
RankDE: Learning a Ranking Function for
Information Retrieval using Differential Evolution

Danushka Bollegala
The University of Tokyo

Hongo 7-3-1, Tokyo
113-8656, Japan

danushka@iba.t.u-
tokyo.ac.jp

Nasimul Noman
The University of Tokyo

Hongo 7-3-1, Tokyo
113-8656, Japan

noman@iba.t.u-
tokyo.ac.jp

Hitoshi Iba
The University of Tokyo

Hongo 7-3-1, Tokyo
113-8656, Japan

iba@iba.k.u-tokyo.ac.jp

ABSTRACT
Learning a ranking function is important for numerous tasks such
as information retrieval (IR), question answering, and product rec-
ommendation. For example, in information retrieval, a Web search
engine is required to rank and return a set of documents relevant to
a query issued by a user. We propose RankDE, a ranking method
that uses differential evolution (DE) to learn a ranking function to
rank a list of documents retrieved by a Web search engine. To the
best of our knowledge, the proposed method is the first DE-based
approach to learn a ranking function for IR. We evaluate the pro-
posed method using LETOR dataset, a standard benchmark dataset
for training and evaluating ranking functions for IR. In our exper-
iments, the proposed method significantly outperforms previously
proposed rank learning methods that use evolutionary computation
algorithms such as Particle Swam Optimization (PSO) and Genetic
Programming (GP), achieving a statistically significant mean av-
erage precision (MAP) of 0.339 on TD2003 dataset and 0.430 on
the TD2004 dataset. Moreover, the proposed method shows com-
parable results to the state-of-the-art non-evolutionary computa-
tional approaches on this benchmark dataset. We analyze the fea-
ture weights learnt by the proposed method to better understand
the salient features for the task of learning to rank for information
retrieval.

Track: Real-World Applications.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval

General Terms
Algorithms

Keywords
Differential Evolution, Learning to rank, Information Retrieval, Web
Search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

1. INTRODUCTION
The World Wide Web has grown into a huge collection of Web

pages containing information regarding numerous concepts. Web
search engines have gained popularity as one of the most important
access methods to the Web [1]. Web search engine users formalize
their information need in the form of a search query and retrieve the
information that they seek for. As a result of both the vast amount
of Web pages and the ambiguity in queries, a search engine often
retrieves numerous documents for a single query. To reduce the
burden of users to go through the entire list of retrieved documents
to find the information they are searching for, search engines rank
the retrieved set of documents according to the relevancy of a doc-
ument to a query issued by the user and displays a ranked list of
documents. Accurate ranking of the retrieved set of documents is
therefore an important component in a search engine that enables
users to quickly find the information that they need. On the other
hand, if a search engine often ranks documents that are irrelevant
to user queries as the top hits, then the users lose confidence in that
search engine. Consequently, learning to rank documents retrieved
for a user query has gained much attention and several initiatives
have taken place such as the Yahoo!’s Learning to Rank Challenge1,
and Microsoft’s LETOR project2.

Learning an accurate ranking function to rank a set of documents
retrieved for a given user query remains a difficult problem because
of several challenges. First, there are many factors a ranking func-
tion must take into consideration in the Web when determining the
rank of a document such as the content of the page (i.e. whether
the document contains the words in the query or not), link struc-
ture (i.e. the number of in-bound and out-bound links to the doc-
ument), novelty (i.e. how regularly the content of the document is
revised?), authority (i.e. encyclopedic resources such as Wikipedia
vs. a blog) etc. Integrating those heterogenous factors to construct
a single ranking function is a non-trivial task. Second, the learning
algorithm must be fast and scalable to be used in a Web search
engine. For example, LETOR dataset contains over 25 million
documents with rank information annotated that must be used to
learn a ranking function. Moreover, speed at test (retrieval) time
is also important because a search engine must rank and return a
large number of documents for a single user query. Third, the mea-
sures that are used to evaluate a ranking algorithm in information
retrieval such as Mean Average Precision (MAP) and Normalized
Discounted Cumulative Gain (NDCG) are non-convex and difficult
to directly optimize by conventional optimization tools. Most exist-
ing approaches for learning to rank resort to some sort of a convex

1http://learningtorankchallenge.yahoo.com/
2http://research.microsoft.com/en-us/um/beijing/
projects/letor/

1771

approximation to those measures and then use standard machine
learning algorithms.

In this paper, we propose a rank learning approach using differ-
ential evolution (DE) [27, 26] that we designate RankDE. The pro-
posed method directly optimizes over the evaluation metrics used
in information retrieval such as MAP and NCDG, without requir-
ing any approximations. The main contributions of our work can
be summarized as follows.

• We propose RankDE, a rank learning method for information
retrieval using differential evolution.

• We evaluate the proposed method on the LETOR dataset – a
benchmark dataset developed by Microsoft Research to sys-
tematically evaluate different rank learning methods. Our
method outperforms numerous baselines that are popularly
used to rank documents in Web search such as BM25, as well
as previously proposed rank learning algorithms that use evo-
lutionary computation (EC) methods such as Genetic Pro-
gramming (GP) [32] and Particle Swam Optimization (PSO)
[6]. Moreover, the proposed method outperforms non-EC
methods such as RankSVM (based on Support Vector Ma-
chines) and RankBoost (based on AdaBoost).

• We analyze the weights learnt by the proposed method for
numerous popular features that are used to learn ranking func-
tions in IR to gain an insight into the importance of different
features for the task of learning to rank for IR.

The remainder of this paper is organized as follows. We first
introduce the learning to rank problem in Section 2.1 followed up
by a brief overview of differential evolution in Section 2.2. Next,
our proposed rank learning method, RankDE, is presented in Sec-
tion 3. We compare the proposed method against numerous base-
lines as well as previously proposed EC approaches and non-EC
approaches in Section 4. We analyze the weights learnt by the pro-
posed method for the different features used in learning ranking
functions. We review related previous work on this topic in Section
5 and conclude the paper.

2. BACKGROUND
In this Section, we describe the problem of learning to rank for

information retrieval and present a brief overview of differential
evolution. This background information will be helpful to better
understand the proposed ranking method, which is presented in de-
tail in Section 4.

2.1 Learning to Rank Problem
The learning to rank problem in the context of information re-

trieval consists of two main phases: the training phase where we
learn a ranking function from a set of annotated training data, and
the test (i.e. retrieval) phase where we apply the learnt ranking
function to rank a set of documents retrieved by a search engine
for a user query. Specifically, in the training phase, a learning algo-
rithm is presented with a collection of queries and their correspond-
ing retrieved documents. Moreover, the documents are assigned
with some labels that indicate the relevance judgements of those
documents to their corresponding query. The relevance judgements
are assigned by human annotators. For example, an annotator might
annotate a set of documents by assigning some ranking score to
each document depending on its relevance to the query. A higher
ranking score indicates that a document with such a score is more
relevant to the user query and must be ranked at the top.

The objective of learning is to construct a ranking model (e.g. a
ranking function) that achieves the best agreement with the rank-
ing induced by the scores assigned by the human annotators. The
agreement between a ranking produced by an algorithm and that
of a human annotator for a set of documents can be measured us-
ing numerous rank evaluation metrics such as Mean Average Pre-
cision (MAP), Normalized Discounted Cumulative Gain (NDCG),
Kendall’s rank correlation coefficient and Spearman’s rank correla-
tion coefficient. Traditionally, both MAP and NDCG [1] have been
used in the information retrieval community to evaluate rankings in
Web search engines because those measures are shown to be corre-
lating well with the document relevance in the Web search settings
[12].

Once a ranking function is learnt using a set of training data, it
can be used to rank a set of documents retrieved for a user query
at test (i.e. retrieval) phase. Let us denote the set of queries by
Q = {q1, . . . , q|Q|}, where we use the notation, |Q| to represent
the number of element in set Q. Likewise, let D = {d1, . . . , d|D|}
be the set of documents. Then, the training dataset is created as a set
of query-document pairs, (qi, dj) ∈ Q×D, in which each element
is assigned with a relevance judgement (e.g. a label) y(qi, dj) indi-
cating the relationship between qi and dj by a human annotator. For
example, the relevance judgement can be simply a binary relevance
indicating whether the document dj is relevant (i.e. y(qi, dj) = 1)
or non-relevant ((i.e. y(qi, dj) = 0) for the query qi, or it can be
some ranking score (i.e. (i.e. y(qi, dj) ∈ R) that induces a to-
tal ordering among all the documents dj retrieved for the query qi.
A query-document pair (q, d) is represented using a feature vector
φ(q, d). The actual features used for training are discussed later in
Section 4.1. The ranking model is defined as a real valued function
f(q, d) over features as follows,

f(q, d) = w>φ(q, d). (1)

Here,w denotes a weight vector indicating the importance of each
feature towards the ranking score returned by the ranking func-
tion. To rank the documents retrieved for a query qi, we compute
f(qi, dj) for each retrieved document dj using Eq.1 and sort the
documents in the descending order of their ranking score. Limiting
the ranking functions to linear combinations of features as defined
in Eq.1 is common to all previous work in learning to rank for infor-
mation retrieval. Web search engines must rank and present a large
number of documents to a single user query within few millisec-
onds. Consequently, the linear ranking function defined in Eq.1
only requires the inner product between two vectors, which can be
computed quickly and makes it attractive as a ranking function for
large-scale information retrieval systems.

2.2 Differential Evolution
Differential evolution (DE), proposed by Storn and Price [27],

is a simple yet powerful population-based stochastic search tech-
nique for solving global optimization problems. DE has been used
successfully in numerous fields such as pattern recognition [27],
communication [15], and mechanical engineering [25], to optimize
non-convex, non-differentiable and multi-modal objective functions.
DE has many attractive properties compared to other evolutionary
algorithms such as, implementation simplicity, the small number of
control parameters, fast convergence rate, and robust performance.

DE has only a few control variables which remain fixed through-
out the optimization process, which makes it easy to implement.
Moreover, DE can be implemented in a parallel processing frame-
work, which enables it to process a large number of training in-
stances efficiently. These properties of DE makes it an ideal can-
didate for the current task of learning a ranking function for in-

1772

formation retrieval, where we must optimize non-convex objective
functions such as MAP and NDCG measures over large datasets.
Next, we briefly outline the main steps in DE. For further details
of DE and its comparison to other evolutionary computational ap-
proaches refer [27]. Without a loss of generality, we will consider
the problem of maximizing a given objective function. (A similar
approach can be followed for minimization.)

DE is a parallel direct search method which utilizes P number
of L-dimensional parameter vectors, xi,G, where i = 1, . . . , P .
Here, we denote the population size by P and the i-th individual
in the G-th generation is represented by an L-dimensional vector
xi,G. The population size, P , does not change during the opti-
mization process and the initial population is created by randomly
generating the vectors such that they cover the entire range of val-
ues of the parameter space. In DE, we do not use selection pressure
for selecting parents. Instead, in each generation, every individual
xi,G, once becomes the principal parent to breed its own offsprings
mating with other parents.

DE generates new parameter vectors by adding the weighted dif-
ference between two population vectors to a third vector. This dif-
ferential operation is often referred to as mutation in DE. Using the
above notation, we can write the mutation operation as follows,

vi,G+1 = xr1,G + F (xr2,G − xr3,G). (2)

Here, vi,G+1 is a mutant vector and r1, r2, r3 are three mutually
different random indexes selected from the set {1, 2, 3, . . . , P}.
The value, F (> 0), is a real number typically less than one.

To increase the diversity of the mutated parameter vectors, a
crossover operation is performed. A trial vector (i.e. the child),
ui,G+1 = (u1i,G+1, . . . , uLi,G+1) is constructed from the mu-
tated vector, vi,G+1, and the original population vector (i.e. the
parent), xi,G, according to the following criterion,

uji,G+1 =

{
vji,G+1 IF (randb(j) ≤ CR) OR (j = rnbr(i)),

xji,G IF (randb(j) > CR) AND (j 6= rnbr(i)).
(3)

Here, randb(j) is the j-th evaluation of a uniform random num-
ber generator with outcomes in the range [0, 1], CR ∈ [0, 1] is a
user-specified crossover constant, and rnbr(i) is a randomly cho-
sen index from the set {1, 2, . . . , L}, which ensures that ui,G+1

gets at least one parameter from vi,G+1.
The selection scheme used in DE is also known as parent-child

competition. Specifically, once the child ui,G+1 is computed ac-
cording to the above-mentioned procedure the objective function
is evaluated for the child ui,G+1 and the parent xi,G. If ui,G+1

yields a higher objective function value than that by xi,G, then
xi,G+1 is set to ui,G+1. Otherwise, the parent (i.e. xi,G) is re-
tained for the (G+ 1)-th generation.

3. PROPOSED RANK LEARNING METHOD
FOR IR: RANKDE

Motivated by the success of DE in a wide range of tasks, we pro-
pose RankDE, a learning to rank method for information retrieval
using DE. The goal of RankDE is to discover a good ranking func-
tions adapted to the properties of a given query-document collec-
tion, which are also able to generalize to unseen new queries and
documents retrieved at test times. Main steps of RankDE are sum-
marized in Algorithm 1.

RankDE takes as input a training dataset T that contain query-
document pairs (q, d) with their corresponding feature vectorsφ(q, d).
As an instance of DE, RankDE learns a weight vector xi,G that op-
timizes some fitness function, which evaluates how well the rank
scores assigned by the learnt ranking function agree with those as-

Algorithm 1 RankDE: A DE-based rank learning algorithm.
Input: A training set T of query-document pairs with their feature

vectors.
Output: A ranking function f(q, d) that assigns a score to a doc-

ument d indicating its relevancy to a query q.

1: for each generation G do
2: for each parent i in generation G do
3: select distinct r1, r2, r3 randomly from current popula-

tion.
4: compute vi,G+1 using Eq.2.
5: compute ui,G+1 using Eq.3.
6: if Fitness(ui,G+1, T) > Fitness(xi,G, T) then
7: xi,G+1 = ui,G+1

8: end if
9: end for

10: end for
11: return f(q, d) = w>φ(q, d), wherew is the individual with

the highest fitness value in the final population.

signed by the human annotators. The final output of Algorithm 1
is the parameter vector that maximizes the fitness function. We use
Mean Average Precision (MAP) [1] (defined in Section 4.2) as the
fitness function. MAP is frequently used to measure the accuracy
of a document ranking algorithm in information retrieval systems.

The fitness function, Fitness(w, T), used by RankDE is defined
as follows,

Fitness(w, T) = MAP(w, T). (4)

Here, MAP(w, T) denotes the mean average precision value that
we would obtain on training data if we use the weight vector w in
ranking function f(q, d) (Eq.1) to assign a score to each document
d according to its relevancy to a query q and then sort those doc-
uments in the descending order of the assigned scores to obtain a
ranked list of documents.

4. EXPERIMENTS
In this Section, we first describe the LETOR dataset and then

present the experimental results on this benchmark dataset.

4.1 Datasets
We use the LETOR (version 2.0) benchmark dataset [20], which

is used in much previous work investigating the problem of learn-
ing to rank for information retrieval. By using this dataset, we can
directly compare the performance of the proposed method against
previously proposed learning to rank algorithms for information re-
trieval. The LETOR version 2.0 consists of TD2003 and TD2004
datasets, which were part of the topic distillation task of the Text
REtrieval Conference (TREC) in year 2003 and 2004. TD2003
dataset contains 50 queries and TD2004 dataset contains 75 queries.
The document collection contains 1, 053, 110 documents together
with 11, 164, 829 hyperlinks and is based on a January, 2002 crawl
of the .gov domain. Topic distillation aims to find a list of doc-
uments relevant to a particular topic. The TREC committee pro-
vides judgements for the topic distillation task. For each query in
TD2003 and TD2004 datasets, there are about 1, 000 documents
listed. Each query-document pair is given a binary judgement indi-
cating whether a document is relevant or non-relevant for a partic-
ular query.

A query-document pair in the LETOR dataset is represented us-
ing a 44 dimensional feature vector. The numerous features used
in the LETOR dataset are shown in Table 1. The features include

1773

Table 1: Features in the LETOR TD2003 and TD2004 datasets.
Category Feature No. of

features

Content (low-level)

tf [1] 4
idf [1] 4
dl [1] 4
tfidf [1] 4

Content (high-level) BM25 [23] 4
LMIR [33] 9

Hyperlink

PageRank [19] 1
Topical PageRank [18] 1
HITS [16] 2
Topical HITS [18] 2
HostRank [31] 1

Hybrid Hyperlink-base rel-
evance propagation
[24]

6

Sitemap-based rel-
evance propagation
[21]

2

Total 44

numerous ranking heuristics popularly used in the information re-
trieval community to rank a list of retrieved documents. The set of
features used in LETOR includes low-level features such as, term
frequency (tf), inverse document frequency (idf), document length
(dl) combinations of low-level features such as tf*idf [1], as well as
high-level features such as BM25 [23] and LMIR [33]. Hyperlink
structure provides useful clues about the relevancy of a web page.
Consequently, several features are computed using the hyperlink
information in LETOR datasets such as PageRank [19], HITS [16],
HostRank [31], topical PageRank and topical HITS [18].

It is noteworthy that the values of features extracted for docu-
ments retrieved for different queries are not comparable. Therefore,
we first normalize the values of each feature across all documents
retrieved for a particular query. Let us denote the set of documents
retrieved for query qi byD(qi) and a document in this set by dj (i.e.
dj ∈ D(qi)). Moreover, let us denote the k-th feature in the fea-
ture vector φ(qi, dj) representing a query-document pair (qi, dj)
by φk(qi, dj). Then, the normalized value of φk(qi, dj) ∈ [0, 1] is
calculated as follows,

φk(qi, dj) =
φk(qi, dj)−min{φk(qi, dj)}

max{φk(qi, dj)} −min{φk(qi, dj)}
. (5)

4.2 Evaluation Measures
To evaluate a ranking produced by an algorithm for a set of doc-

uments retrieved for a particular query, we can compare it against
the ranking induced by the scores assigned by a human annotator
for those documents. Precision at position n (P@n), Mean Aver-
age Precision (MAP), and normalized discounted cumulative gain
(NDCG) are three widely used rank evaluation measures in the in-
formation retrieval community. Both those evaluation measures are
in the range [0, 1], where a method that produces the exact ranking
as in the gold standard achieves the score of 1. Next, we describe
each of those evaluation measures in detail.

Precision at rank n (P@n) [1] measure is defined as the propor-
tion of the relevant documents among the top n-ranked documents,

P@n =
No. of relevant docs in top n results

n
. (6)

Table 2: Parameter settings for RankDE.
Parameter Value
Population size (P) 50
maximum no. of generations 10, 000
no. of dimensions (L) 44
F value 0.5
crossover rate (CR) 0.5

Average precision averages the P@n at over different n values
to produce a single measure for a given query as follows,

AP =

∑N
n=1(P@n× rel(n))

No. of relevant docs for this query
. (7)

Here, N is the number of retrieved documents, and rel(n) is a
binary function that returns the value 1 if the n-th ranked document
is relevant to the query under consideration and 0 otherwise. Mean
average precision (MAP) is computed as the average of AP over all
queries in the dataset.

NDCG considers the reciprocal of the logarithm of the rank as-
signed to relevant documents. For a ranked list of documents re-
trieved for a query, NDCG value at position n,NDCG@n, is com-
puted as follows,

NDCG@n = Zn

n∑
j=1

2r(j) − 1

log(1 + j)
. (8)

Here, r(j) is the rating of the j-th document in the ranked list,
and the normalization constant Zn is chosen such that a perfectly
ranked list would obtain an NDCG@n score of 1. Specifically, it is
given by,

Zn =
1∑n

j=1
1

log(1+j)

. (9)

For the TD2003 and TD2004 datasets, we define two values of
ratings 0 and 1 respectively corresponding to relevant and non-
relevant documents in order to compute NDCG scores. In our eval-
uations, we report the average values taken over all the queries in a
dataset as P@n and NDCG@n.

4.3 Parameter Settings
The parameters in RankDE are set to the values shown in Table

2 by measuring the performance on the validation data provided in
the LETOR datasets. Each individual is represented by a 44 dimen-
sional real-valued vector in which, each dimension corresponds to
some feature found in the LETOR datasets. The initial population
is generated randomly by selecting the parameter values from the
range [−1, 1].

4.4 Evaluation Procedure and Baselines
We compare our DE-based learning to rank algorithm, RankDE,

with several baselines and previously proposed EC-based rank learn-
ing algorithms using TD2003 and TD2004 datasets. Next, we briefly
describe each of those algorithms.

BM25: BM25 [23] is a non-learning ranking function that com-
bines numerous statistics to compute a ranking score that re-
flects the relevancy of a document to a given query. It utilizes
information such as the number of times the query occur in
a document (i.e. term frequency), the number of documents
that contains the query (i.e. document frequency), the length

1774

of the document in words, and the average length of a doc-
ument (i.e. the average number of words contained in any
document in the collection). BM25 was successfully used
in the Okapi information retrieval system and is popularly
known as Okapi BM25. This baseline demonstrates the per-
formance that we would obtain if we did not use any training
data to learn a ranking function.

RankSVM: Ranking Support Vector Machine [13] is an extension
to the standard binary support vector classifier [29] that per-
forms ordinal regression. Specifically, RankSVMs learn a
large margin classifier that minimizes the number of discor-
dant pairs between two sets of ranks. It is a pairwise learn-
ing algorithm, which indirectly optimizes the rank evalua-
tion measures such as the MAP, via minimizing the num-
ber of discordant pairs between a human-made ranking and
a system-made ranking.

RankBoost: Freund et al. [10] proposed RankBoost to combine
multiple rankings using the AdaBoost [11] algorithm. Rank-
Boost works by combining multiple weak rank scores of a
given set of training instances. The weak rank scores might
be only weakly correlated with the target (human assigned)
ranking scores. By combining such a set of weak rank scores
via boosting, RankBoost is able to learn an accurate ranking
function. The features exist in the LETOR datasets such as
term-frequency, PageRank, BM25, etc. are used to create the
weak rankings by the RankBoost algorithm.

SwamRank: This is a particle swam optimization (PSO)-based
ranking algorithm that attempts to learn a linear combination
of numerous ranking functions in the form of Eq.1. SwamRank
[6] directly optimizes the MAP for a given training dataset.

GPRank: This is the genetic programming-based rank learning al-
gorithm proposed by Yeh et al. [32] for information retrieval.
Similar to SwamRank, GPRank directly optimizes the MAP
for a given training dataset. Both SwamRank and GPRank
are further detailed in the Related Work Section (i.e. Section
5).

RankDE: This is the DE-based rank learning algorithm proposed
in this paper.

We conduct 5-fold cross-validation using the LETOR datasets,
following the official guidelines and data partitions as described
in the LETOR project [20]. For each fold, we use three subsets
as training data, one subset as validation data, and the remaining
subset for testing. To report the performance of the ranking func-
tion learnt by RankDE, we compute the evaluation measures MAP,
P@n, and NDCG@n on the test. The reported performance in
this paper is the average over the five folds.

4.5 Results
Tables 3 and 4 compare the performance of the proposed RankDE

against the methods described in Section 4.4 respectively using the
LETOR2 TD2003 and TD2004 datasets. Except for RankDE, all
other results reported in Tables 3 and 4 are obtained from published
work and we do not implement those methods here by ourselves.
All results reported in Tables 3 and 4 use the officially released
LETOR2 datasets and evaluation tools, which enable us to make a
direct and a fair comparison.

From Tables 3 and 4 we see that the proposed RankDE has the
best performance in terms of MAP scores among the different meth-
ods compared. The improvements reported by RankDE over all

other methods are statistically significant (paired t-test at proba-
bility level 0.05). RankDE has the highest NDCG@1 and P@1
values in both TD2003 and TD2004 datasets. This implies that the
proposed DE-based rank learning method (RankDE) is able to rank
relevant documents as the first hit, which is a desirable quality of
a ranking function for a search engine. It is interesting to note that
on the TD2004 dataset, none of the previously proposed EC-based
ranking algorithms (i.e. SwamRank and GPRank) were able to out-
perform RankBoost, a non-EC algorithm. However, the proposed
DE-based rank learning algorithm (RankDE) outperforms Rank-
Boost as well as all the other algorithms in this dataset as well.

4.6 Feature Analysis
Recall that the ranking function we learn (defined in Eq.1) using

the proposed method can be interpreted as a weighted linear combi-
nation of 44 different features. By inspecting the final weight vec-
tor returned by Algorithm 1 we can gain some insight into which
features are important for determining the relevance of a document
retrieved for a query. The weights learnt by RankDE using the
TD2003 dataset for different features are shown in Table 5. We
have sorted the features in the descending order of their weights.
Although not shown here for the limited availability of space, a
similar ranking among features is observed for the weight vector
learnt using the TD2004 dataset. From Table 5, we see that heuris-
tics that are known to produce better document rankings such as
the HostRank, inverse document frequency (idf) of the body text,
inbound hyperlinks and HITS are assigned high positive weights
by RankDE. The ability of the proposed method to detect salient
features for ranking is important if we want to use a large number
of features in an information retrieval system. For example, we can
prune the trained model based on the weights learnt for different
features to improve the speed during test (retrieval) phase, which
can be critical for online Web search engines.

5. RELATED WORK
Learning to rank has received much attention lately as a result

of the popularity of Web information retrieval and recommender
systems. A Web search engine must rank a set of retrieved doc-
uments for a user query according to their relevance, whereas a
recommender system must rank a list of product items for each
user according to their preferences. Three different approaches ex-
ist to learn a ranking function for information retrieval: pointwise
approach, pairwise approach and listwise approach.

In the pointwise approach [14, 4] each query-document pair is
considered separately during training to learn an ordinal regression
function that outputs a rank. The pointwise approach does not con-
sider the relative preferences between two documents retrieved for
the same query. Consequently, it has shown poor performance in
learning to rank.

In contrast, the pairwise approach [13, 10, 2, 28] considers two
documents dj and dk retrieved for the query qi and forms pairwise
preferential constraints. For example, if the human annotators pre-
fer a document dj to dk as being relevant for qi, then the constraint
f(qi, dj) > f(qi, dk) is formed. The weight vectorw is optimized
such that the majority of the pairwise preference constraints are sat-
isfied. Pairwise rank learning is closely related to the problem of
binary classification and numerous algorithms have been employed
successfully under the pairwise approach to learn a ranking func-
tion such as Ranking Support Vector Machines (RankSVM) [13],
RankBoost [10], and RankNet [2] respectively based on support
vector machines [29], AdaBoost [11], and neural networks. How-
ever, one fundamental problem associated with the pairwise ap-
proach is that it only considers two documents at a time and ignore

1775

Table 3: Ranking performance on the TD2003 dataset.
Method BM25 RankSVM RankBoost SwamRank GPRank RankDE
MAP 0.126 0.256 0.212 0.209 0.283 0.339
P@1 0.120 0.420 0.260 0.453 0.520 0.600
P@2 0.130 0.350 0.270 0.330 0.420 0.400
P@3 0.160 0.340 0.240 0.269 0.370 0.333
P@4 0.145 0.300 0.230 0.223 0.330 0.300
P@5 0.148 0.264 0.220 0.207 0.280 0.280
P@6 0.140 0.243 0.210 0.188 0.270 0.250
P@7 0.129 0.234 0.211 0.185 0.250 0.243
P@8 0.120 0.233 0.193 0.173 0.240 0.237
P@9 0.116 0.218 0.182 0.164 0.230 0.222

P@10 0.109 0.206 0.178 0.151 0.220 0.210
NDCG@1 0.120 0.420 0.260 0.453 0.520 0.600
NDCG@2 0.140 0.370 0.280 0.343 0.450 0.445
NDCG@3 0.176 0.379 0.270 0.307 0.420 0.388
NDCG@4 0.174 0.363 0.272 0.284 0.390 0.356
NDCG@5 0.183 0.347 0.279 0.278 0.380 0.336
NDCG@6 0.184 0.341 0.280 0.271 0.370 0.310
NDCG@7 0.184 0.340 0.287 0.273 0.360 0.300
NDCG@8 0.185 0.345 0.282 0.270 0.350 0.292
NDCG@9 0.186 0.342 0.282 0.267 0.350 0.279

NDCG@10 0.186 0.341 0.285 0.263 0.350 0.267

Table 4: Ranking performance on the TD2004 dataset.
Method BM25 RankSVM RankBoost SwamRank GPRank RankDE
MAP 0.282 0.350 0.384 0.314 0.362 0.430
P@1 0.307 0.440 0.480 0.400 0.450 0.692
P@2 0.293 0.407 0.447 0.380 0.420 0.500
P@3 0.258 0.351 0.404 0.351 0.380 0.436
P@4 0.243 0.327 0.347 0.317 0.330 0.404
P@5 0.229 0.291 0.323 0.296 0.320 0.385
P@6 0.224 0.273 0.304 0.278 0.300 0.333
P@7 0.210 0.261 0.293 0.253 0.280 0.308
P@8 0.192 0.247 0.277 0.235 0.260 0.308
P@9 0.182 0.236 0.262 0.221 0.250 0.282

P@10 0.175 0.225 0.253 0.215 0.240 0.254
NDCG@1 0.307 0.440 0.480 0.400 0.450 0.692
NDCG@2 0.327 0.433 0.473 0.413 0.440 0.544
NDCG@3 0.314 0.409 0.464 0.404 0.430 0.488
NDCG@4 0.315 0.406 0.439 0.393 0.440 0.458
NDCG@5 0.319 0.939 0.437 0.391 0.440 0.438
NDCG@6 0.325 0.397 0.448 0.394 0.450 0.399
NDCG@7 0.326 0.406 0.457 0.392 0.460 0.377
NDCG@8 0.324 0.410 0.461 0.396 0.470 0.371
NDCG@9 0.332 0.414 0.464 0.397 0.470 0.350

NDCG@10 0.335 0.420 0.472 0.402 0.470 0.328

1776

Table 5: Weights learnt for the different features by RankDE.
Feature Weight
HostRank 5.9932
idf(body) 3.938
HyperlinkScore(weighted-in-link) 3.798
HITS(hub) 3.548
tfidf(anchor) 2.571
LMIR.ABS(title) 2.299
LMIR.JM(anchor) 2.091
BM25(anchor) 1.870
TopicalHITS(authority) 1.727
HyperlinkFeature(weighted-in-link) 1.653
TopicalPageRank 1.460
LMIR.DIR(anchor) 1.440
sitemap2 1.341
BM25(title) 1.168
BM25(exttitle) 1.106
BM25 0.964
tf(url) 0.894
tfidf(url) 0.794
HyperlinkScore(weighted-out-link) 0.693
tfidf(title) 0.613
DL(body) 0.590
LMIR.JM(title) 0.491
tf(title) 0.453
LMIR.ABS(anchor) 0.280
tf(anchor) 0.248
LMIR.JM(title) 0.183
HyperlinkFeature(uniform-out-link) −0.053
HITS(authority) −0.416
tfidf(body) −0.504
sitemap1 −0.517
HyperlinkScore(uniform-out-link) −0.571
TopicalHITS(hub) −0.611
LMIR.ABS(exttitle) −0.841
PageRank −0.989
LMIR.JM(exttitle) −1.020
DL(title) −1.082
DL(anchor) −1.122
HyperlinkFeature(weighted-out-link) −1.152
tf(body) −1.371
LMIR.DIR(exttitle) −2.047
idf(anchor) −4.365
idf(title) −7.841
DL(url) −8.210
idf(url) −11.305

the other documents retrieved for a query. This is particularly se-
vere in the case of learning to rank for information retrieval because
at test time we must decide the total ordering of a list of documents
and not partial orderings between two documents.

The listwise approach [22, 3, 17, 30] consider the entire set of
documents retrieved for a query during the training phase, there
by overcoming the above-mentioned disfluencies in the pointwise
and pairwise approaches. Because in information retrieval we must
apply the learnt ranking function to induce a total ordering for a
set of documents retrieved for a user query, the listwise approach
models this setting closely compared to the pointwise or the pair-
wise approaches. Therefore, we follow the listwise approach in
this paper to learn a ranking function from a given set of training

data. Different loss functions have been employed in prior work on
listwise rank learning leading to numerous algorithms such as List-
Net [3] using cross entropy, RankCosine [22] using cosine loss,
and ListMLE [30] using likelihood loss. However, these methods
do not directly optimize the evaluation criteria used in informa-
tion retrieval such as MAP or NDCG, instead approximate them
via the above-mentioned loss functions. In contrast, our proposed
method can directly optimize those evaluation criteria without re-
quiring any approximations.

Genetic programming (GP) has been used to learn ranking func-
tions in literature. Fan et al. [8, 9, 7] proposed a GP-based ap-
proach to learn a term-weighting formula by combining different
parameters. First, they use an expression tree data structure to rep-
resent a term-weighting formula and then apply genetic program-
ming to select the best performing function. Numerous operators
such as addition, subtraction, multiplication, division, square root,
logarithm etc. are considered. Almeida et al. [5] propose Com-
bined Component Approach (CCA), a GP-based ranking function,
that combines several term-weighting components such as term fre-
quency, collection frequency, etc. to generate new ranking func-
tions. Yeh et al. [32] propose a learning method that employs
GP to learn a ranking function for information retrieval using the
LETOR dataset. In this paper, we refer this GP-based rank learning
method as GPRank. Diaz-Aviles et al. [6] propose SwamRank, a
ranking method that uses particle swam optimization (PSO). They
use the LETOR benchmark dataset and learn a linear combination
of different features that represent a query-document pair to maxi-
mize average precision or NDCG measure on train data. As shown
in our experiments on the LETOR benchmark dataset (Section 4),
our proposed method (RankDE) which uses differential evolution
outperforms both GP (GPRank) and PSO (SwamRank) based pre-
viously proposed methods.

6. CONCLUSION
In this paper, we proposed a differential evolution-based rank

learning method for information retrieval. The proposed method
(named as RankDE) directly optimizes the mean average preci-
sion (MAP) over a set of queries, without requiring any convex
approximations as required by most of the previously proposed
rank learning algorithms for information retrieval. We evaluated
the proposed method using the LETOR benchmark datasets. In
our experiments, the proposed method significantly outperformed
numerous other rank learning methods such as BM25, RankSVM,
RankBoost, SwamRank and GPRank. Moreover, a close investi-
gation into the weights learnt by the proposed method for different
features used for learning reveals that the proposed method can ac-
curately detect salient features for ranking. In our future work, we
plan to study different parameter settings and local search tech-
niques to further improve the performance of the proposed method.

7. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. Addison-Wesley, 1999.
[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,

N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In ICML 2005, pages 89–96, 2005.

[3] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to
rank: From pairwise approach to listwise approach. In ICML
2007, pages 129–136, 2007.

[4] K. Crammer and Y. Singer. Pranking with ranking. In
NIPS’01, 2001.

1777

[5] H. M. de Almeida, M. A. Goncalves, M. Cristo, and
P. Calado. A combined component approach for finding
collection-adapted ranking functions based on genetic
programming. In SIGIR 2007, pages 399–406, 2007.

[6] E. Diaz-Aviles, W. Nejdl, and L. Schmidt-Thieme.
Swarming to rank for information retrieval. In GECCO 2009,
pages 9–15, 2009.

[7] W. Fan, M. D. Gordon, and P. Pathak. Personalization of
search engine services for effective retrieval and knowledge
management. In twenty first international conference on
information systems (ICIS’00), pages 20 – 34, 2000.

[8] W. Fan, M. D. Gordon, and P. Pathak. Discovery of
context-specific ranking functions for effective information
retrieval using genetic programming. IEEE Transactions on
Knowledge and Data Engineering, 16(4):523–527, 2004.

[9] W. Fan, M. D. Gordon, and P. Pathak. Genetic
programming-based discovery of ranking functions for
effective web search. Journal of Management Information
Systems, 21(4):37–56, 2005.

[10] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient
boosting algorithm for combining preferences. Journal of
Machine Learning Research, 4:933 – 969, 2003.

[11] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119 – 139, 1997.

[12] B. He, C. Macdonald, and I. Ounis. Retrieval sensitivity
under training using different measures. In SIGIR’08, pages
67 – 74, 2008.

[13] R. Herbrich, T. Graepel, and K. Obermayer. Support vector
learning for ordinal regression. In ICANN’99, pages 97 –
102, 1999.

[14] R. Herbrich, T. Graepel, and K. Obermayer. Large margin
rank boundaries for ordinal regression. Advances in Large
Margin Classifiers, pages 115 – 132, 2000.

[15] J. Ilonen, J.-K. Kamarainen, and J. Lampinen. Differential
evolution training algorithm for feed-forward neural
networks. Neural Processing Letters, 17:93 – 105, 2003.

[16] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46(5):604 – 632, 1999.

[17] Y. Lan, T.-Y. Liu, Z. Ma, and H. Li. Generalization analysis
of listwise learning-to-rank algorithms. In ICML 2009, pages
557–584, 2009.

[18] L. Nie, B. D. Davison, and X. Qi. Topical link analysis for
web search. In SIGIR’06, pages 91 – 98, 2006.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report SIDL-WP-1999-0120, Stanford InfoLab,
November 1999.

[20] T. Qin, T.-Y. Liu, J. Xu, W. Xiong, and H. Li. Letor: A
benchmark collection for learning to rank for information
retrieval. Technical report, Microsoft Research Asia, 2007.

[21] T. Qin, T.-Y. Liu, X.-D. Zhang, Z. Chen, and W.-Y. Ma. A
study of relevance propagation for web search. In SIGIR’05,
pages 408 – 415, 2005.

[22] T. Qin, X.-D. Zhang, M.-F. Tsai, D.-S. Wang, T.-Y. Liu, and
H. Li. Query-level loss functions for information retrieval.
Information Processing and Management, 2007.

[23] S. E. Robertson. Overview of the okapi projects. Journal of
Documentation, 53(1):3 – 7, 1997.

[24] A. Shakery and C. Zhai. Relevance propagation for topic
distillation uiuc trec 2003 web track experiments. In
TREC’03, 2003.

[25] R. Storn. Differential evolution design of an iir-filter. In
IEEE International Conference on Evolutionary
Computation, pages 268 – 273, 1996.

[26] R. Storn and K. V. Price. Differential evolution - a simple
and efficient adaptive scheme for global optimization over
continuous spaces. Technical Report TR-95-012, ICSI, 1995.

[27] R. Storn and K. V. Price. Differential evolution - a simple
and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimization,
11(4):314 – 359, December 1997.

[28] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma.
Frank: a ranking method with fidelity loss. In SIGIR’07,
pages 383 – 390, 2007.

[29] V. Vapnik. Statistical Learning Theory. Wiley, Chichester,
GB, 1998.

[30] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise
approach to learning to rank: theory and algorithm. In ICML
2008, pages 1192–1199, 2008.

[31] G.-R. Xue, Q. Yang, H.-J. Zeng, Y. Yu, and Z. Chen.
Exploiting the hierarchical structure for link analysis. In
SIGIR’05, pages 186 – 193, 2005.

[32] J.-Y. Yeh, J.-Y. Lin, H.-R. Ke, and W.-P. Yang. Learning to
rank for information retrieval using genetic programming. In
SIGIR Workshop on Learning to rank for Information
Retrieval (LR4IR), 2007.

[33] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to information retrieval. ACM
Transactions on Information Systems, 22(2):179 – 214, 2004.

1778

