
Using Differential Evolution to Optimize
‘Learning from Signals’ and Enhance Network Security

Paul K. Harmer and
Michael A. Temple

Air Force Institute of Technology
2950 Hobson Way

WPAFB, Dayton OH 45433
[Paul.Harmer, Michael.Temple]@afit.edu

Mark A. Buckner and
Ethan Farquahar

Oak Ridge National Laboratory
1 Bethel Valley Rd

Oak Ridge, TN 37831
[bucknerma, farquhare]@ornl.gov

ABSTRACT
Computer and communication network attacks are commonly
orchestrated through Wireless Access Points (WAPs). This
paper summarizes proof-of-concept research activity aimed
at developing a physical layer Radio Frequency (RF) air
monitoring capability to limit unauthorized WAP access and
improve network security. This is done using Differential
Evolution (DE) to optimize the performance of a “Learning
from Signals” (LFS) classifier implemented with RF “Dis-
tinct Native Attribute”(RF-DNA) fingerprints. Performance
of the resultant DE-optimized LFS classifier is demonstrated
using 802.11a WiFi devices under the most challenging con-
ditions of intra-manufacturer classification, i.e., using emis-
sions of like-model devices that only differ in serial number.
Using identical classifier input features, performance of the
DE-optimized LFS classifier is assessed relative to a Multiple
Discriminant Analysis / Maximum Likelihood (MDA/ML)
classifier that has been used for previous demonstrations.
The comparative assessment is made using both Time Do-
main (TD) and Spectral Domain (SD) fingerprint features.
For all combinations of classifier type, feature type, and
signal-to-noise ratio considered, results show that the DE-
optimized LFS classifier with TD features is superior and
provides up to 20% improvement in classification accuracy
with proper selection of DE parameters.
Track: Real world applications.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Heuristic
methods; K.6.5 [Management of Computing and In-
formation Systems]: Security and Protection—Authenti-
cation, Unauthorized access

General Terms
Differential Evolution, Fingerprinting, Network, Security
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Computer and communication network attacks occur on a
regular basis and will likely continue as ill-intentioned“hack-
ers” attempt to gain unauthorized access [3, 4, 8]. Many of
these attacks are orchestrated through wireless access points
(WAPs) which have recently been identified as one of the
most vulnerable points in an Information Technology (IT)
network [10]. The first step to stopping many of these at-
tacks is identifying when they are occurring.

Traditional network security systems have relied heav-
ily on information in upper Open Systems Interconnection
(OSI) model layers to provide bit-level security and detect
unauthorized users [22]. Unfortunately, these approaches ig-
nore potentially useful information that is inherently“buried”
in the Radio Frequency (RF) characteristics of participating
network devices. The OSI network model consists of seven
layers with different services provided at each layer. Most in-
trusion detection systems operate at Layer #3, the Network
(NET) layer, or above [22]. Thus, inherent RF informa-
tion that exists in the lowest Physical (PHY) layer remains
largely unexploited.

Exploiting PHY layer information is of interest here with a
goal of enhancing network user authentication and prevent-
ing unauthorized system access. It is envisioned that the
bit-level protection provided by higher-layer intrusion and
authentication systems could be effectively augmented by
RF PHY layer protection hosted in an RF air monitoring de-
vice located at specific WAPs [15, 20, 25, 26]. These earlier
works demonstrated that RF information, i.e., RF “Distinct
Native Attribute” (RF-DNA) fingerprints, are indeed useful
for identifying specific devices and augmenting bit-level net-
work security mechanisms. However, overall classification
performance in these earlier works decreases as Signal-to-
Noise Ratio (SNR) decreases–behavior that is generally ex-
pected and observed for all signal detection, estimation and
classification algorithms.

Improved classification performance is commonly addressed
through two means: 1) finding more robust input features
for a given classifier, or 2) finding a more robust classifier
for given input features. The second approach is considered
here using the same Time Domain (TD) and Spectral Do-
main (SD) features used in previous related work [15, 20,
25, 26]. Given TD and SD fingerprint features, the goal is
to develop a more powerful classification engine that is op-
timized through Differential Evolution (DE). Recent works
have used various Genetic Algorithms (GA) alone as clas-
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sifiers [2, 14, 16]. Our approach uses DE to optimize the
parameters within an existing classification engine. Success
of this so-called “Learning from Signals” (LFS) approach is
measured as either 1) improving classification and authenti-
cation performance for a given SNR, or 2) achieving a given
classification performance at a lower SNR.

Success of the proposed DE-optimized LFS classifier is
demonstrated here by way of summarizing proof-of-concept
research aimed at improving device classification using an
RF-DNA fingerprinting process. This is accomplished by
comparative assessment with previous classification results
obtained using a Fisher-based Multiple Discriminant Anal-
ysis/Maximum Likelihood (MDA/ML) classifier. Most im-
portantly, this comparison is made using identical TD and
SD RF-DNA fingerprint features input to the classifiers.
Relative to inter-manufacturer classification (mix of inter-
operable devices from different manufacturers), intra-manu-
facturer classification (like-model devices from the same man-
ufacturer) presents the greatest classification challenge [15,
20, 25, 26]. It also offers the greatest opportunity to demon-
strate improvement and is considered here.

The remainder of this paper is organized in the follow-
ing manner. Section 2 provides background information
for key concepts required to conduct the research, includ-
ing RF-DNA Fingerprinting, LFS Classification, Gaussian
Kernel Regression (KR), and the DE-optimized LFS Imple-
mentation used here. Section 3 provides the demonstration
methodology that details the logical flow of processes used to
obtain comparative assessment results in Section 4. Finally,
Section 5 summarizes the work and presents conclusions.

2. BACKGROUND
The following subsections provide background information

on key technical concepts used to conduct the research.

2.1 RF-DNA Fingerprinting
RF-DNA fingerprinting is a PHY layer technique used to

uniquely identify devices based on inherent differences in
their transmissions. It has been demonstrated that specific
serial-numbered devices possess unique transmission char-
acteristics that may be attributed to minute differences in
manufacturing (part type, part lot number, assembly pro-
cesses, etc.). The goal here is to uniquely identify, by se-
rial number, hardware devices as an aid to network security
and user authentication. Various RF fingerprinting tech-
niques have been used previously to demonstrate this for
various communication signals, including: 802.11 WiFi sig-
nals [5, 15, 17, 21, 24], GSM cell phone signals[19, 26],
802.16 WiMAX signals [25], 802.15 Bluetooth signals [13],
and RFID signals [11, 27].

While the earlier cited works have considered several di-
verse methods for implementing RF fingerprinting, the tech-
niques generally share some common functionality, includ-
ing: 1) Signal Collection, 2) Signal Detection, 3) Finger-
print Feature Generation, and 4) Signal/Device Classifica-
tion. The first two steps functionally embody the processes
of signal reception, digitization, and post-collection process-
ing to pre-condition the TD signal response for feature ex-
traction. For the next step, Fingerprint Feature Generation,
the input classifier features are either generated directly
from the TD signal response or generated in an alternate
feature domain through transforming the TD response, e.g.,
to the frequency domain via a Discrete Fourier transform

(DFT). The goal of transformation is to project the origi-
nal TD response into an alternate domain that contains an
increased amount of discriminating information. The focus
here is on using TD and DFT-based SD responses, with fi-
nal classification features generated by calculating statistical
metrics over selected TD and SD response regions.

In the final RF fingerprinting step, Signal/Device Clas-
sification, a given classifier is implemented to separate and
identify ND devices (input classes) using selected input fea-
tures. Several classification approaches have been considered
from within the pattern recognition community, including
those based on cross-correlation, vector distance measures,
k-nearest neighbor metrics, support vector machines, and
Fisher-based MDA/ML processing [13, 15, 23, 25, 27]. The
MDA/ML classifier of [15, 25] was adopted here to provide
comparative baseline results.

The MDA/ML classifier is an extension of Fisher’s Linear
Discriminant that is used when more than two input devices
are to be classified. MDA uses a projection matrix (W) to
reduce the input dimensionality. The MDA/ML process is
that of finding W such that projected inter-class separation
is maximized and intra-class spread is minimized [12]. Given
ND devices (input classes), the MDA/ML process projects
the input features into an ND − 1 decision space. This is
best visualized for the ND = 3 class problem as illustrated in
Figure 1 which shows Gaussian class likelihood functions and
the resultant 2-dimensional decision space (lower surface)
with ML boundaries.

Like similar classification methods, the MDA/ML projec-
tion matrix W is determined using a training process, with
previously unseen class members subsequently classified us-
ing Bayesian decision theory. Features for previously un-
seen class members are projected using W and estimated
as coming from one of ND classes based on ML criteria.
While MDA/ML and other classifiers have achieved accept-
able classification performance in RF fingerprinting appli-
cations, the contributions here are in developing and incor-
porating a more powerful DE-optimized LFS classifier for
applications requiring improved performance.

2.2 LFS Classification
LFS classification is an adaption of Learning From Data

Figure 1: MDA/ML training projections and deci-
sion boundaries for N = 3 class problem.
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(LFD) techniques where the input training data is derived
from samples of a given sensor response [7, 9]. LFD is an
algorithm that approximates an unknown relationship be-
tween a system’s inputs and outputs using known available
data. Most scientists and engineers are familiar with this as
a form of regression, e.g., a least squares fit using polyno-
mial models. The LFD approach is not constrained to using
polynomial models and there are several other data fitting
methodologies using alternate functions.

Once a model of the data is “learned,” the model can be
applied to previously unseen data to provide an approxima-
tion of the modeled system’s output. Therefore, the goal is
to find useful information in the input data and exploit that
information when acting on future observed data [9].

The LFD concept functionally includes three steps: 1) pre-
processing (transformation to feature space), 2) learning or
training, and 3) operation or classification. The learned
model can be applied to accomplish three basic tasks: classi-
fication, regression, or probability density estimation. Clas-
sification is estimation of class association based on modeled
decision boundaries. This is used in pattern recognition sys-
tems and is of greatest utility for RF-DNA fingerprinting.
Using NF input features, the device classification goal is to
find a mapping from input sample xi = (x1, . . . , xNF ) to
one of ND devices (classes) where D ∈ {D1, D2, . . . , DND}.
This final classification decision is based on a set of learned
boundaries or threshold values, t = (t1, t2, . . . , tND−1).
Once established, this mapping function provides the deci-
sion rule by which subsequent operation/classification deci-
sions are made for future samples.

LFD problems are inherently ill-posed given they are more
unknowns than available data to describe them. Therefore,
there is no unique solution to, or single model of, the system
under consideration. In such cases, a search or optimiza-
tion approach is required to minimize some predefined error
function to find the“best”solution among possible solutions.
Mean Square Error (MSE) is a commonly used error met-
ric because the training set includes both input signals and
associated known class membership.

Many LFD approaches include parameters on the search
and fitness functions. These parameters are usually set to
common, or default values. However, the defaults may not
be the optimum for a specific set of data. It has been shown
that a GA can be used to improve LFD modeling. The
concept is to improve the regression process using a GA to
optimize the regression parameters for each input dimension,
rather than using a single, global value for all dimensions.
The GA-optimized approach has been applied using more
powerful KR techniques [6, 7] and is adopted here for LFS
classification.

2.3 Gaussian KR Processing
KR is a memory-based technique that stores past input

data and processes them when a new query is made. So,
instead of modeling the entire input set with a model, as
in conventional linear regression, the local KR function is
estimated over the entire input domain by fitting a simple
model at every query point q. Only observations that are
close to the query point are used to fit the model. The local
models are built using a distance weighting kernel function,
K(d2(xi,q)), that assigns a weight based on the distance
between xi and q. Any kernel function can be used for KR
provided the following properties are satisfied [9]:

1. K(xi, q) ≥ 0 (non-negative)

2. K(‖ xi, q ‖) is radially symmetric

3. K(xi, q) is maximum for q = xi

4. K(xi, q) decreases monotonically with |xi − q|
While there are virtually an unlimited number of possible
functions that satisfying the properties above, a Gaussian
kernel was chosen here. For this work, hi is used to rep-
resent the bandwidth parameter for the ith dimension of a
multidimensional Gaussian kernel function given by

K
`
d2
H(xi,q)

´
= exp−0.5·d2

H(xi,q) , (1)

where H is an NF ×NF diagonal matrix. To reduce compu-
tational complexity, the inter-dimensional cross-correlations
are not considered. Therefore, all of the off-diagonal ele-
ments in H are zero given by

H = diag (h1, h2, . . . , hNF ) , hi ≥ 0 ∀ i . (2)

Distance function d2(xi,q) defines the neighborhood of points
around q, which is implemented here as the squared Eu-
clidean distance parameterized by H

d2
H(xi,q) = (xi − q)T H−1(xi − q) . (3)

Finally, the kernel regression estimate, by, for a previously
unseen system input, or query point, q, is given by

by =

NSX
i=1

K(d2
H(xi,q)) · yi

NSX
i=1

K(d2
H(xi,q))

, NS = ND · NB . (4)

For conventional KR processing, a given bandwidth of h ∈ �
would be used for all input dimensions–elements in H of
(2) are identical. The approach here differs in that DE KR
optimization, as demonstrated in [6, 7], is able to “learn” the
best bandwidth parameter hi to use for each dimension and
improve LFS classifier performance. One can also infer the
relative importance of a given dimension/parameter based
on hi, i.e., a “smaller” hi indicates greater importance.

2.4 DE-Optimized LFS Implementation
The DE-optimized LFS classifier is illustrated in Figure 2

and functionally includes three processes: Input Feature
Formatting, DE Optimized KR, and Device Classification.

2.4.1 Input Feature Formatting
Given ND devices to be classified, the classifier input data

includes NB fingerprint vectors per device with each fin-
gerprint containing NF features (dimensions). Specific de-
tails for the RF-DNA fingerprints used here are provided in
Section 3. If perfect model training occurs, i.e., the DE-
optimized process results in an ideal model that perfectly
represents the input data, the training data would be classi-
fied perfectly (see classification mapping in the upper right-
hand graphic in Figure 2). Details for the classification map-
ping process are presented in Section 2.4.3.

2.4.2 DE Optimized Kernel Regression
DE is a form of GA processing that performs a population-

based global search to optimize a given objective function.
With any GA, a group of solutions are retained in the cur-
rent population which is iteratively updated until specific
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Figure 2: DE-optimized LFS classification process.

termination criteria are satisfied. Upon termination, the
population member with the best fitness is the one that best
optimizes the objective function and it is selected as the so-
lution. Algorithm details for DE processing differ from con-
ventional GA processing primarily in the manner by which
future generations are produced [7, 18].

The DE process for this work was implemented as detailed
in Figure 3. The initial population PGen for Gen# = 1 con-
tains NP randomly generated members. Each member is
represented by a vector of hi, i = 1, 2, ..., NF , Gaussian
kernel bandwidths. The initial population is evaluated for
fitness using KR and the MSE calculated for each member.
Termination criteria can be based on reaching either 1) a
maximum number of generations NGen, 2) a minimum spec-
ified MSE Value To Reach (V TR). If not satisfied during
the current generation, vector-based crossover occurs as il-
lustrated in Figure 4. In this case, each population member
(parent) Xi is crossed with three other randomly selected
individuals (mates) (V1, V2 and V3) based on the crossover
threshold CR. As shown in Figure 4, the child’s final value
ui in the jth feature dimension is a linear combination of
weighted parent and mate differences using crossover mul-
tipliers of F1 and F2. The result is a child population con-

Evaluate

Evaluate
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=
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2
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Ŷ KR( )
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x  : min( MSE )

Yes

No

Output
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2

Initialize
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Cross-Over Parameters:  CR , F1 , F2
Select Random xi,j

i = [1, 2, …, Np]  ,  j = [1, 2, …, NF]
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Gen#  >  NGen
Min(MSE)  ≤  VTR
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If Randn < CR

Randomly Select:

Form: 

Else:  

( ) ( )i , j , j i , j , j , ju F v x F v v= ⋅ − + ⋅ −
1 1 2 2 3

, j , j , jV ,V ,V
1 2 3

i iu x=

Select

If MSE ( ui ) < MSE ( xi )
Replace: Parent in Population

Using  Bestx  : min( MSE )

bestxH =

Figure 3: DE process used to optimize Gaussian KR
bandwidth parameters.

taining NP members that are then each assigned a fitness
value based on their KR MSEs. Selection of surviving mem-
bers for the next population is based on the lowest MSE
values. The fitness of each child, ui, is compared with its
parent, xi. The one with the lowest MSE is selected for the
next generation. The iterative mating, crossover, and selec-
tion process continues until termination criteria is satisfied.
Upon termination, the member of the final population with
the lowest MSE is deemed “best” and its corresponding KR

( ) ( )i , j , j i , j , j , ju F v x F v v= ⋅ − + ⋅ −
1 1 2 2 3

, jV
2, jV

1

i , jX

iu

, jV
3

Figure 4: DE vector-based crossover process.
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�H , along with the original training data, used for subsequent
classification of previously unseen input data.

2.4.3 Device Classification
Device classification in Figure 2 is implemented here as

a non-linear mapping between the “best” Ŷ output from
the DE process and possible input devices (classes). The
mapping process is implemented via a simple comparison of
each Ŷi in Ŷ with threshold values and an estimated device
D̂i assigned as follows:

C
“ bY, t

”
→ bD

t ∈ [t1, t2, ..., tND−1] , bDi ∈ [D1, D2, ..., DND ]

bYi ≤ t1 → bD1

tj < bYi < tj+1 → bDj 2 ≤ j ≤ ND − 1bYi ≥ tND−1 → bDND .

(5)

The mapping process in (5) is graphically illustrated in the
bottom portion of Figure 2 for the ND = 3 case. These plots
indicate less-than-perfect classification performance with the
actual Input device number shown on the top and resultant
Estimated device number on the left hand side.

3. METHODOLOGY
The methodology for collecting, processing, and classify-

ing 802.11a signals of interest is shown in Figure 5. This was
adopted from [15] to facilitate direct comparison of previous
MDA/ML classification results with new DE-optimized LFS
results to assess the impact of introducing an alternate “Sig-
nal Classification Engine.” The process begins with signal
collection using the RF Signal Intercept and Collection Sys-
tem (RFSICS). This is followed by post-collection processing
using MATLAB to generate the desired analysis signal, ex-
tract fingerprint features, and perform classification. The
RFSICS is based on Agilent’s ES238S system and can col-
lect signals from 20.0 MHz to 6.0 GHz [1]. The RF band of

Agilent 

E3238S 

System

RF Signal 

Intercept and 

Collection System 

(RFSICS)

Fingerprint 

Feature

Generation

MATLAB

Post-Collection

Processing

Signal

Classification

Engine

Baseband 

Down-

Conversion

Digital 

Filtering

WPC

AWGN

Generation

Analysis

Signal

Signal Noise

SNRA

1 GN
Power

Scaling

SNRC

Figure 5: Methodology used for RF signal collection,
processing, and classification [15].

interest is selected using a tunable WRF = 36.0 MHz filter.
The collected signals are down-converted to an intermedi-
ary frequency (IF) of fIF = 70.0 MHz before being digitized
to b = 12 bits at a sample rate of fs = 95 M samples-per-
second. The sampled IF data is stored as complex In-phase
(I) and Quadrature (Q) signal components.

The devices under test included three like-model CISCO
802.11a PCMCIA cards. To isolate RF signal features from
environmental channel effects and interference, a pair of lap-
tops with PCMCIA cards were set up as a point-to-point
(P2P) network in an RF anechoic chamber. File transfer
protocol was used to continuously pass files between the
laptops during the collections. The two PCMCIA trans-
mit powers were set to two different power levels to facil-
itate easy association of collected signal responses (occur-
ring in two different, assigned time division duplex intervals)
with a given laptop during post-processing. The PCMCIA
cards were swapped and collections made for each device
of interest. Given the anechoic chamber environment and
the relatively close proximity of the P2P laptops, the post-
filtered collected SNR for all signals was on the order of
SNRC = 40 dB SNR. This high level of SNRC facilitated
direct scaling (GN in Figure 5) and addition of like-filtered
Additive White Gaussian Noise (AWGN) to generate anal-
ysis signals at the desired SNR (SNRA in Figure 5).

The collected signal bursts were detected using a sim-
ple amplitude detection method with a threshold of tD =
−6 dB. Following detection, the bursts were post-collection
filtered using a 6th-order Butterworth filter having a −3 dB
bandwidth of WPC = 7.7 MHz–a notional bandwidth for
receiving 802.11 signals. A total of NB = 500 bursts per
device were collected, detected, post-collection filtered, and
“fingerprinted” for classification.

For reliable comparative assessment, identical fingerprint
features were generated and used with each classifier. This
was done for both TD and SD signal responses. For TD and
SD fingerprinting, there are NSR = 3 and NSR = 1 signal re-
sponses, respectively, with the three available TD responses
including instantaneous amplitude, phase and frequency. In
both cases, the selected response(s) is parsed into NR equal
length subregions as illustrated in Figure 6 for representative
TD and SD responses of an 802.11a WiFi signal. The entire
response is included for feature generation as well, yielding
a total number of feature regions of NF

R = (NR + 1)×NSR.
Accounting for NF

S total statistics per region, the composite
RF statistical fingerprint (feature vector) has a total number
of elements (feature dimensions) given by

NF = NF
R × NF

S = NSR × (NR + 1) × NF
S . (6)

While any statistics could be used to characterize signal re-
sponses, standard deviation (σ), variance (σ2), skewness (γ),
and/or kurtosis (k) have been generally considered and used
to form the regional fingerprint given by

FRi = [σRi σ2
Ri

γRi kRi ]1×NF
S

, (7)

where i = 1, 2, ..., NR +1. The vectors from (7) are concate-
nated to form the composite statistical fingerprint for each
characteristic and is given by

FC =

"
FR1

... FR2

... FR3 . . . FRNR+1

#
1×NF

D

. (8)

For SD results, the SD signal response is generated using the
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Spectral Domain (SD) NPSD Index

Time Domain (TD) Magnitude Index

1 32 128 192

55 110 165 220 275 330 3851

1 2 3 4 5 • • • •

Fingerprint Regions

64 96 160

1 2 3 • • • •

RN

RN

Figure 6: Fingerprint Feature Regions: TD Am-
plitude Response and Corresponding SD Response
Based on NPSD [25].

method in [25]–a Fourier-based Normalized Power Spectral
Density (NPSD). For TD results, the TD signal responses
are generated per the method in [15] as centered and nor-
malized instantaneous responses.

Classifier performance is first addressed using average %
Correct Classification versus SNR with MDA/ML perfor-
mance serving as the comparative baseline–note that the
subscripted A in SNRA is suppressed here and SNR used
henceforth in the paper. As a first step, an MDA/ML per-
formance baseline is established and results in [15] repro-
duced and re-verified. Classification was then performed
using the DE-optimized LFS classifier with DE parameters
fixed at a population size of NP = 40, a crossover thresh-
old of CR = 0.2, crossover multipliers of F1:N (0, 1) and
F2 = 0.8, and termination occurring after NGen = 200 gen-
erations. It is important to note that this termination cri-
teria differs from conventional DE termination approaches
which are generally based on satisfying pre-defined MSE
constraints for a given objective function. These initial con-
ditions were empirically determined following a series of TD
fingerprinting pilot studies at SNR = 24 dB which provided
consistent classification performance within reasonable com-
putation times.

4. RESULTS AND ANALYSIS
For initial comparative assessment, the MDA/ML classi-

fier was implemented per Section 2.1. Performance is com-
pared using Monte Carlo simulation with both classifiers
trained and tested under identical conditions which included:
1) TD and SD input feature vectors generated from NB =
500 802.11a bursts per device, 2) Nz = 10 independent like-
filtered AWGN realizations per burst at each SNR, and
3) SNR ∈ [6, 24] dB in ΔdB = 3.0 dB increments. The
resultant average % Correct Classification versus SNR for
each classifier and feature type is shown in Figure 7.

Results in Figure 7 are mixed and show that the proposed
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Figure 7: Average % Correct Classification versus
SNR for 802.11 WiFi signal: TD (circle markers),
SD (square markers), MDA/ML classifier (unfilled
markers) [15] and DE-LFS classifier (filled markers).

DE-optimized LFS classifier is both superior and inferior
to the MDA/ML classifier with performance being highly
dependent on feature type. For SD fingerprint features,
DE-optimized LFS performance is inferior to MDA/ML for
all SNR considered, with performance degradation to ran-
dom guessing (33%) for SNR ≤ 12 dB. However, the DE-
optimized LFS classifier is superior to MDA/ML in the noise-
dominated SNR region using TD fingerprint features. Most
notably, DE-optimized LFS with TD fingerprints outper-
form MDA/ML at SNR ≤ 15 dB and provides nearly 20%
improvement in classification performance at the lowest SNR
considered. However, for the signal-dominated SNR re-
gion there is a noticeable “dip” in performance for 15 <
SNR < 24 dB; a minimum of approximately 80% occurring
at SNR = 21 dB. Preliminary analysis of DE-optimized
LFS results in Figure 7 focused on answering 1) “Why is
SD performance so inferior and degrade rapidly for SNR ≤
18 dB?” and 2) “Why does TD performance exhibit a “dip”
in performance for 15 < SNR < 24?” While not analyzed
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in detail at this point, the disparity between achievable TD
and SD performance with the DE-optimized LFS classifier
is believed to be partially attributable to the factor of three
disparity between the number of TD (NF

TD = 99) and SD
features (NF

SD = 33). It is interesting to note that this same
disparity did not impact the MDA/ML classifier which per-
formed best with the SD features. With regard to answering
both questions, the summary discussion that follows sug-
gests that the effects being addressed are attributable to ter-
minating the DE process after a fixed number of NGen = 200
generations–an insufficient number of generations at some
SNR for full benefits of DE-optimized LFS to be realized.

Degraded performance for the two noted cases was ana-
lyzed by considering classification error (% Classification Er-
ror = 100 – % Correct Classification) as a function of NGen

for NGen ∈ [10, 900] in increments of Δgen = 10. The other
parameters (NB, NP , CR, F1, F2, and Nz) were unchanged
from Figure 7 results. The resultant % Classification Error
versus NGen is provided in Figure 8 for TD fingerprint fea-
tures generated at SNR = 21 dB and SD fingerprint features
generated at SNR = 15 dB. As expected, the error exhibits
an overall decreasing trend as NGen increases for both fea-
ture types, with DE achieving a % Classification Error of
approximately 4% for TD and 15% for SD at NGen = 900.

Two things are worth noting in Figure 8, First, the TD re-
sponse at NGen = 200 shows % Classification Error ≈ 12%
which corresponds directly to the minimum % Correct Clas-
sification ≈ 87% anomaly in Fig. 7–TD behavior in Fig. 7 is
believed to be inherent in the DE-optimized LFS RF-DNA
fingerprinting process and NGen = 200 iterations is simply
insufficient at some SNR to realize potential DE-optimized
LFS benefits. Second, it appears that SD is asymptotically
approaching a lower bound of % Classification Error ≈ 14%.

As used for generating results in Figure 7 and Figure 8,
% Correct Classification and % Classification Error are“op-
erational” classification performance metrics. It is important
to note that this operational metric is not the same MSE
metric that is generally used for terminating the DE pro-
cess and characterizing algorithm performance. However, it
is expected that the % Classification Error response should
mimic the DE MSE response. This is confirmed by compar-
ing the DE MSE results in Figure 9 with % Classification Er-

ror results in Figure 8. In this case, the DE MSE in Figure 9
is that of the best fit member shown for NGen ∈ [10, 900]
with ΔGen = 10.

5. SUMMARY AND CONCLUSIONS
This work provides a first look at using Differential Evo-

lution (DE) to optimize parameters of a “Learning From
Signals” (LFS) classifier for use in an RF air monitor that
uniquely identifies and authenticates wireless devices for net-
work access. It is envisioned that DE-optimized LFS air
monitoring would be implemented at Wireless Access Points
(WAPs), the vulnerability of which has been recently iden-
tified as one of the top security threats to Information Tech-
nology (IT) systems. For proof-of-concept demonstration,
the LFS classifier input features were based on RF “Distinct
Native Attribute” (RF-DNA) fingerprints from IEEE 802.11
WiFi signals. The air interface of existing 3G 802.11 net-
works is functionally based on Orthogonal Frequency Divi-
sion Multiplexing (OFDM) which is the foundation of emerg-
ing 4G wireless communication systems such as IEEE 802.16
WiMAX and LTE variants. Thus, results here for an exist-
ing 3G system directly support a broader research objective
to developing improved IT security methods that are gener-
ally applicable to emerging 4G OFDM-based systems.

For initial proof-of-concept, the DE-optimized LFS clas-
sifier was used as the classification engine in an RF-DNA
fingerprinting process adopted from previous work. Demon-
stration parameters for the DE process included a crossover
threshold of CR = 0.2, crossover multipliers of F1:N (0, 1)
and F2 = 0.8, NP = 40 populations, and DE termination
occuring after NGen = 200 generations. End-to-end intra-
manufacturer device classification was performed using three
like-model 802.11 Cisco devices. Monte Carlo simulation
was implemented using 1) NB = 500 experimentally col-
lected bursts per device (ND = 3 devices), 2) Time Domain
(TD) and Spectral Domain (SD) fingerprint features from
each burst, 3) Nz = 10 independent like-filtered AWGN re-
alizations per burst at each SNR, and 4) SNR ∈ [6, 24] dB.

Performance of the DE-optimized LFS classifier was com-
pared with a Multiple Discriminant Analysis/Maximum Like-
lihood (MDA/ML) classifier as used previously for RF-DNA
fingerprinting demonstration. Using identical TD and SD
input features, DE-optimized LFS classification performance
with SD features was inferior to MDA/ML for all SNRs con-
sidered and exhibited a sharp decrease in classification per-
formance beginning at SNR ≈ 15 dB. For TD features,
the DE-optimized LFS classifier was generally superior to
MDA/ML and achieved near-perfect 98% correct classifica-
tion at lower noise-dominated SNRs (SNR < 15 dB). This
included nearly 20% improvement at SNR = 6 dB. How-
ever, TD classification exhibited an anomalous “dip” in per-
formance at higher signal-dominated SNRs with minimum
classification falling to approximately 80% at SNR = 21 dB.

Subsequent analysis of % Correct Classification and DE
MSE versus Number of DE Generations showed that both
the inferior SD performance and anomalous TD performance
at signal-dominated SNRs were attributable to fixing DE
termination at NGen = 200 generations–an insufficient num-
ber at some SNR for benefits of DE-optimized LFS to be
fully realized. Preliminary analysis with increasing NGen

suggests that % Correct Classification with TD features
should approach 100% while performance with SD features
will asymptotically approach an upper bound of approxi-
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mately 86%. The disparity between achievable TD and SD
performance is partially attributed to the factor of three dis-
parity between the number of TD and SD features. A deeper
exploration into the effects of NGen, the number of input
features, and other parameters that were fixed for initial
demonstration, is warranted and related research continues.
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