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ABSTRACT

This paper is concerned with the determination of optimum
forces extracted by robot grippers on the surface of a grasped
rigid object – a matter which is crucial to guarantee the sta-
bility of the grip without causing defect or damage to the
grasped object. A multi-criteria optimization of robot grip-
per design problem is solved with two different configura-
tions involving two conflicting objectives and a number of
constraints. The objectives involve minimization of the dif-
ference between maximum and minimum gripping forces and
simultaneous minimization of the transmission ratio between
the applied gripper actuator force and the force experienced
at the gripping ends. Two different configurations of the
robot gripper are designed by a state-of-the-art algorithm
(NSGA-II) and the obtained results are compared with a
previous study. Due to presence of geometric constraints,
the resulting optimization problem is highly non-linear and
multi-modal. For both gripper configurations, the proposed
methodology outperforms the results of the previous study.
The Pareto-optimal solutions are thoroughly investigated to
establish some meaningful relationships between the objec-
tive functions and variable values. In addition, it is observed
that one of the gripper configurations completely outper-
forms the other one from the point of view of both objec-
tives, thereby establishing a complete bias towards the use
of one of the configurations in practice.

Categories and Subject Descriptors

I.2.8 [Computing Methodologies]: Problem Solving, Con-
trol Methods, and Search

General Terms

Algorithms
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1. INTRODUCTION
Evolutionary multi-objective optimization (EMO) is get-

ting increasing attention to solve real-world problems among
the scientific and engineering community. This is because,
real-world problems are often multi-objective in nature and
consist of non-linear, non-convex, and discontinuous objec-
tive functions and constraints. In most of the situations,
conventional optimization techniques cannot handle such com-
plexities well and are largely unsuccessful to produce a satis-
factory solution. Evolutionary algorithms are flexible, less-
structured and are found to provide an alternative and ef-
fective way to tackle these difficult optimization problems
with the fast increase in computing power.

The role of a robot gripper mechanism is significant in
today’s industrial systems, as it is the interacting device be-
tween environment and the object to be picked and placed to
perform grasping and manipulation tasks. With the evolu-
tion of automation in industries, grasping become an impor-
tant topic in robotics research community. The motivation
of growing research in robot gripper design came from hu-
man hand [11], [9]. Robot grippers are attached in the wrist
of the robot to grasp and manipulate an object. The basic
purpose of robot gripper is to hold, grip, handle and release
an object in the same way a human hand can do [3]. The
driving mechanism for a gripper can be hydraulic, electrical
and pneumatic.

There are many previous studies in literature on robot
gripper design. Cutkosky [5] carried out a study on the
choice, model and design of grasp and developed an expert
system to resolve grasping issues. Osyczka [10] proposed
a multi-objective optimization based robot gripper design
and solved the gripping problem with different configura-
tions. Ceccarelli et al. [2], [4] performed dimensional syn-
thesis of gripper mechanisms using Cartesian coordinates.
The formulation was based on practical design requirements
and the aim was to derive an analytical formulation using
an index of performance (Grasping Index) to describe both
kinematic and static characteristics. Cabrera et al. [1] de-
veloped a strategy using evolutionary algorithm for optimal
synthesis of a two-hand multi-objective constrained planar
mechanism. They validated the results by evaluating the
mechanism with some points on the Pareto-optimal front
and showed satisfactory result. Another study [8] proposed
an optimum design of two-finger robot gripper mechanism
using multi-objective formulation, considering the efficiency,
dimension, acceleration and velocity of the grasping mecha-
nisms and reported a case study by using 8R2P linkage. A
recent study [12] proposed kinematic design of serial manip-
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ulators. The method provides uniform manipulability over
the workspace and genetic algorithms are used to solve the
resulting linear problem.

In this paper, we borrow two robot gripper configurations
from Osyczka [10] and perform a bi-objective study to under-
stand the trade-off between chosen objectives. In the follow-
ing sections, first we describe the gripper mechanism config-
urations and present the corresponding multi-objective op-
timization problems. The optimization problems are then
solved using the Non-Dominated Sorting Genetic Algorithm-
II (NSGA-II) [6]. Evaluation of every solution requires an-
other single-objective maximization problem which we solve
using a classical golden section search method. The NSGA-
II obtained fronts are compared with an earlier study and
superiority of obtained results is demonstrated. Thereafter,
using the obtained trade-off solutions, we perform an in-
novization study [7] to unveil important design principles
related to the gripper dimensions. Finally, we compare op-
timal solutions of both the gripper problems and conclude
the superiority of one over the other. The paper ends with
the conclusions of this study.

2. GRIPPER- I CONFIGURATION DESIGN
The motivation of the present work is to design the struc-

ture of a robot gripper (shown in Figure 2) optimally. The
original problem was formulated elsewhere [10]. The goal
of the optimization problem is to find the dimensions of el-
ements of the grippers and optimize a couple of objective
functions simultaneously by satisfying the geometric and
force constraints. The vector of seven design variables are
x = (a, b, c, e, f, l, δ)T , where a, b, c, e, f, l are dimensions
(link lengths) of the gripper and δ is the angle between el-
ements b and c. The structure of geometrical dependencies
of the mechanism can be described as follows and are also
illustrated in Figure 2:

g =
p

(l − z)2 + e2,

b2 = a2 + g2
− 2.a.g. cos(α − φ),

α = arccos(
a2 + g2

− b2

2.a.g
) + φ,

a2 = b2 + g2
− 2.b.g. cos(β + φ),

β = arccos(
b2 + g2

− a2

2.b.g
) − φ,

φ = arctan(
e

l − z
).
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Figure 1: A sketch of robot Gripper-I.
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Figure 2: Geometrical dependencies of the Gripper-
I mechanism.

The free body diagram for the force distribution is shown
in Figure 3. From the figure, we can write the following:

R.b. sin(α + β) = Fk.c,

R =
P

2. cos α
,

Fk =
P.b sin(α + β)

2.c cos α
,

where R is the reaction force on link a and P is the actuating
force applied from the left side to operate the gripper.

From the above correlations the objective functions can
be formulated as follows:

1. The first objective function can be written as the dif-
ference between the maximum and minimum griping
forces for the assumed range of gripper ends displace-
ment:

f1(x) = max
z

Fk(x, z) − min
z

Fk(x, z). (1)

The minimization of this objective ensures that there
is not much variation in the gripping force during the
entire range of operation of the gripper.

2. The second objective function is the force transmission
ratio, the ratio between the applied actuating force P
and the resulting minimum gripping force at the tip of
link c:

f2(x) =
P

minz Fk(x, z)
. (2)

The minimization of this objective will ensure that the
gripping force experienced at the tip of link c has the
largest possible value.

cb
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P
2

Figure 3: Force distribution of mechanism of the
Gripper-I.

In the aforesaid multi-objective optimization problem, both
objective functions depend on the vector of decision vari-
ables and on the displacement z. Thus for a given solution
vector x, the values of the conflicting objective functions
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f1(x) and f2(x) requires to find the maximum and minimum
value of gripping force Fk(x, z) for different possible values
of z. The parameter z is the displacement parameter which
takes a value from zero to Zmax. Taking a small finite in-
crement in z, recording the corresponding Fk value for each
z, and then locating the maximum and minimum values of
Fk is a computationally time-consuming proposition. Here,
we employ the well-known golden section search algorithm
for locating minimum and maximum Fk. It is important to
note that these extreme values may take place at one of the
two boundaries (either z = 0 or z = Zmax) and the golden
section search is capable of locating them. The only draw-
back of the golden section search is that it can locate the
minimum of a unimodal function accurately, but for multi-
modal problems the algorithm is not guaranteed to find an
optimum. Fortunately, for this problem, we have checked
the nature of Fk variation for a number of different solution
vectors (x) and every time a unique maximum in the spec-
ified range of z is observed. A typical variation is shown
in Figure 4. Although there is usually a single maximum

k
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Figure 4: Variation of force Fk with the displacement
z for a typical x for Gripper-I.

point, one of two extremes have been found to correspond
to the minimum Fk. Thus, for locating the minimum Fk, we
simply check the two extreme values of z and use the one
having the smaller value of Fk.

The gripper problem also has a number of non-linear con-
straints:

1. The dimension between ends of gripper for maximum
displacement of actuator should be less than minimal
dimension of the gripping object:

g1(x) = Ymin − y(x, Zmax) ≥ 0,

where y(x, z) = 2.[e + f + c. sin(β + δ)] is the displace-
ment of gripper ends and Ymin is the minimal dimen-
sion of the griping object. The parameter Zmax is the
maximal displacement of the gripper actuator.

2. The distance between ends of gripper corresponding to
Z max should be greater than zero:

g2(x) = y(x, Zmax) ≥ 0.

3. The distance between the gripping ends correspond-
ing to no displacement of actuator (static condition)
should be greater than the maximum dimension of
gripping object:

g3(x) = y(x, 0) − Ymax ≥ 0,

where Ymax is the maximal dimension of the griping
object.

4. Maximal range of the gripper ends displacement should
be greater than or equal to the distance between the
gripping ends corresponding to no displacement of ac-
tuator (static condition):

g4(x) = YG − y(x, 0) ≥ 0, (3)

where YG is the maximal range of the gripper ends
displacement.

5. Geometrical properties are preserved by following two
constraints:

g5(x) = (a + b)2 − l2 − e2
≥ 0.

g6(x) = (l − Zmax)
2 + (a − e)2 − b2

≥ 0.

The graphical illustration of constraint g5(x) and g6(x)
is shown in Figure 5.

l

a

b

e
e

b

a

i) ii)

α

α

l − Zmax

Figure 5: Geometric illustration of constraints i)
g5(x) ii) g6(x) for Gripper-I.

6. From the geometry of the gripper the following con-
straint can be derived:

g7(x) = l − Zmax ≥ 0. (4)

7. The minimum gripping force should be greater than or
equal to chosen limiting gripping force:

g8(x) = min
z

Fk(x, z) − FG ≥ 0, (5)

where FG is the assumed minimal griping force.

2.1 NSGA-II-cum-Golden-Section Search and
Results

We employ the constraint handling strategy of NSGA-II
to take care of all of the above constraints. The gripper di-
mensions can be such that for some displacement value z,
the gripper configuration is no more a mechanism or there
is a locking in the mechanism. We first check for such a
scenario by considering a fixed increment of z by 0.1 mm. If
such a scenario happens, we penalize the solution by a large
amount to discourage its presence in the NSGA-II popula-
tion. Otherwise, as discussed above, for every population
member, the golden section search approach is employed to
compute maximum Fk value and check the extremes of z to
compute the minimum value of Fk.

The other fixed parameter values for the problem and
NSGA-II parameters are given in the following:
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1. The variable bounds of all the link lengths and angle
are as follows: 10 ≤ a ≤ 250, 10 ≤ b ≤ 250, 100 ≤

c ≤ 300, 0 ≤ e ≤ 50, 10 ≤ f ≤ 250, 100 ≤ l ≤ 300,
1.0 ≤ δ ≤ 3.14.

2. The geometric parameters are: Ymin = 50 mm, Ymax =
100 mm, YG = 150 mm, Zmax = 50 mm, P = 100 N
and FG = 50 N .

3. NSGA-II parameters are as follows: population size =
200, probability of SBX recombination = 0.9, proba-
bility of polynomial mutation = 0.1, distribution index
for real-variable SBX crossover = 20, and distribution
index for real-variable polynomial mutation = 100.

Figure 6 shows the obtained non-dominated front by NSGA-
II-cum-golden-section search procedure. To compare our re-
sults, we also plot the results reported in another study [10]
(we term these results as ‘Original’ here). After 1,000 gener-
ations of NSGA-II, the obtained trade-off front completely
outperforms that reported in the original study. However, as
we keep running our procedure, a betterment in the trade-
off frontier is noticed. We then ran our procedure for a large
number of generations and the resulting front is shown to be
substantially better. This front is also shown in the figure.
An increase in generations or use of different initial popu-
lations did not seem to change the front in any significant
manner.

2

1

A

B

C3

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0  0.2  0.4  0.6  0.8  1  1.2
f

f

Original
NSGA−II (Small Computation)
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Figure 6: Trade-off solutions obtained using NSGA-
II run for small and large number of generations for
Gripper-I. Solutions are compared with the original
study [10].

To investigate the changes in configurations of the gripper
from one extreme trade-off solution to the other, we take two
extreme solutions (A and C) and one intermediate solution
(B) and show a diagram for each in Figure 7.

2.2 Innovization Study on Gripper-I
Interestingly and surprisingly, the grippers change in only

one of the dimensions, whereas the remaining six design vari-
ables have an identical value. To investigate how one trade-
off solutions vary from the other, we now analyze the values
of seven design variables as a function of one of the objec-
tives (force transmission ratio). Figures 8 to 14 show these
plots. It is clear that dimensions a and b are fixed at their
allowable upper limit value, dimensions e and l are fixed at
their allowable lower limit value, and dimension f and the

angle δ are set to an intermediate value (37 mm and 98.6
degrees, respectively). The only way one optimal configu-
ration changes to another optimal configuration by making
a trade-off between two objectives is that the dimension c
(gripper length) changes monotonically (Figure 14) with the
force transmission ratio (the second objective). For a higher
force transmission ratio, the dimension c must be large and
vice versa. This can be explained from the fact that for a
large link-length c, the force experienced at the tip will be
small, thereby making a large value of f2. Thus, if a better
grip is desired, it is better to have a smaller link-length c
and keep all the other variables to their prescribed values as
discussed above.

In some sense, this innovized design principles suggest
that if a designer wants to guarantee an optimal configu-
ration the dimensions a, b, e, f and l, and angle δ must
be set at some specific values, but the dimension c (gripper
length) can be varied to suit the required trade-off in the
two chosen objectives. When we fit the c-variation with the
second objective, we observe the following linear empirical
relationship:

c = 243.6f2 . (6)

Such design principles are useful to not only design an op-
timal configuration, but also to get valuable insight about
the properties of possible optimal solutions under a multi-
objective scenario.

2

Slope =1.0 
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c

f

Figure 14: Variation of link length c with force trans-
formation ratio for Gripper-I.

Before we leave this problem, we would like to discuss an
important aspect of the innovization study. Innovization
task is performed on a set of Pareto-optimal points to de-
cipher salient principles which are common to the optimal
points. Such principles are then expected to provide valu-
able knowledge about properties common to optimal solu-
tions and that do not exist in non-optimal solutions. How-
ever, if such a task is performed on a set of non-dominated
set of solutions away from the Pareto-optimal set, there may
exist some other relationships common to them, but they
may be different from the innovized principles common to
Pareto-optimal solutions. For this problem, we have two
fronts, as shown in Figure 6, one obtained with a reduced
computational effort and one that was obtained with a large
number function evaluations. When we perform an innoviza-
tion task on the front obtained after 1,000 generations, a
different set of principles emerged. Table 1 tabulates the
differences in innovization principles of two sets of solutions.
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(A) (B) (C)

Figure 7: Three configurations taken from the NSGA-II front for Gripper-I.

Although both sets make all but one of the variables con-
stant across the front, the constant values are somewhat
different from each other. The trade-off points in both sets
differ only in the link-length c. This study reveals the fact
that by keeping all but c variable fixed may achieve a trade-
off among the objectives, but there exist one set of fixed
values (shown in the first row of the table) that makes the
front close to the Pareto-optimal and is of interest to design-
ers.

It can be observed from the table that while the larger
computational results make four of the seven variables to lie
on their allowable bounds (lower or upper), the smaller com-
putational results make only one of the variables lie on its
upper bound. Due to the highly non-linear and trigonomet-
ric terms in the constraints, it took a large number of gen-
erations before the near-optimal solutions could be found.

3. GRIPPER- II CONFIGURATION DESIGN
An overall sketch of the Gripper-II is shown in Figure 15

and was discussed in [10]. This configuration is somewhat

b
c

l

a

d

z

β

α

Figure 15: A sketch of robot Gripper-II.

simpler than Gripper-I. The design variable vector is x =
(a, b, c, d, l)T , where the elements of this vector are five
link-lengths of the gripper. By using geometrical relation-

ships, we can write the following:

g =
p

(l + z)2 + d2,

α = arccos(
a2 + g2

− b2

2.a.g
) + φ,

a2 = b2 + g2
− 2.b.g. cos(β + φ),

β = arccos(
b2 + g2

− a2

2.b.g
) − φ,

φ = arctan(
d

l + z
).

The distribution of the forces is presented in Figure 16.
Based on the figure, we can write the following:

l

d

P

g

c

b

R
F

z

β

α
φ

φ

Figure 16: Distribution of forces on Gripper-II.

R.b. sin(α + β) = F.(b + c),

R =
P

2. cos(α)
,

Fk =
P.b sin(α + β)

2.(b + c). cos α
.

Two objectives used in this study are identical to that in
Gripper-I. However, the constraints are somewhat different.
The first four constraints are exactly the same as discussed
in Gripper-I. The other constraints are as follows:

g5(x) = c − Ymax − a ≥ 0,

g6(x) = (a + b)2 − d2
− (l + z)2 ≥ 0,

g7(x) = α ≤
π

2
,
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Figure 8: Variation of link length
a with force transformation ratio
for Gripper-I.
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Figure 9: Variation of link length
b with force transformation ratio
for Gripper-I.
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Figure 10: Variation of link length
e with force transformation ratio
for Gripper-I.
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Figure 11: Variation of link length
f with force transformation ratio
for Gripper-I.
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Figure 12: Variation of link length
l with force transformation ratio
for Gripper-I.
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Figure 13: Variation of angle δ
with force transformation ratio
for Gripper-I.

Table 1: Comparison of innovized principles of two sets of trade-off solutions for Gripper-I.

a b c e f l δ
[10,250] [10,250] [100,300] [0,50] [10,250] [100,300] [1.00,3.14]

Large computations 250 250 243.6f2 0 37 100 98.6o

Small computations 250 233 210.3f2 14 15 180 106.0o

where, y(x, z) = 2(d + (b + c)) sin(β) is the displacement of
gripper ends, Ymin is the minimal dimension of the griping
object, Ymax is the maximal dimension of the griping object,
YG is the maximal range of the gripper ends displacement,
and Zmax is the maximal displacement of the gripper actu-
ator.

3.1 NSGA-II-cum-Golden-Section Search and
Results

We use the identical algorithm as that used in the case of
Gripper-I. The following parameter values are used:

1. Variable bounds are as follows: 10 ≤ a ≤ 250, 10 ≤

b ≤ 250, 100 ≤ c ≤ 250, 10 ≤ d ≤ 250, 10 ≤ l ≤ 250

2. Other parameters are as follows: Ymin = 50mm, Ymax =
100 mm, YG = 150 mm, Zmax = 50 mm, P = 100 mm,

3. NSGA-II Parameters are exactly the same as in the
case of Gripper-I.

Another study on a number of solutions, it was found that
the gripping force Fk has a single maximum point, which is
found using the golden section method. The minimum of
Fk lies usually on one of the extreme values of z. Figure 17
shows a typical variation of Fk on the entire range of z values
used in this study.

k
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Figure 17: A typical variation of gripping force Fk

with the displacement z for Gripper-II.

Figure 18 shows the trade-off frontiers obtained by the
NSGA-II procedure after 1,000 generations. A comparison
with the original study [10] reveals that the frontier obtained
using NSGA-II completely dominates the front reported in
the original study. The use of an efficient constraint handling
strategy, an accurate methodology for identifying minimum
and maximum of gripping force, and modular operations of
NSGA-II allowed better non-inferior solutions to be found.
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(A) (B) (C)

Figure 19: Three NSGA-II solutions selected from trade-off frontier for Gripper-II.
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Figure 18: Trade-off frontiers obtained by NSGA-II
and the original study are compared for Gripper- II.

Figure 19 shows three widely distributed configurations, in-
cluding two extreme trade-off solutions (A and C).

3.2 Innovization Study on Gripper-II
Like in Gripper-I, here we study the obtained NSGA-II

solutions for any hidden design principles. Figures 20, 21,
22, 23, and 24 show the variation of variables for different
values of the second objective function (force transforma-
tion ratio). The dimension a takes an identical intermediate
value for all trade-off solutions. The dimensions c and l take
their upper bound value for all trade-off solutions. The di-
mensions b and d reduce with force transmission ratio (f2)
in the following manner:

b = 270.426f−0.213
2 , (7)

d = 138.380f−0.149
2 . (8)

These variations in the range of their allowable range is
rather small, but are enough to cause a trade-off between
the two objectives considered in this study. The reduction in
link-length b with increasing f2 can be explained as follows.
Since b and c act like a balance with end forces proportional
to P and Fk, respectively, for a fixed c, f2 which is the ratio
of P/Fk is inversely proportional to b.

4. COMBINED CONSIDERATION OF GRIP-

PERS I AND II
After finding the trade-off solutions for both grippers in-

dependently, an user may wonder which of the two gripper
problems is better from the point of view of two objectives

used in this study (minimum variation in gripping force and
minimum force transmission ratio). Although they look sim-
ilar, both grippers are fundamentally different in their op-
erations. Gripper-I closes its grip when the actuation takes
place towards right, whereas in Gripper-II it happens when
it is pushed left. Moreover, Gripper-II has fewer links than
Gripper-I. For the constraint sets considered here, trade-
off plots (Figures 6 and 18) suggest that Gripper-II causes
a larger variation in gripping force Fk compared to that in
Gripper-I. Also, for Gripper-I, the force transmission ratio is
better. Thus, in general, Gripper-I can be considered to be a
better design than Gripper-II. Figure 25 shows the trade-off
frontiers from Gripper-I and Gripper-II studies.

1
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3.8

0.01 0.1 0.6 1 10 100 900
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f

Grip
p
er−II
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p
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Figure 25: Trade-off frontiers of the two gripper
studies are shown.

It is clear from the figure that Gripper-I solutions outper-
form Gripper-II solutions, hence Gripper-I can be considered
as a better design solution than Gripper-II.

5. CONCLUSIONS
In this paper, we have considered the design optimization

of two robot gripper configurations, each having a number
of non-linear and geometrical constraints. Another difficulty
of these problems is that the objectives and constraints in-
volve a couple of single-variable optimization tasks, thereby
making the problem a nested optimization problem. Here,
we have used the golden section search method for solving
the inner optimization task and the constrained NSGA-II
procedure for the bi-objective optimization task.

First, the obtained trade-off frontier for each configuration
has been found to outperform the front reported in another
study on the same problems. Second, the trade-off solutions
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Figure 20: Variation of link length
a with force transformation ratio
for Gripper-II.
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Figure 21: Variation of link length
b with force transformation ratio
for Gripper-II.
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Figure 22: Variation of link length
c with force transformation ratio
for Gripper-II.
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Figure 23: Variation of link length
d with force transformation ratio
for Gripper-II.
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Figure 24: Variation of link length
l with force transformation ratio
for Gripper-II.

have been analyzed to decipher salient design principles as-
sociated with them. Interestingly, all the trade-off solutions
have been found to vary in only one of the link-lengths and
other variables have been found to remain constant in all
trade-off solutions. Such knowledge about trade-off solu-
tions at large are valuable to the designers.

From the two sets of trade-off solutions obtained by our
proposed approach, it has also become clear that Gripper-I
configuration is better than Gripper-II from a perspective
of both objectives. Thus, our optimization task has finally
suggested the use of Gripper-I for a possible implementation.
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