in the SD
model.

The rest of this paper is structured as follows. Section 2
covers the background, Section 3 describes the SD model
built to simulate a software project. Next, we describe
the application of a multiobjective optimisation algorithm
based on genetic algorithms with the simulation model in
Section 4. Finally, Section 5 provides some conclusions and
future research directions.

2. BACKGROUND
Abdel-Hamid and Madnick [1, 2] developed a highly ag-

gregated simulation model of software project dynamics.
The advantage of using System Dynamics is that one can ex-
periment with different management policies before, during
and after the execution of a project (post-mortem analysis)
without additional cost. Among other things, their model
was used to analyse Brooks’ law applying different staffing
policies on cost and schedule in a specific project, the NASA
DE-A project. The authors conclude that adding more peo-
ple to a late project always causes it to become more costly
but does not always cause it to complete later. In this case,
Brooks’ law holds when the time to complete is less than 30
days (which would correspond to a project of approximately
24KDSI, 2,220 Person-days and 380 days).

The application of metaheuristic techniques to Software
Engineering problems has generated a research field known
as Search Based Software Engineering (SBSE) [13, 12]. So
far, SBSE has been majoritarily applied to software testing
problems [18] but it is been increasingly applied to other
software engineering problems such as project management.
For example, in Software Project Staffing, Di Penta et al. [9,
4] analysed Brooks’ law using genetic algorithms. Alba and
Chicano [3] have applied genetic algorithms as a technique
to optimise people allocation to software development tasks.
Zhang et al. [26] and Saliu and Ruhe [21] have applied meta-
heristic techniques in the next release problem, etc.

However, although simulation optimisation has been a
productive topic of research in other fields, not many ap-
plications can be found in the field of software project man-
agement. Hanne and Nickel [11] considered the problem
of planning inspections and other tasks within a software
development project with respect to the objectives of qual-
ity, project duration, and costs. They built a discrete-event
simulation model comprising the phases of coding, inspec-
tion, test, and rework and formalised the problem of project
scheduling as a multiobjective simulation optimisation prob-
lem. Di Penta et al. [5] shows how search-based optimisa-
tion techniques can be combined with a queuing simulation
model to address the problems of allocating resources to a
software project and assigning tasks to teams.

As in the example above, most of the applications of sim-

1884

ulation optimisation that can be found in the field of soft-
ware project management use the discrete-event paradigm as
the simulation approach. However, there are also some ap-
plications of simulation optimisation using the System Dy-
namics simulation approach. For instance, Ng [19] reported
an approach for integrating simulation and optimisation of
System Dynamics models using MatlabR© and SimulinkR©

and demonstrated how to combine genetic algorithms, fuzzy
logic expert input and System Dynamics modelling for im-
proving decision-making. They applied their approach in
the classical market growth model. Kremmel et al. [15] de-
veloped a System Dynamics simulation model to analyse the
dynamics of city problems and city development under three
types of policy interventions. They used genetic algorithms
for maximising the benefits of policy decision making.

There are also some studies for optimising agent-based
simulation models. Better et al. [6] describes work on
progress consisting of incorporating advanced data mining
techniques to identify relevant system inputs and to anal-
yse the way these inputs interact within the system. The
approach is applied in an agent-based simulation model for
market research that works at both the consumer and the
company level.

3. SIMULATION MODEL FOR SOFTWARE
PROJECT MANAGEMENT

The simulation model has been built followings Law’s
methodology [16]. This section describes the model accord-
ing to Kellner’s proposal for simulation model description [14].

3.1 Model Purpose and Scope
The purpose of a simulation model can be described as

the key questions the model has to address. In our case,
the purpose of the simulation model is to help analyse the
effect of uncertainty of both the schedule estimate and the
initial team size of a software project on the key indicators
of project success, namely time, cost and productivity. De-
termining the model scope is also an important issue, since
the scope needs to be large enough to fully address the key
questions posed. For the purpose of this work, the scope of
the model is a software development project with a medium
time-span and one project team.

We next sumarise the most important input and output
variables.

3.2 Output Variables
The output variables are the information elements needed

to answer the key questions that were specified along with
the purpose of the model. For the purpose of this study, we
will need the following outputs of the model:

• Project End (T ime): The final time of the project.

• Cumulative Cost (Cost): The final cost of the project.

• Productivity (Prod): The average productivity reached
by the team through the project lifecycle. This is cal-
culated as the ratio between size (Function Points -FP-
in this case) and the Project End (time taken to finish
the project).

Other output variables that are helpful for analysis during
the simulation timeframe are the following:

• Fraction Complete: The percentage of project comple-
tion at any time of the simulation.

• Effective Workforce: The effective work rate performed
by the team.

3.3 Input Parameters
The input parameters to include in the model depend on

the result variables desired and the process abstraction iden-
tified. To simulate a software project different input param-
eters are required, each of them customising the simulation
model to both the features of the project and the organisa-
tion.

In our case, the model built provides input parameters to
describe the features of the project under development such
as the initial estimations of size and time, the quality level
desired, the initial team size and its composition, the maxi-
mum workforce allowed, the wage rate, etc. In addition, the
model also provides a set of input parameters to customise
the model to the features of the organisation developing the
project. Among these features, the following ones can be
highlighted: hiring and dismissals delays, average time to
overwork, the effect of fatigue on product quality and team
productivity, etc.

For the sake of clarity, we will only describe here the input
parameters that allow us to model decision making regarding
the purpose of this study, that is, the initial team size and its
composition, together with the initial estimations of project
size and time to develop.

• Initial Novice Workforce (NoviceWf): The initial num-
ber of novice personnel allocated to the project.

• Initial Experienced Workforce (ExpWf): The initial
number of experienced personnel allocated to the project.

• Project Size (Size): The estimate of project size (we
consider Function Points -FP -[17] as a measure of the
size).

• Scheduled Time (SchldT ime): The estimate of project
schedule.

3.4 Process Abstraction
When developing a simulation model, it is necessary to

identify the key elements of the process, their interrelation-
ships and behaviour, for inclusion in the model. The focus
needs to be on those aspects of the process that are espe-
cially relevant to the purpose of the model and are believed
to affect the result variables. The model developed is struc-
tured in three main subsystems:

• Development : This subsystem models the software de-
velopment process excluding requirements, operation
and maintenance.

• Team management : This deals with hiring, training,
assimilation and transfer of the human resources. It
includes Brooks’ law to model training and communi-
cation overhead due to team size.

• Control and Planning : This subsystem provides the
initial project estimates and models how and under
what circumstances they will be revised through the
software project life cycle.

1885

Table 1: Control Parameters for Sensitivity Exper-
iment

Input parameter Range Step

Initial Novice Workforce [0-10] 1
Initial Experienced Workforce [2-10] 1
Scheduled Completion Time [45-80] 5

Under the System Dynamics simulation approach, all sys-
tems, no matter how complex, consist of networks of feed-
back loops, and all dynamics arise from the interaction of
these loops with one another. Therefore, much of the work
when building a System Dynamics model is discovering and
representing the feedback loops, which along with stock and
flow structures, time delays, and nonlinearities, determine
the dynamics of a system. For the purpose of this study, the
simulation model built consists of a network of 77 interacting
feedback loops and 89 equations.

3.5 Sensitivity Experiment
Using the model described, we design a scenario for sim-

ulation and analysis of the sensitivity of the main output
variables to the variation of the main input parameters.

Let us assume that the project size has been estimated as
500FP and that from the organisation historical data, the
time required to develop a FP is 2 days. Therefore, the
time scheduled for this project should be approximately 50
months. Let us also assume that in this particular project
there are some new aspects that lead to the project manager
to some uncertainty regarding the time estimation and the
number of personnel that should be allocated for the initial
team for this project.

In this context, a sensitivity experiment carried out with
the simulation model can help the project manager to vi-
sualise the effect that under- or overestimating the project
schedule, as well as the initial team size and composition
between novice and experience personnel can have over the
project final outcome.

Table 1 collects the values of the control parameters for
the sensitivity experiment. In the experiment, the simula-
tion model is run to obtain a database with all the output
corresponding to each possible combination of the input pa-
rameters that control the experiment. Considering the sen-
sitivity analysis, we are assuming that the minimum size
of the development team is two experienced people. The
number of experienced people can rise from 2 up to 10. Re-
garding the initial number of new personnel in the project,
the values vary from 0 to 10. These restrictions will lead to
designing a development team whose initial size is no larger
than 20 people. As for the time estimates, the experiment
allows for a range starting from 45 and up to 80 months.

Figure 1 shows the sensitivity of the output variable Frac-
tionComplete. When this output variable reaches 1 it means
that the project is already finished since 100% of the tasks
pending has been developed. According to this experiment,
the final schedule of the project is within the range from 44
to 81 months.

Figure 2 shows the sensitivity of the output variable Effec-
tiveWorkforce. This output variable represents the effective
work rate the development team is able to achieve at every
moment of each simulated project. It results from calculat-
ing the real productivity of each particular team taking into
account their training and communication overheads.

Figure 1: Sensitivity of the output variable Fraction-
Complete

Figure 2: Sensitivity of the output variable Effec-
tiveWorkforce

Figure 3 shows the sensitivity of the output variable Cu-
mulativeCost. This output variable collects the time evo-
lution of the cost of each simulated project. As expected,
the larger the team, the bigger the costs incurred in the
project. The values of this output variable vary in a range
from $992K to $2,551K.

Among the many managerial decisions that need to be
made in a software project, personnel related factors are the
ones affecting the productivity most [23]. This raises the
concern about empirical evidence about the relationships
between project attributes, productivity and staffing levels
that can help optimise managerial decisions. Concretely,
regarding the team size it is commonly acknowledged that
the time spent in communication among team members in-
creases with the size of the team. Project team size therefore
affects schedule decisions, which are also acknowledged as an
important factor in project success [24]. Furthermore, team
size is important when making decisions about the struc-
ture of teams and the eventual partitioning of projects into
smaller sub-projects. If an optimal team size could be found,
then the decomposition of projects into smaller pieces be-
comes a key management practice with direct implications
in the decision of distributing project teams.

3.6 Simulation Optimisation

Figure 3: Sensitivity of the output variable Cumu-
lativeCost

1886

Table 2: Input Parameter Values for Single Objec-
tive Optimisation

Output Input Parameters
NoviceWf ExpWf SchldT ime

Cost $992K 0 10 80
SchldT ime 44.75 3 10 40

Prod 11.47 3 10 40

Once the sensitivity of the output variables of the model
has been determined, the next step for the project manager
should be to use the model in order to decide what values
of the input parameters optimise the key project indicators.
Current simulation tools provide their users with simulation
optimisation but only for a single fitness function. That is,
all the objectives need to be aggregated together to form
a single objective or a scalar fitness function which is then
treated by some classical techniques, mostly simulated an-
nealing and scatter search.

This approach brings problems regarding how to normalise,
prioritise and weight the different objectives in the global
fitness function. In software project management it is also
usual that conflicting objectives interact with each other in
nonlinear ways. Therefore, finding an adequate function be-
comes the critical point in this approach since the set of
solutions produced is highly dependent upon the function
selected and the weights assigned.

In this section, we use the optimisation module built in
AnylogicTM to optimise simulation output. We next show
and discuss the results obtained in single and multiobjective
simulation optimisation.

1. Single objective optimisation.

In single objective optimisation, the tool finds the val-
ues of the input parameters that maximise or minimise
a single output variable.

Table 2 shows the values of the input parameters that
optimise each single output variable according to the
different optimisation experiments carried out using
the simulation framework.

It can be seen that the initial team size and the sched-
uled completion time vary depending on the objective
one wants to achieve. Typically, this is not a very re-
alistic situation in software project management, since
project managers would be interested in the combi-
nation of input parameters that lead to the project
with the maximum productivity and the minimum cost
and time. Therefore, a multiobjective optimisation is
needed.

2. Multiobjective simulation optimisation.

When using current simulation frameworks for simula-
tion optimisation such as AnylogicTM, it is necessary
to aggregate all the objectives into a single fitness func-
tion. This fitness function is then maximised or min-
imised, depending on the user request, mainly using
scatter search.

The simplest way to do this is to bundle all the objec-
tives into a single fitness function using a linear func-
tion. For the purpose of this study, it was assumed
that the project cost is the main objective driver and
so different weights were used to determine how the

two other objectives were related to the driving objec-
tive (Eq. 1).

Fitness(i) = CummCost(i)

+
1

weightT ime(i)
· T imeProjEnds(i)

+
1

weightProd(i)
· Prod(i)

The optimisation experiments carried out with the tool
determined that the values of input parameters that
optimise this fitness function are an initial develop-
ment team of 10 experienced personnel (ExpWf) and
0 novice personnel (NoviceWf), and an initial sched-
ule estimate of 80 months (SchldT ime).

The optimisation module of AnylogicTM concludes that
no matter the weights, for a linear fitness function a de-
velopment team formed by ten experienced people and
a time estimate of 80 months is the best configuration
possible to maximise productivity and minimising cost
and development time. However, we have just seen
through single objective optimisation that this combi-
nation of input parameters minimises cost, but does
not minimise time nor maximises productivity.

In the following section, we will apply and discuss the
application of multi-objective optimisation techniques.

4. APPLYING NSGA-II TO THE SIMULA-
TION DATA

As stated previouly, there are a large number of problems
within the software engineering discipline that can be solved
with metaheuristic techniques. In turn, there are multiple
metaheuristic techniques available, and Multi-objective Op-
timisation problems (MOP) are those that involve multiple
and conflicting objective functions. MOP is also known as
Multiple Criterion Decision Making (MCDM) in other fields
such as in operation research. In general, the solutions for
MOP are defined using the Pareto front, which can be for-
mally defined as follows.

Given the minimisation of n components fk, k = 1, . . . , n,
of a vector function f of a vector variable x in D, i.e., f(x) =
(f1(x), . . . , fn(x)) and subject to inequality and equality
constraints (gj(x) ≥ 0, j = 1, . . . , J and hk(x) = 0, k =
1, . . . ,K). A vector u = {u1, . . . , uk} dominates a vector
v = {v1, . . . , vk}, denoted by u � v if u is partially less than
v, i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi
(assuming the objective is always to minimise).

The set of non-dominated decision vectors, also known
as Pareto-optimal, constitute the Pareto front, i.e., a set of
solutions for which no objective can be improved without
worsening at least one of the other objectives.

In this work, as multiobjective algorithm, we applied the
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) de-
veloped by Deb et al. [8] as an extension of an earlier pro-
posal by Srinivas and Deb [22]. The NSGA-II is a compu-
tationally efficient algorithm even with a large number of
objectives and population size.

The population individuals are evaluated (assigned fitness
values) in relation to how close they are to the Pareto front
and a crowding measure. The fitness value according to its

1887

non-domination rank is calculated as follows. The Pareto
front is Rank 1. If we calculate a new Pareto front remov-
ing individuals in Rank 1, individuals in the new Pareto
front form Rank 2, etc. Thus, individuals in lower ranks
are given higher fitness values (as we are minimising). The
NSGA-II algorithm also considers the sparsity (density) of
the individuals belonging to the same rank using a crowd-
ing measure (the Manhattan distance among individuals),
with the idea of promoting diversity within the ranks (the
larger the sparcity, the better). In addition, the NSGA-II
includes elitism in order to maintain the best solutions from
the Pareto front found.

The NSGA-II algorithm is described in Algorithm 1, where
the sort() function returns the individuals following a partial
order, (≺n), defined as: i ≺n j if (irank < jrank)∨ ((irank =
jrank) ∧ (idistance > jdistance)).

Algorithm 1 NSGA-II Algorithm [8]

1: P0 ← makeInitalRandomPopulation() � Initial
Population of size N

2: Q0 ← makeNewPopulation(P0)
3: R0 = ∅ ← ∧ t← 0
4: while t ≤ max generations do
5: Rt ← Pt ∪Qt � Combine parent and offspring

populations
6: F ← fastNonDominatedSort(Rt)
7: Pt+1 ← ∅ ∧ i← 1
8: while |Pt+1|+ |Fi| ≤ N do � While population size is

not full
9: crowdingDistance(Fi) � Calculate crowding

measure in Fi

10: Pt+1 ← Pt+1 ∪ Fi � Include the ith rank into the
population

11: i← i+ 1
12: end while
13: Sort(Fi,≺n) � Sort in descending order using ≺n

14: t+1 ← Pt+1 ∪ Fi[1 : (N − |Pt+1|)] � Fill population
untill size N

15: Qt+1 ← makeNewPopulation(Pt+1))
16: t← t+ 1
17: end while
18: return F1 � Return the best Pareto rank

Multi-objective genetic algorithms complement simulation
models, as we may want to optimise multiple parameters at
the same time without making assumptions about which ob-
jective takes priority. In this work, we have used JMetal3 [10],
a metaheuristic algorithm framework that implements many
of the current state of the art multiobjective genetic algo-
rithms, including NSGA-II.

The results of the simulation were obtained using AnylogicTM.
However, as the tools cannot be integrated due to license re-
strictions, we generated and stored the results in a database.
Then the JMetal framework was used to find the Pareto
fronts considering different executions with multiple objec-
tives, a population of 50 individuals and 200 iterations. Ob-
viously, the generation of the whole dataset with the results
in advance is not practical nor possible when considering
continuous attributes or a large number of them, and the in-
tegration of both tools is necessary to consider the approach
scalable.

Considering the SD simulation model described previously
and two objectives, optimising time and effort, it can be
observed that there is a large difference in cost between fin-

3http://jmetal.sourceforge.net/

Table 3: Pareto Front for Two Objectives, T ime and
Cost

NoviceWf ExpWf SchldTime Time Cost ($(K))

3 10 40 44.75 1,289
2 10 45 44.85 1,287
1 10 45 45.58 1,128
0 10 55 54.90 1,053
0 10 60 59.84 1,035
0 10 65 64.79 1,021
0 10 70 69.72 1,010
0 10 75 74.71 1,001
0 10 80 79.68 992

Figure 4: Pareto Front for Two Objectives

ishing the project at week 44.75 or 45.58 (the simulation
output -cost- for the former time is $1,289K and $1,128K
for the later) as shown in Table 3 and graphically in Fig-
ure 4. This is due to the fact that there are more personnel
involved and after this point, it can be observed that the
cost decreases if we increase the duration of the project us-
ing the same initial values for personnel. From the software
engineering point of view is also interesting to observe that
such an elbow in the Figure shows that there is a limit to
the amount of time we can shorten a project.

We obtained a bit more variety in the number of person-
nel with three objectives when we also consider the max-
imisation of productivity as an objective. The shape of the
results is, however, very similar as it can be observed in Fig-
ure 5 showing the 3-dimensional representation of the Pareto
front.

In both previous cases, the observed behaviour is that

Figure 5: Pareto Front for Three Objectives, T ime,
Cost and Prod

1888

Table 4: Pareto Front for Three Objectives, T ime,
Cost and Prod
NoviceWf ExpWf SchldTime Time Cost ($(K)) Prod

5 10 35 44.96 1,548 11.12
4 10 40 45.47 1,318 10.99
5 10 45 48.72 1,235 10.26
1 10 50 50.00 1,091 9.99
3 8 60 60.00 1,082 8.33
3 9 65 64.90 1,060 7.70
4 10 70 69.85 1,052 7.15
3 10 75 74.78 1,030 6.68
0 8 80 79.69 993 6.27
0 10 80 79.68 992 6.27

Figure 6: Pareto Front for Five Objectives

Pareto fronts obtained used the maximum number of expe-
rienced personnel allowed (ExpWf) or very close to it (this
only changed when the differences in salary are around 5
fold). However, in the case of this not being possible or de-
sirable (e.g., to distribute them among other projects, lim-
ited amount of experts, etc), we can add further objectives
and/or constraints whilst searching for the Pareto front.
For example, Figure 6 shows the Pareto front considering
in addition to the previous objectives, the minimisation of
both the number of experienced personnel and the addition
of both novice and experienced personnel. The number of
projects in the Pareto front increased. If constraints are
used, for example, limiting the number of experienced per-
sonnel to certain value, the Pareto front obtained was always
composed with projects using the higher value allowed.

When compared to single objective approaches, we can
observe that with single objective solutions are close to the
extreme in the range of solutions found in the Pareto front.
The set of multiobjective solutions can help to analyse project
trends and explain the trade-offs of applying different project
policies to, for example, discover the amount of crunching
we can perform in project as we have seen previously.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have applied a multiobjective optimisa-

tion technique to a System Dynamics model for project man-
agement. Multiobjective optimisation techniques applied to
simulation models give project managers better control over
the set of input variables than single optimisations. We
have shown that using multobjective techniques can lead to
achieve better results in terms of finding the input parame-
ters that will maximise output parameters such as time, cost
and productivity than single objective optimisations pro-
vided by current tools. This is due to the fact that there is

no need to calculate the weights when combining the con-
flicting objectives into a single one. The range of solutions in
the pareto front can also help with understanding different
project policies.

As future work, we will apply multiobjective techniques to
more complex models and compare different multiobjective
approaches. Also, as the number of variables and solutions
in the Pareto front increases with larger and more complex
models (as well as with the number of objectives), we will
explore visualisation and clustering techniques to present the
results.

Acknowledgments
This research was partly supported by the Spanish Ministry
of Science and Innovation and the European FEDER funds
under projects TIN2007-67843-C06-04, TIN2010-20057-C03-
03, TIN2011-68084-C02-00 and the Universities of Cádiz,
Alcalá, Seville and Oxford Brookes University.

6. REFERENCES
[1] T. Abdel-Hamid and S. E. Madnick. Software Project

Dynamics: An Integrated Approach. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1991.

[2] T. K. Abdel-Hamid. The dynamics of software project
staffing: A system dynamics based simulation
approach. IEEE Transactions on Software
Engineering, 15(2):109–119, 1989.

[3] E. Alba and J. F. Chicano. Software project
management with gas. Information Sciences,
177(11):2380–2401, 2007.

[4] G. Antoniol, A. Cimitile, G. A. Di Lucca, and M. Di
Penta. Assessing staffing needs for a software
maintenance project through queuing simulation.
IEEE Transactions Software Engineering, 30(1):43–58,
2004.

[5] G. Antoniol, M. D. Penta, and M. Harman. The use of
search-based optimization techniques to schedule and
staff software projects: an approach and an empirical
study. Software – Practice and Experience, To appear.

[6] M. Better, F. Glover, and M. Laguna. Advances in
analytics: Integrating dynamic data mining with
simulation optimization. IBM Journal of Research and
Development, 51(3.4):477 –487, May 2007.

[7] F. P. Brooks. The Mythical Man-Month.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, anniversary ed. edition, 1995.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, Apr. 2002.

[9] M. Di Penta, M. Harman, G. Antoniol, and
F. Qureshi. The effect of communication overhead on
software maintenance project staffing: a search-based
approach. In IEEE International Conference on
Software Maintenance (ICSM 2007), pages 315–324,
Oct. 2007.

[10] J. Durillo, A. Nebro, and E. Alba. The jMetal
framework for multi-objective optimization: Design
and architecture. In IEEE Congress on Evolutionary
Computation (CEC’2010), pages 4138–4325,
Barcelona, Spain, July 2010.

1889

[11] T. Hanne and S. Nickel. A multiobjective evolutionary
algorithm for scheduling and inspection planning in
software development projects. European Journal of
Operational Research, 167(3):663–678, 2005.
Multicriteria Scheduling.

[12] M. Harman. The current state and future of search
based software engineering. In Future of Software
Engineering (FOSE’2007), pages 342–357, Los
Alamitos, CA, USA, 2007. IEEE Computer Society.

[13] M. Harman and B. F. Jones. Search-based software
engineering. Information and Software Technology,
43(14):833–839, 2001.

[14] M. I. Kellner, R. J. Madachy, and D. M. Raffo.
Software rocess simulation modeling: Why? what?
how? Journal of Systems and Software,
46(2-3):91–105, 1999.

[15] T. Kremmel, J. Kubaĺık, and S. Biffl. Software project
portfolio optimization with advanced multiobjective
evolutionary algorithms. Applied Soft Computing,
11:1416–1426, January 2011.

[16] A. M. Law. How to build valid and credible simulation
models. In Proceedings of the 40th Conference on
Winter Simulation, WSC ’08, 2008.

[17] C. J. Lokan. Function points. Advances in Computers,
65:297–347, 2005.

[18] P. McMinn. Search-based software test data
generation: a survey: Research articles. Software
Testing, Verification and Reliability, 14:105–156, June
2004.

[19] T. Ng, M. Khirudeen, T. Halim, and S. Chia. System
dynamics simulation and optimization with fuzzy
logic. In IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM
2009), pages 2114–2118, 2009.

[20] S. Ólafsson and J. Kim. Simulation optimization:
simulation optimization. In Proceedings of the 34th
conference on Winter simulation: exploring new
frontiers, WSC ’02, pages 79–84, 2002.

[21] M. O. Saliu and G. Ruhe. Bi-objective release
planning for evolving software systems. In Proceedings
of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT
symposium on The foundations of software
engineering, ESEC-FSE’07, pages 105–114, New York,
NY, USA, 2007. ACM.

[22] N. Srinivas and K. Deb. Muiltiobjective optimization
using nondominated sorting in genetic algorithms.
Evolutionary Computation, 2:221–248, September
1994.

[23] A. Trendowicz and J. Münch. Factors influencing
software development productivity – state-of-the-art
and industrial experiences. Elsevier, 2009.

[24] J. Verner, W. Evanco, and N. Cerpa. State of the
practice: An exploratory analysis of schedule
estimation and software project success prediction.
Information and Software Technology, 49(2):181–193,
2007.

[25] H. Zhang, B. Kitchenham, and D. Pfahl. Software
process simulation modeling: An extended systematic
review. In J. Münch, Y. Yang, and W. Schäfer,
editors, New Modeling Concepts for Today’s Software
Processes, Lecture Notes in Computer Science.
Springer Berlin / Heidelberg.

[26] Y. Zhang, M. Harman, and S. A. Mansouri. The
multi-objective next release problem. In Proceedings of
the 9th annual Conference on Genetic and
Evolutionary Computation (GECCO ’07), volume 1,
pages 1129–1136, London, UK, July 2007. ACM Press.

1890

