
Multi-Objective Optimization of Dynamic Memory
Managers using Grammatical Evolution∗

J. Manuel Colmenar‡, José L. Risco-Martín?, David Atienza†?, J. Ignacio Hidalgo?

‡ C.E.S. Felipe II, Complutense University of Madrid, 28300 Aranjuez, Spain
jmcolmenar@ajz.ucm.es

? Dept. of Computer Architecture and Automation, Complutense University of Madrid, 28040 Madrid, Spain
{jlrisco,hidalgo}@dacya.ucm.es

† Embedded Systems Laboratory (ESL), EPFL, 1015 Lausanne, Switzerland
david.atienza@epfl.ch

ABSTRACT
The dynamic memory manager (DMM) is a key element
whose customization for a target application reports great
benefits in terms of execution time, memory usage and en-
ergy consumption. Previous works presented algorithms to
automatically obtain custom DMMs for a given applica-
tion. Nevertheless, those approaches are based on gram-
matical evolution where the fitness is built as an aggregate
objective function, which does not completely exploit the
search space, returning the designer the DMM solution with
best fitness. However, this approach may not find solu-
tions that could fit in a concrete hardware platform due to
a very low value of one of the objectives while the others re-
main high, which may represent a high fitness. In this work
we present the first multi-objective optimization methodol-
ogy applied to DMM optimization where the Pareto domi-
nance is considered, thus providing the designer with a set of
non-dominated DMM implementations on each optimization
run. Our results show that the multi-objective optimiza-
tion provides Pareto-optimal alternatives due to a better
exploitation of the search space obtaining better hypervol-
ume values than the aggregate objective function approach.
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1. INTRODUCTION AND MOTIVATION
Dynamic memory is an important resource to be managed,

specially in multimedia applications. In fact, studies have
shown that dynamic memory management can consume up
to 38% of the execution time in C++ applications [5]. Thus,
the performance of dynamic memory management can have
a substantial effect on the overall performance of highly dy-
namic applications.

In this way, general-purpose Dynamic Memory Managers
(DMMs) implemented on current operating systems offer a
reasonable performance for most of the applications. How-
ever, this performance can be improved by custom DMMs
built up considering the issues of a target application. In this
regard, three out of the twelve integer benchmarks included
in SPEC (parser, gcc, and vpr [16]) and multiple server ap-
plications, use one or more custom DMMs [3]. Nevertheless,
designing and coding a custom DMM for an application is a
complex and error-prone task.

Past works have proposed to solve this problem using flex-
ible infrastructures to build any DMM for C++ applications
[3, 2, 1]. Based on these proposals, several recent works pro-
posed optimization methods to automatically obtain optimal
custom DMMs through grammatical evolution [14, 13, 7]. In
these works, the authors describe different implementations
of optimization algorithms and contribute with several ap-
proaches like parallel implementations or reliability-aware
optimizations. All these proposals were based on the opti-
mization of three different, but combined, objectives: exe-
cution time, memory usage and energy consumption. How-
ever, these works define the fitness as a single aggregate
objective function to be minimized. Therefore, the multi-
objective problem is solved through scalarisation [11], which
is a widely reported method of solving a multi-objective
problem as a mono-objective one. Although these works
obtain significant improvements in performance and mem-
ory usage with respect to general-purpose DMMs, their ap-
proach cannot identify all non-dominated solutions because
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the aggregation of objectives leads to explore only the con-
vex part of the Pareto front [8].

In fact, the limitation of the fitness function applied to a
multi-objective problem is important in the optimization of
DMMs, because the algorithm may overlook solutions that
could fit in a concrete hardware platform. For example,
embedded multimedia systems like smartphones or tablets
need low energy consumption, while server computers are
more concerned about execution time. Thus, if the algo-
rithm produces a DMM with the shortest execution time,
but with a high memory usage, this DMM could be the best
choice for a server computer, but it also could be discarded
by the selection method based on fitness due to its high
memory usage.

On the other hand, a multi-objective optimization, where
the concept of non-dominated solutions and Pareto-optimal
front (POF) is considered, could provide a set of different
solutions with minimum values on any (or all) of the objec-
tives. As a consequence, a designer could select the DMM
implementation from the resulting POF that better fits on
the target platform for a given application.

In addition, this new multi-objective optimization may
obtain DMM implementations with similar objective values
but different implementations. Therefore, the designer could
select the simplest DMM implementation because the opti-
mization process returns a set of non-dominated solutions.

Following these ideas, in this paper we present a novel
Multi-Objective Grammatical Evolution (MOGE) optimiza-
tion method that allows the designer to automatically obtain
a set of non-dominated custom DMMs for a given target
application. We considered three optimization objectives,
i.e., execution time, memory usage and energy consump-
tion. To the best of our knowledge, this is the first time
where the concepts of non-dominated solutions and Pareto-
optimal front are applied to obtain optimal custom DMMs.
The multi-objective optimization we present has been imple-
mented by merging grammatical evolution and the NSGA-II
algorithm [9]. Our experimental results show that the solu-
tions obtained by MOGE are not dominated by the solution
obtained through the aggregate objective function approach
in almost all cases. In addition, the MOGE optimization ob-
tains a higher number of non-dominated solutions and better
hypervolume values than the aggregate objective approach.

The rest of the paper is organized as follows. Section 2
describes the DMM design space and how we model it us-
ing grammatical evolution. Section 3 details the new multi-
objective optimization algorithm where we merge our multi-
objective approach and grammatical evolution. Section 4
shows the results of our method for several benchmarks and,
finally, Section 5 draws conclusions and future work.

2. BACKGROUND: DESIGN SPACE OF DMM
AND GRAMMATICAL EVOLUTION

Dynamic memory management basically consists of two
separate tasks, i.e., allocation and deallocation. On the one
hand, allocation is the mechanism that searches for a mem-
ory block big enough to satisfy the memory requirements of
an object request in a given application. On the other hand,
deallocation is the mechanism that returns a freed memory
block to the available memory of the system to be reused.

In current applications, the blocks are requested and re-
turned in any order. Thus, the DMM task consists of guid-

Segregated free−list

Simple segregated storage Segregated fit

Exact segregated fit Strict segregated fit

Buddy systems

Binary        Fibonacci        Weighted        Double

Figure 1: Classification of memory allocators.

ing the allocation and deallocation of memory blocks after
each application request. To this end, there exist multi-
ple free block administration policies, data structures to be
managed, and also techniques like splitting and coalescing
may be implemented in order to improve the behavior of the
DMM. Therefore, we face a large design space of solutions
that we summarize next.

2.1 Design space of DMMs
As shown by previous works in the literature [1, 14], a cus-

tom DMM that takes advantage of the application-specific
behavior is usually the best approach for dealing with dy-
namic memory operations. Thus, we need an optimization
flow able to represent and produce any DMM implementa-
tion in the previously described design space.

Among all the previous works about DMM design, we fo-
cus our approach in the proposal followed by [1], [2], [14] and
[7]. Hence, we consider a DMM as a set of free-blocks lists
where different policies can be implemented. As a result,
we can define a hierarchy of memory allocators, as shown in
Figure 1, that we briefly describe next according to [17].

A segregated free-list allocator divides the free-blocks list
into several subsets, taking into account the size of the free
blocks. Both allocations and blocks are solved choosing the
appropriate list. This class of mechanism usually imple-
ments a good fit or best fit policy.

Simple segregated storage is a segregated free-list alloca-
tion mechanism which divides the storage into areas, allo-
cating objects of a single size, or of a small range of sizes,
within each area. Then, allocation is fast and avoids head-
ers, but may lead to high external fragmentation, as unused
parts of areas cannot be reused for other object sizes.

Segregated fit is another variation of the segregated free-
list class of allocation mechanisms. It maintains an array
of free-blocks lists, each list holding free blocks of a partic-
ular range of sizes. The manager identifies the appropriate
free-blocks list and allocates from it (often using a first-fit
policy [2]). If this mechanism fails, a larger block is taken
from another list by splitting it accordingly.

Strict segregated fit is a segregated-fit allocation mecha-
nism, which has only one block size on each free-blocks list.
A requested block size is rounded up to the next provided
size, and the first block on that list is returned. The sizes
must be chosen so that any block of a larger size can be split
into a number of smaller sized blocks.

Buddy systems are special cases of strict segregated-fit al-
locators, which make splitting and coalescing fast by pairing
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each block with a unique adjacent buddy block. To this end,
an array of free-blocks lists exists, namely, one for each al-
lowable block size. Allocation rounds up the requested size
to an allowable size and allocates from the corresponding free
list. If the free-blocks list is empty, a larger block is selected
and split. A block may only be split into a pair of buddies.
A block may only be coalesced with its buddy, and this is
only possible if the buddy has not been split into smaller
blocks. Different sorts of buddy system are distinguished by
the available block sizes and the method for splitting. They
include binary buddies (the most common type), Fibonacci
buddies, weighted buddies, and double buddies.

Exact segregated fit is a segregated fit allocator, which
has a separate free-blocks list for each possible block size.
The array of free-blocks lists may be represented sparsely, so
large blocks may be treated separately. The implementation
depends on the distribution of block sizes between lists.

2.2 Grammatical Evolution-Based Exploration
In order to automatically obtain a custom DMM for a tar-

get application, we selected Grammatical Evolution (GE)
[11] as the optimization method. GE is a grammar-based
form of Genetic Programming (GP) [12] that is able to evolve
hierarchical representations like the memory allocators clas-
sification proposed for the DMMs.

Based on the method proposed by the authors of [13], our
optimization process begins with a profile of the memory op-
erations of the target application. This profile can be used
to create a grammar, which is based on the previous DMM
hierarchy, improved by including some application-specific
data like the block sizes and the non-terminal symbols. The
grammar is subsequently taken to decide if a DMM individ-
ual is valid, and also to produce new individuals through the
genetic operators.

Figure 2 shows the grammar for the Boxed-sim bench-
mark optimization process. In this case we find a set of
non-terminals symbols, N , a set of terminals, T , a set of
production rules, P , that maps the elements of N to T , and
the start symbol S, which is a member of N .

Following the production rules, a DMM is built up as a
list of allocators (see production rules I and II in Figure
2). There are two kinds of allocators (rule II) whose con-
figuration is made recursively by applying the rest of the
production rules. Hence, a DMM is created after taking a
set of decisions on the tree represented by the grammar.

Once the grammar is defined, the multi-objective opti-
mization produces different DMM implementations, i.e., in-
dividuals that are evaluated and evolved to obtain a set of
non-dominated solutions.

3. PROPOSED MULTI-OBJECTIVE DMM
OPTIMIZATION

3.1 Problem definition
The goal of the multi-objective optimization is to simulta-

neously optimize several objectives that could be sometimes
contradictory. For such kind of problems, a single optimal
solution does not exist, and some trade-offs among the dif-
ferent involved variables need to be considered.

In the case of DMM optimization, we consider the follow-
ing 3-objective minimization problem:

N = {<DynamicMemoryManager >, <Allocators >,

<AllocatorSize >, <AllocatorMaxSize >,

<AllocatorClass >, <Size >, <MaxSize >,

<AllowSplitting >, <AllowCoalescing >,

<DataStructure >, <AllocationMechanism >,

<AllocationPolicy >}

T = {SegregatedFreeList , SimpleSegregatedStorage , ExactSegregatedFit ,

BuddySystemBinary , BuddySystemFibonacci , 4, 8, 12, 16, 20, 24, 32,

36, 40, 48, 64, 72, 80, 96, 104, 112, 124, 144, 192, 256, 264, 272,

288, 312, 508, 520, 1584, 2036, 2048, 2304, 4000, 6192, 8256, 24576,

147456 , true , false , SLL , DLL , BTREE , FIRST , BEST , EXACT , FIFO , LIFO}

S = <DynamicMemoryManager >

I <DynamicMemoryManager > ::= <Allocators >

II <Allocators > ::= <AllocatorSize >

|<AllocatorMaxSize >

III <AllocatorSize > ::= <AllocatorClass >

<AllowSplitting >

<AllowCoalescing >

<Size >

<DataStructure >

<AllocationMechanism >

<AllocationPolicy >

<Allocators >

IV <AllocatorMaxSize > ::= <AllocatorClass >

<AllowSplitting >

<AllowCoalescing >

<MaxSize >

<DataStructure >

<AllocationMechanism >

<AllocationPolicy >

V <AllocatorClass > ::= SegregatedFreeList

|SimpleSegregatedStorage

|ExactSegregatedFit

|BuddySystemBinary

|BuddySystemFibonacci

VI <Size > ::=1|4|5|6|8|16|24|28|32

|52|128|544|853|2329|4658

VII <MaxSize > ::= 147456

VIII <AllowSplitting > ::= true|false

IX <AllowCoalescing > ::= true|false

X <DataStructure > ::= SLL|DLL|BTREE

XI <AllocationMechanism > ::= FIRST|BEST|EXACT

XII <AllocationPolicy > ::= FIFO|LIFO

Figure 2: Grammar file obtained for Boxed-sim.

Minimize ~z = (f1(~x), f2(~x), f3(~x))

subject to ~x ∈ X (1)

where ~z is the objective vector with 3 objectives to be
minimized: execution time (f1), memory usage (f2) and en-
ergy consumption (f3); ~x is the decision vector, which cor-
responds to a DMM implementation, and X is the feasible
region in the decision space, which corresponds to all the
possible DMMs produced by the grammar defined in the
previous section.

As stated before, previous approaches solved the DMM
optimization by considering a fitness function defined as a
single aggregate objective function:

fitness(x̃ ) = c1 f1 (x̃ ) + c2 f2 (x̃ ) + c3 f3 (x̃ )

Although this is a common approach [8], the solution ob-
tained will depend on the relative values of the specified
weights. Moreover, the weighted sum method is essentially
subjective, as the decision manager needs to supply the
weight of every objective.

In addition, the approach of aggregated objectives cannot
identify all non-dominated solutions, but only solutions lo-
cated on the convex part of the Pareto front can be found.
The objective way of solving multi-objective problems re-
quires a Pareto-compliant ranking method, favoring non-
dominated solutions, as seen in current multi-objective evo-
lutionary approaches such as NSGA-II and SPEA2. Here,
no weight is required and thus no a priori information on
the problem is needed [8].

Therefore, we tackle the DMM optimization problem by
considering the concept of dominance. Hence, a solution
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Figure 3: Non-dominated solutions of a set of solu-
tions in a two objective space.

~x ∈ X is said to dominate another solution ~y ∈ X (denoted
as ~x ≺ ~y) iff the following two conditions are satisfied:

∀i ∈ {1, 2, 3} , fi (~x) ≤ fi (~y)

∃i ∈ {1, 2, 3} , fi (~x) < fi (~y) (2)

Then, a DMM implementation DMMi dominates a dif-
ferent solution DMMj iff all the execution time, memory
usage and energy consumption values of DMMi are lower
or equal to those of DMMj and, in addition, almost one of
those values of DMMi is strictly lower than in DMMj .

A decision vector ~x ∈ X is non-dominated with respect to
X if another ~x′ ∈ X, such that ~x′ ≺ ~x, does not exist.

A solution ~x∗ ∈ X is called Pareto-optimal if it is non-
dominated with respect to X.

An objective vector is called Pareto-optimal if the corre-
sponding decision vector is Pareto-optimal. Therefore, the
non-dominated set of the entire feasible search space X is
the Pareto-optimal Set (POS). Then, the image of the POS
in the objective space is the Pareto-optimal Front (POF)
of the multi-objective problem at hand. Figure 3 shows a
particular case of the POF in the presence of two objec-
tive functions. Consequently, a multi-objective optimization
problem is solved, when its complete POS is found.

In particular, the POF and POS correspond to the ana-
lytical solution of a multi-objective problem. However, the
multi-objective optimization we propose in this work obtains
a set of solutions corresponding to non-dominated DMM im-
plementations that may belong to the POS. Hence, this is an
experimental approach, thus we can state that the optimiza-
tion method obtains an approximated set of non-dominated
solutions [10]. This approach is appropriate for the DMM
optimization problem because the obtention of the analyti-
cal solution is not affordable.

In the following subsection we detail the internals of the
multi-objective optimization method we propose.

3.2 New MOGE optimization
To solve the aforementioned problem, we propose a new

optimization method, namely, the Multi-Objective Gram-
matical Evolution (MOGE) approach, which consists of a
multi-objective optimization algorithm that merges GE and
the main mechanisms of the NSGA-II, i.e., fast non-dominated
sorting algorithm based on crowding distance and elitism.

Figure 4 shows the optimization flow of MOGE. As this

Population

Extract Non-dominated

Selection
Crossover
Mutation

Objective
Evaluation

DMM Simulator

DMM
i

Obj Values

Elites

Merge & Normalize

Last generation?
NO

YES

Extract POF

Figure 4: MOGE optimization flow.

figure shows, the flow starts by considering an initial pop-
ulation of individuals representing DMMs. In this scenario,
the generation of the initial population is done by using the
grammar that comes from the profile of the target applica-
tion. After that, each iteration of the algorithm follows the
same pattern. Firstly, the non-dominated solutions (elites)
are extracted from the population. Then, selection is applied
on the rest of the population. In our implementation, selec-
tion consists on a tournament where dominance is considered
and, in case of mutual dominance between two individuals,
crowding distance is applied. After that, the crossover and
mutation operators are applied in the same way as the au-
thors of [14] and [7] propose. Next, the objective evaluation
is performed by using the simulator proposed by the authors
of [15]. Finally, the population is updated with the result-
ing individuals from the previous operations merged with
the formerly extracted elites. At the end of each iteration
the population maintains the same number of individuals
as stated in the configuration of the algorithm, because the
worst solutions in terms of dominance and crowding distance
are discarded on the normalization step.

4. EXPERIMENTAL SETUP AND RESULTS
In order to evaluate the multi-objective optimization, we

have selected six benchmark programs with different dy-
namic memory allocation/deallocation patterns, namely: Lind-
say, Boxed-sim, Cfrac, GCBench, Espresso and Roboop. Lind-
say is a hypercube network communication simulator coded
in C++ [3]. Boxed-sim is a graphics application that sim-
ulates spheres bouncing in a box [6]. Cfrac performs the
factorization of an integer to two nearly equal factors [19].
GCBench is an artificial garbage collector benchmark that
allocates and drops complete binary trees of various sizes [4].
Espresso is an optimization algorithm for PLAs that mini-
mizes boolean functions [16]. Roboop is a C++ robotics ob-
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ject oriented programming toolbox suitable for synthesis and
simulation of robotic manipulator models in an environment
that provides “MATLAB like” features for the treatment of
matrices [3].

Table 1 shows several statistics illustrating their features
as memory-intensive programs. These statistics are the num-
ber of managed objects, the total memory used (in bytes),
the peak or maximum memory in use (in bytes), the average
size of the required blocks (in bytes) and the total number of
memory operations, which we have used to sort the bench-
marks on the table.

Then, we have performed two different optimization ex-
periments. First, we have run the optimization algorithm
where the fitness is defined as a single aggregate objective
function. We have named this algorithm Aggregated Sum
GE (or ASGE). Second, we have run our proposed new
MOGE approach on the benchmarks. Both optimization
algorithms were run 10 times for each benchmark using the
same configuration parameters, as depicted in Table 2.

Table 2: Parameters for both ASGE and MOGE
optimization algorithms.

Parameter Value
Population size 40
Number of generations 1000
Probability of crossover 0.80
Probability of mutation 0.02

In our experiments, apart from the designed custom DMMs
using MOGE and ASGE, we have compared with Kingsley,
which is a general-purpose memory allocator frequently im-
plemented in Windows-based systems [17].

By definition, MOGE’s best solution consists of a set of
non-dominated individuals (cf. Section 3), whereas ASGE’s
best solution is defined by the individual with less fitness.
Then, after running the optimizations, MOGE obtained a
set of results that represent different non-dominated DMM
implementations for each benchmark optimization, while ASGE
obtained one DMM for each optimization. For the sake of
clarity we chose to display the results for two of the three
objectives: execution time and memory usage, normalizing
the result to the worst value of each set of experiments. We
selected these two objectives because in some cases the ex-
ecution time and the energy consumption are proportional.
On the other hand, the execution time and memory usage
are always contradictory objectives.

Therefore, Figure 5 displays three different kinds of so-
lutions for each benchmark. First of all, it shows the be-
havior of Kingsley. Second, labeled as ASGE, the figure
shows the solution with the best fitness obtained after run-
ning the mono-objective optimizations 10 times. Finally,
labeled as MOGE, the Figure shows the non-dominated so-
lutions obtained after 10 runs of multi-objective optimiza-
tion. Figure 5 does not display those solutions obtained by
the MOGE optimization that, representing different DMMs,
present equal objective values. These solutions will be later
analyzed. In addition, the solutions obtained by MOGE in
the 10 optimization runs were joined in order to present the
non-dominated solutions of the entire set of results for each
benchmark.

Our results indicate that Kingsley is the worst DMM in
terms of memory usage (i.e., being the value to normalize
to in all benchmarks). However, Kingsley obtains good ex-
ecution times in all benchmarks but Cfrac. These results
are consistent with the Kingsley implementation [17], which
organizes the available memory in power-of-two block sizes
and rounds up all allocation requests to the next power of
two value. This rounding, in the worst case, allocates twice
as much memory as requested, which is the reason of its
high memory usage values. On the other hand, the power-of-
two organization and the avoiding of splitting and coalescing
leads to optimal execution times.

The ASGE optimization result is placed in very good posi-
tion for almost all the benchmarks. In all cases the memory
usage is lower than Kingsley, and the execution time is short,
close to Kingsley. These values, as stated in the referenced
literature, prove that a custom DMM obtains better results
than a general-purpose allocator.

In addition, the MOGE optimization algorithm obtains
solutions that improve al least one of the objectives of both
Kingsley and ASGE results in all the benchmarks. As Fig-
ure 5 confirms, the MOGE optimization produces different
non-dominated DMM alternatives for each binary. These al-
ternatives range from the ones with high memory usage and
low execution time, next to the Kingsley performance in all
cases, to the ones that need less memory than the ASGE
solution, but consume more execution time.

4.1 Analysis of found POF of solutions
Next, we analyze the results considering that the non-

dominated solutions may belong to the Pareto-optimal Front
(POF). We make this statement because, as explained in
Section 3.1, this is a profiling-based exploration proposal
whereas a pure analytical solution is not possible due to the
complexity of the DMM design space of solutions [2, 3].

In Lindsay, 6 of the 10 MOGE solutions obtain shorter
execution time than ASGE but need more memory, whereas
4 of the 10 MOGE obtain less memory usage than ASGE.
Then, the ASGE solution will belong to the POF.

The ASGE solution for Boxed-sim also belongs to the POF
because 5 of 6 MOGE solutions obtain shorter execution
time but higher memory usage, while just one MOGE ob-
tains less memory usage with longer execution time than
ASGE.

In Cfrac we find the same pattern. Just 1 of 3 MOGE
solutions obtains shorter execution time than ASGE, while
2 of 3 obtain less memory usage. Then, ASGE belongs to
POF again.

In GCBench, 2 of 4 MOGE solutions obtain shorter ex-
ecution time than ASGE and 1 of 4 MOGE obtains less
memory usage than the ASGE solution. In this case one of
the MOGE solutions obtains the same exact values than the
ASGE. Therefore, the ASGE belongs to the POF.

In Espresso, 5 of 10 MOGE solutions obtain shorter exe-
cution time than ASGE, while 2 of 10 obtain less memory
usage than ASGE. Therefore, the ASGE solution dominates
3 of 10 MOGE solutions, which leads to a POF formed by
7 MOGE solutions plus the ASGE one.

Finally, in Roboop, 5 of 10 MOGE solutions obtain shorter
execution time while 4 of 10 obtain less memory usage than
ASGE. In this case we found that ASGE dominates one of
the MOGE solutions, which lead to a POF formed by 9 of
the MOGE solutions plus the ASGE one.

1823



Table 1: Statistics for the memory-intensive benchmarks considered in this paper
Memory-intensive benchmark statistics

Benchmark Objects Total memory (bytes) Max in use (bytes) Average size (bytes) Memory ops
Lindsay 102143 5795534 1497149 56.74 204153
Boxed-sim 229983 2576780 339072 11.20 453822
Cfrac 570014 2415228 6656 4.24 1140009
GCBench 843969 2003382000 32800952 2373.76 1687938
Espresso 4395491 2078856900 430752 472.95 8790549
Roboop 9268234 321334686 12802 34.67 18536420
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Figure 5: Results including Kingsley, ASGE optimized and MOGE optimized DMMs, normalized in relation
to the worst value for both the execution time (x axis) and memory usage (y axis) objectives.

Therefore, the MOGE optimization obtains solutions than
improve ASGE in one of the objectives for almost all the
cases. In other words, MOGE provides the DMM designer a
set of DMM implementations that are Pareto-optimal solu-
tions. These DMMs could fit into different target platforms.
For example, the MOGE solutions with less memory require-
ments (lower than ASGE in all the experiments) could be
applied to a portable device, while the solutions with less
execution time (shorter than ASGE in all the experiments)
could be given to a server computer, for instance. As a con-
sequence, the MOGE optimization provides a higher contri-
bution to the DMM designer than the ASGE one.

4.2 Analysis of number of non-dominated so-
lutions and hypervolume

Regarding the number of found solutions, we have mea-
sured how many of the non-dominated solutions are kept
after the last iteration of both the ASGE and the MOGE
optimization algorithms. We have to note that the MOGE
algorithm will maintain two non-dominated individuals that
have the same objective values if they correspond to two
different DMM implementations. This choice was made be-
cause two DMM individuals with, for example, slightly dif-

Solution #8 for MOGE run #0
=====================================================
BuddySystem , split:false , coalesce:false
SLL EXACT(FIFO) (0,1] B
SLL EXACT(FIFO) (1,2] B
SLL EXACT(FIFO) (2,4] B
SLL EXACT(FIFO) (4,8] B
SLL EXACT(FIFO) (8,16] B
=====================================================
BuddySystem , split:false , coalesce:false
DLL EXACT(LIFO) (16 ,21] B
DLL EXACT(LIFO) (21 ,34] B
DLL EXACT(LIFO) (34 ,55] B
=====================================================
SimpleSegregatedStorage , split:false , coalesce:false
SLL BEST(FIFO) (48 ,147456] B
=====================================================

Figure 6: DMM description of a non-dominated so-
lution obtained by MOGE for Boxed-sim.

ferent data structures, may obtain the same exact perfor-
mance, but their different implementation could lead to dif-
ferent offspring individuals with different performance.

As an example of this kind of individuals, Figures 6 and 7
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Solution #14 for MOGE run #0
=====================================================
BuddySystem , split:false , coalesce:false
SLL EXACT(FIFO) (0,1] B
SLL EXACT(FIFO) (1,2] B
SLL EXACT(FIFO) (2,4] B
SLL EXACT(FIFO) (4,8] B
SLL EXACT(FIFO) (8,16] B
=====================================================
BuddySystem , split:false , coalesce:false
DLL FIRST(LIFO) (16 ,21] B
DLL FIRST(LIFO) (21 ,34] B
DLL FIRST(LIFO) (34 ,55] B
=====================================================
SimpleSegregatedStorage , split:false , coalesce:false
BTREE EXACT(FIFO) (48 ,147456] B
=====================================================

Figure 7: DMM description of a non-dominated so-
lution obtained by MOGE for Boxed-sim.

show the description of two non-dominated solutions, namely
#8 and #14, obtained by the MOGE optimization for the
Boxed-sim binary in the optimization run #0. Both DMMs
obtained the same exact values of execution time, memory
usage and energy consumption. As one may observe, these
DMMs are formed by three allocators: two Buddy in charge
of the smaller block sizes, and a Simple Segregated Storage
allocator for the bigger block sizes. The differences between
#8 and #14 DMMs are the policy used in the second allo-
cator, which is FIFO exact fit in #8 and LIFO exact fit in
#14; and the different data structure of the third allocator.
DMM #8 uses a sigle-linked list with a FIFO best fit policy,
while DMM #14 uses a B-tree with a FIFO exact fit policy.

Table 3 presents the average number non-dominated so-
lutions obtained after the last iteration of the optimization
runs for both ASGE and MOGE algorithms, as well as the
interquartile range. As this table shows, the average num-
ber of non-dominated solutions of the MOGE optimization
is higher than the value of ASGE in all benchmarks. There-
fore, the ASGE algorithm explores the convex part of the
Pareto front, while the MOGE extends the exploration ob-
taining more non-dominated solutions.

Table 3: Average and interquartile range (XIQR) of
number of non-dominated solutions for ASGE and
MOGE.

Benchmark ASGE MOGE
Lindsay 7.12 18.32.75

Boxed-sim 11.42.25 21.75.5

Cfrac 7.95.5 17.71

GCBench 51.5 10.90

Espresso 4.32.75 12.91

Roboop 6.41.75 15.92.75

On the other hand, it is important to compare both ASGE
and MOGE optimizations using Pareto-compliant indica-
tors for multi-objective problems [10]. Then, despite mono-
objective optimizations produce just one solution (the one
with the best fitness), we collected the non-dominated solu-
tions after the last iteration of ASGE in all the benchmarks,
as in the analysis of the number of solutions. Hence, we are
able to compare both kind of optimizations using the hyper-

volume measure. This metric calculates the volume (in the
objective space) covered by members of a non-dominated set
of solutions [18]. However, in this case we have no reference
points, which produces negative hypervolumes. Therefore,
taking absolute values, the higher the hypervolume, the bet-
ter the set of solutions.

Table 4: Average and interquartile range (XIQR) of
hypervolume values for ASGE and MOGE.

Benchmark ASGE MOGE
Lindsay 1.31870.0003 1.31900.0014

Boxed-sim 1.28300.0175 1.28530.0335

Cfrac 1.26040.1050 1.32970

GCBench 1.20060 1.29670.0588

Espresso 0.89890.0332 0.93820.0004

Roboop 0.94690.0234 1.04590.1653

Thus, we have measured the hypervolume of each one
of the sets of solutions obtained after each simulation run.
Therefore, we have obtained 10 hypervolume values for the
ASGE and 10 hypervolume values for the MOGE algorithms
on each benchmark. Then, we have obtained the average and
interquartile range values for each benchmark, as shown in
Table 4. In all the benchmarks, the average hypervolume
value of ASGE is improved by MOGE.

It should be noted that the difference between ASGE
and MOGE hypervolumes in Lindsay and Boxed-sim is very
short. The reason of this behavior comes from the fact that
the less the number of memory operations, the less the num-
ber of different block sizes, and the less the efficient DMM
configurations. In other words, if a benchmark performs a
low number of operations, almost any DMM configuration
will obtain good results. As a consequence, the ASGE op-
timization obtains solutions that are very similar to those
obtained by MOGE. According to Table 1, Lindsay and
Boxed-sim present the least number of memory operations.

On the contrary, if a benchmark performs a high number
of operations over multiple block sizes, there will be multiple
and diverse free blocks to be managed. Thus, specialized
DMMs will probably perform well, and MOGE is more prone
to generate different DMMs because the exploitation of the
search space is better than in ASGE. This is the case of Cfrac
and GCBench where the MOGE algorithm obtains, in both
cases, a DMM implementation with the highest execution
time but the least memory usage. This results in higher
hypervolume values for the MOGE approach.

From the algorithmical point of view, the ASGE optimiza-
tion minimizes the fitness, which is a single aggregate objec-
tive function. Then, this function explores the convex part
of the Pareto front. As a result, the solutions use to con-
verge, and the non-dominated DMMs obtained after the last
generation are very similar, which does not result on those
specialized DMMs that will improve the hypervolume.

On the other hand, the MOGE optimization keeps the
non-dominated solutions. Therefore, a DMM where two dif-
ferent objectives present high values may persist over the
generations if the third objective value is very low. This kind
of non-dominated solutions may lead to specialized DMMs
which allow the final set of solutions to obtain good hyper-
volume values. This trend increases when the number of
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memory operations and block sizes grows. Table 4 show
how Cfrac, GCBench, Espresso and Roboop, which present
a higher number of operations, obtain a wider gap between
the hypervolume values of ASGE and MOGE.

5. CONCLUSIONS AND FUTURE WORK
Dynamic memory is a key resource for any memory-intensive

application because its management deeply impacts not only
in the memory usage, but also in the execution time and
the energy consumption. General purpose DMMs present
acceptable behaviors, but it has been proven that custom
DMMs obtain better performance by taking advantage of
application-specific knowledge.

Previous works proposed automatic ways to obtain op-
timized custom DMMs considering three objectives: execu-
tion time, memory usage and energy consumption. However,
this multi-objective problem was solved through a mono-
objective approach where the fitness was built as a single
aggregate objective function. This approach explores the
convex part of the Pareto front, which leads to a reduced
exploration of the search space and a lower exploitation of
the individuals.

In this work we present, up to our knowledge, the first
multi-objective optimization methodology able to obtain a
set of non-dominated DMMs considering execution time,
memory usage and energy consumption as objectives. This
optimization technique was tested against the aggregate ob-
jective function optimization. The results show that our
proposal provides Pareto-optimal alternatives to the solu-
tion coming from the aggregate objective function approach,
better exploiting the search space. Therefore, our proposal
provides the DMM designer more alternatives in order to se-
lect the implementation that could better fit on a concrete
target platform.

In addition, we proved that our multi-objective implemen-
tation keeps more non-dominated solutions than the aggre-
gate objective function approach after the last iteration of
the algorithm. This is consistent with the idea of a wider
exploration of the Pareto front.

Finally, we have measured the hypervolume value of the
non-dominated solutions in both algorithms, and we found
that our multi-objective approach obtains better results than
the aggregate objective function one.

Our current work is focused in exploring other MOEA
approaches in order to both improve the results and include
new objectives like the memory temperature.
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