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ABSTRACT

As suggested in the Blind Watchmaker, human selection
can be a remarkable source of information for guiding a ge-
netic algorithm when objective cost functions are unknown
[2]. Properly harnessing such input, however, requires an
understanding of the “numbers” humans produce as well
as the limitations humans face when performing extensive
judgment tasks. The Interactive Augmented Genetic Algo-
rithm (IAGA) modifies both the procedural and algorith-
mic components of Interactive Genetic Algorithms to better
match the human-selection process. Experimental results
show that cochlear implant recipients are successful in using
the TAGA to select processing parameters to improve their
perception of music.

Categories and Subject Descriptors

H.1.2 [Models and Principles|: User/Machine Systems—
human information processing, software psychology

General Terms

Algorithms, Experimentation, Human Factors

Keywords

Genetic Algorithm, IGA, Cochlear Implants, Music, Psy-
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1. INTRODUCTION

Interactive Genetic Algorithms (IGAs) explicitly incorpo-
rate human feedback into the evolutionary process of the
genetic algorithm (GA). In its simplest form, the IGA uses
a human-generated goodness of fit in place of some objective
function. Population members may either be rank ordered
or scaled by the user, based on his or her own subjective
criteria. In turn, based on such values, the population is
evolved within a standard GA framework.

Since their inception, IGAs have been applied in a variety
of design problems for which optimizing human preference is
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a paramount, but poorly quantifiable, objective [15]. These
include designs where visual and/or or auditory qualities de-
termine the utility of the artefact, e.g., visual design systems
[1] or hearing aids [3]. Although each of these applications
has been deemed a success by their authors, the extent to
which each implementation made full use of the human in-
put has not been studied, nor has the degree to which errors
or biases in judgement affect the performance of the IGA.
Until recently, even the question of whether an IGA search
converges to the same member of a population as would be
selected using more standard psychometric techniques has
been left unanswered [7].

The present paper proposes modifications to the stan-
dard components of a GA, which result in a framework that
is more consistent with psychometric theory and practice.
Specifically, modifications with respect to representation,
generation, selection, crossover, mutation, stopping critera
and initialization are introduced. These modifications de-
fine an Interactive Augmented Genetic Algorithm (IAGA).
In the remainder of the present section, we present the key
components of the TAGA. In Section 2, we introduce the
TAGA as a subjective method for improving the perception
of sound by the severely hearing-impaired implanted with a
cochlear prosthesis and present results from a human study.
Finally, in Section 3, we revisit the general components of
the TAGA and consider the extent to which several of the
proposed modifications were utilized by human participants
in the cochlear-prosthetic design problem.

1.1 Psychometric Limitations on IGA Designs

At the core of any IGA is a measure of the human “de-
signer’s” preference. Psychometric techniques for obtaining
such preference judgements (e.g., scaling or ranking) impose
certain limits on general properties of an IGA. From the
standpoint of memory load, the number of stimuli a human
participant can judge at any one time is typically bounded
by the “7+1” rule. While it is possible to exceed this bound,
in practice, the experimenter must provide some means for
the participant to compare among options as part of the re-
sponse procedure. From the standpoint of task load, human
participants often fatigue after 1-2 hrs. of testing, which
implicitly limits the number of generations in a run of the
IGA and favors testing procedures that don’t allow the par-
ticipant the option of reviewing or comparing members of
the current generation (see also the discussion in [6]). In the
types of audio design problems that the authors are most
familiar with, a human participant is likely to complete 2-3
runs of an IGA in the course of one two hour session. When
compared with the more standard practice of 1000s of runs



in GA evaluations, the very limited number of repeated mea-
sures afforded in an IGA can impact the quality of the search
results.

Finally, from the standpoint of stimulus variation, humans
are much more likely to handle heavier memory and task
loads if the artefacts they are evaluating have a sufficient
degree of variability. This less-formalized concept in psycho-
metrics reflects the differences in performance observed, for
example, when running fixed-level vs. adaptive psychophys-
ical methods. Fixed-level methods, in which the same stim-
ulus condition is repeated for 50-100 trials, invariably suffer
from lags in attention, either because the discrimination or
detection task is too difficult (performance is near chance)
or because it is too easy (performance is nearly perfect).
In contrast, sequential adaptive estimation methods, such
as that originally proposed by Levitt [8], are better able to
sustain the observer’s attention over 50-100 trials by vary-
ing the stimulus condition from trial to trial. This desire
for a procedure with a sufficient degree of stimulus variation
runs counter to the desire for homogeneity within a current
generation as an IGA-run evolves. Stimulus variation also is
known to be important in “teaching” the participant to dis-
criminate among those properties of the stimulus which are
relevant to the task from those which are not. Accordingly,
as the population homogenizes over an IGA run, partici-
pants are more likely to attend to those stimulus properties
that make the scoring task manageable, rather than those
that are indicative of potentially better variations. This is
particularly a problem when the participant may not really
know, at the outset of a run, what stimulus properties they
prefer and only learn these from the generated exemplars
[7].

Whereas the three factors above reflect the insertion of the
human in the “feedback loop” of a GA, psychometric theory
also points to the inherent limitations of how data gener-
ated by the measurements themselves can be interpreted.
In any sensory scaling task, the experimenter must decide
whether the data should be treated on a categorical, ordinal,
interval or ratio scale [14]. In general, without additional
assumptions or more elaborate psychometric procedures, it
is recognized that preference scores provided by a human
participant are no stronger than ordinal. Should the rules
of parent selection assume the figure of merit to be drawn
from interval or ratio scales, as is typically the case in GAs,
then they must be adjusted to accommodate the weaker or-
dinal or even categorical nature of the data the participant
provides.

The consequences of the psychophysical limitations to the
implementation of an IGA are that smaller, as opposed to
larger, search spaces are likely to yield valid results, and
mechanics of the selection, cross-over, and mutation pro-
cesses should be scrutinized to ensure that subjects provide
reliable data that is uncontaminated by fatigue, inattentive-
ness, and bias. In the work that follows, we consider IGA
designs drawn from a narrow niche of the broader GA search
space. We limit our discussion to improved search methods
involving relatively small spaces (as might be spanned by
10-14 bit representations) which are robust to highly quan-
tized fidelity criteria. In the latter case, we consider a binary
response (accept/don’t accept) as the strongest feedback a
participant can provide.
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1.2 Representation

Given the need for small search spaces over which to search,
the mapping of designs to genetic representation takes on
greater significance than is typically the case for GA. Binary
representations inflate the size of the search space. More ef-
ficient representations are M-length strings

a€ A Xx As X ... X Ap

where each Ay, is a finite alphabet of size N and M typically
corresponds to the number of (physical) parameters that
define a given design. In our typical application, M is often
no greater than 5 and the number of levels of each parameter,
Ny, is often no greater than 8.

1.3 Generation

The best psychometric methods are those that make the
most from the fewest number of observations. Applying
this principle to the TAGA, duplicates within a generation
are wasteful observations, despite the fact that increasing
homogeneity is a desired outcome of an IGA run. The
TAGA modifies the standard form of generational updating
through culling, tagging, and selective insertion. The pro-
cess of culling removes duplicates from the next generation.
Each member that remains is tagged with the number of
copies that were removed. In place of the duplicates, unique
members are inserted into the generation. The rules for such
insertion are variable. In our work, we consider rules that
draw members from regions of the search space that haven’t
yet been explored, while ruling out members that have al-
ready been rejected in previous generations (tabu).

1.4 Selection

An often-reported comment from participants in IGA ex-
periments is that at the beginning of a run, it is hard for
them to accept any option, but as the run persists, it is
even harder for them to evaluate among the very small of a
nearly homogeneous population. Culling and selective inser-
tion are intended to mitigate the task difficulty encountered
in later generations of a run, whereas variable acceptance is
intended to help with task difficulty at the beginning of a
run. In standard IGA, a certain number of parents are nec-
essary to avoid pre-mature convergence of the population.
In practice, we have required participants to accept half of
a generation’s members, regardless of whether any or all of
them are judged acceptable. The IAGA instructs the par-
ticipant to accept as many, or as few, of the members of the
current generation as appropriate.

1.5 Cross-over and Mutation

At the most general level, the purpose of cross-over is
to perpetuate those schema in the search space with pos-
itive value and to eliminate all others. Mutation’s role is
to improve existing schema by introducing new variations
in the population. Culling and selective insertion (to the
extent non-visited portions of the search space have very
different schema) are counter-productive to schema forma-
tion, whereas variable acceptance is likely to reinforce larger
schema to the detriment of smaller ones during the initial
phase of an TAGA run.

A natural way to incorporate binary selections (of arbi-
trary number) with tagging (which preserves the relative
dominance of a particular string within the current gener-
ation) into the cross-over operator is to generate the set of



all possible children and sample without replacement from
the set. Specifically, suppose A = {1, az,...,ax} is the set
of accepted members from the current generation. We form
the parents P from A by augmenting A with each member’s
collection of duplicates

P = {051,17~»»,041,N17Oé2,1,--:7Ot2,N2,---7Oék,1,---,06k,Nk}

We form C, the population of potential children by crossing,
in all possible ways, each pair of parents drawn from P.
We then draw, without replacement, the proper number of
strings to form the next generation. These strings undergo
mutation and then are subject to the culling, tagging, and
selective insertion operators.

Although the complexity of the proposed cross-over op-
eration is larger than most cross-over operators in the GA
literature, the number of computations required remains rel-
atively small in practice owing to the fact that the size of the
search space is small. In our typical application, we employ
single-cut crossover for search spaces on the order of 2000,
such that the computation time is negligible when compared
with the time it takes for the user to make their judgements.

1.6 Initialization and Stopping Criteria

Initialization of IGAs is subject to the same issues encoun-
tered with any GA. Whereas standard GAs work around the
problems of initialization by repeated measures, IGAs, in
practice, cannot rely on more than a handful of runs. The
TAGA utilizes selective insertion to introduce genetic mate-
rials into the population that may not have been encoun-
tered as well as an initialization procedure in which values
of each parameter are as distinct across the population as
possible.

Both wvariable acceptance and the culling/tagging opera-
tors complicate the application of standard rules for termi-
nating an IGA run. We have found that measures of genetic
drift, when applied to the population of potential children
during crossover, are useful indicators. In the example ap-
plication that follows, we utilized a more global stopping
criterion based on the proportion of the search space that
the user has explored.

1.7 Summary

The IAGA addresses components of an IGA which may
be compromised by the psychometric limitations of the as-
sessment procedure. It is designed to efficiently utilize the
human participant’s time, promote their attentiveness, min-
imize their fatigue, and work around their bias. The use of
culling, tagging, selective insertion, and variable acceptance
to achieve these design goals require a substantial reworking
of cross-over, mutation, initialization, and stopping criteria.
What follows is a particular instance of the IAGA approach
involving the design of audio processors in a cochlear im-
plants.

2. OPTIMIZING THE PERCEPTION OF
MUSIC AND SPEECH BY COCHLEAR
IMPLANT USERS

Cochlear implants (CIs) can provide a sense of sound to
people with a severe to profound hearing impairment. A
sound processor transforms sound signals into patterns of
electrical pulse trains that stimulate the auditory nerve via
implanted electrodes. The ability of a CI user to understand
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speech or recognize other sounds strongly depends on the se-
lection of processing parameters that dictate the processor
program’s behavior. No single combination of parameters
provides the best sound quality for all users. Rather, each
recipient has unique hearing that is best served by individu-
ally tailored parameters. However, the clinical task of fitting
an optimal set of parameters from the thousands of possible
combinations is complicated by the parameters themselves
because they can exhibit strong nonlinear, non-monotonic,
and often unpredictable interactions. Not only are CI pro-
grams subject to the preferential judgment of each recipi-
ent, different programs perform better with different kinds
of sound. To maximize the ability to communicate, most
well-fit CI programs aim to best resolve speech sounds. As
a result, CI users often achieve good performance in speech
recognition, but report that music sounds unnatural and
even unrecognizable. To optimize sound processor programs
for music listening, the IAGA was used in a study with hu-
man CI recipients.

2.1 Methods

The TAGA relies on human feedback to evaluate popula-
tion fitness and is thus prone to compromised and distorted
judgments brought about by fatigue. Each generation of the
process involves listening attentively and critically to music
through multiple programs. Traditional IGAs compound
the mental stress because they require participants to select
a fixed number of designs in every generation. This often
makes the task more taxing because participants are forced
to attend very closely and repeatedly to designs before de-
ciding which bad ones should be selected or which good ones
should be rejected just to meet a requisite number of selec-
tions. The dynamic nature of the subjective human decision
process can exacerbate fatigue further. Until the proper de-
sign schema have developed and have been presented in gen-
erational populations, bad programs may seem good because
they are better in comparison to worse programs. This is
especially true in early generations comprised largely of bad
or suboptimal designs. Thus, the decision criteria will likely
change over the course of an evolution as listeners experi-
ence more and potentially better programs available in the
search space and learn more about their own preferences
and inclinations. As a result, dynamic fitness criteria may
impact convergence that is based upon conditions of design
homogeneity and may protract the duration of a successful
evolution. The TAGA fatigue mitigation strategies include
imposing a rigid stopping criterion to limit the duration of
an evolution and allowing participants to select as many or
as few good designs as they see fit.

TAGA evolutions are terminated after a predefined extent
of the search space has been explored, but precautions are
taken to avert premature convergence on a design that is
not optimal. Based on the behavior of a traditional IGA
used in earlier implementations to optimize CI speech pro-
grams [16] [9], it was determined that a 5.0% sampling of the
search space was sufficient to find several good programs.
The TAGA subsequently allows recipients to directly com-
pare these programs against each other in what has been
termed playoff rounds. Programs that were preferred in
earlier stages of the evolutionary process but may have been
lost during operations that expanded the divergence of the
search are revisited and reassessed within the context of
other good programs. The playoffs not only help determine



the best overall program but also ensure that evolutionary
termination does not unfairly bias the final program. In this
study, playoff rounds were seeded with the four programs
that were statistically most persistent across evolutionary
rounds. Parameters that did not seem to factor into par-
ticipants’ fitness judgments, so called invisible parameters,
were not considered in the determination of program persis-
tence. The “top four” programs were compared head to head
in three to five playoff rounds until a final winner emerged
from them.

Mitigating fatigue is a common problem with many IGA
implementations, but the GA search space used to optimize
CI programs is uniquely challenging. Literally thousands
of CI programs can be created by combining the various
available processing parameters and setting each parame-
ter to various values. For this study, a search space was
constructed with eight different music-relevant processing
parameters. Each parameter was limited to two or three
different possible values. For instance, the high frequency
suppression parameter had possible values of “on” or “off”,
and the electrical stimulation rate parameter had possible
values of 500, 900, or 1200 Hz. As these examples begin to
suggest, CI parameters generally cannot be represented by
continuous functions or even with simple conventions such
as ordinality. A comprehensive discussion of particular pa-
rameters is not appropriate in this context but can be found
n [4], [12], [10], and [5]. A search space comprised of CI
programs generally represents a sparse distribution of de-
signs. For this study, the JAGA was implemented on cus-
tomized software. The IAGA search space was limited to
972 programs. This was comparable to earlier studies which
utilized a traditional IGA to search through an 8-bit space
of 256 programs [16] and a 10-bit space of 1024 programs [9]
in an effort to optimize speech.

2.2 TAGA Software

Custom software was developed to implement the TAGA,
to control CI processors, and to provide a graphical user
interface (GUI) for participants to submit feedback. An ex-
ample screen of the software’s GUI is shown in Figure 1
Each screen embodied a single segment of the TAGA session.
The term “segment” is used here to denote either an evo-
lutionary generation or a non-evolutionary playoff round,
both of which appear the same and require the same ac-
tions from participants. Throughout the program optimiza-
tion process, music was played continuously through speak-
ers into the ambient environment of the room. Each screen
gave participants access to eight programs. In evolutionary
generations, every program is unique. In playoff rounds,
the “top four” programs were distributed randomly among
the eight available locations and therefore presented twice
apiece. When each screen was first displayed, the applica-
tion sequentially switched between each of eight programs
for 20 seconds. In this case, switching implies deactivat-
ing the current program, loading a new program onto the
processor, and then activating that program. The process
of switching between programs was almost imperceptibly
short, taking under 400 milliseconds to complete. Rather
than waiting for the sequential presentation of programs to
run its course, participants could at any time switch between
programs by using the program activation buttons labeled
“1” through “8”. The sequential presentation sequence could
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Figure 1: Example view of the customized soft-
ware used by participants in this study. The screen
depicts a single generation. Participants were in-
structed to listen to music using programs 1 through
8, indicate which of them sounded “good” using the
adjacent toggle buttons, and then proceed to the
next group of programs (next generation) by using
the [Continue] button after all good programs had
been selected. In this example, programs 2, 4, and
5 are selected.

also be reinitiated by depressing the button labeled [Replay
Alll.

The toggle buttons adjacent to each program activation
button were used by participants to provide subjective feed-
back. Participants were instructed to indicate which pro-
grams processed the ambient music in a manner that sounded
good to them. Participants were able to select as many (up
to eight) or as few (even zero) programs as was appropriate.
The definition of “good” was deliberately vague because the
aim of the task was to identify good programs for listening to
music, and music appreciation is not universally consistent
concept. This study appreciated that different people value
different aspect of music above others, whether the beat, the
clarity of the instruments or vocals, or some other factor. In
addition, there is considerable variability between how dif-
ferent CI recipients hear, whether because of implant place-
ment variations, neurophysiological abilities, and countless
other differences. Ultimately, this study aimed to provide a
common tool to optimize music programs to each subject’s
particular liking, despite their differences.

The [Continue] button progressed participants from one
screen to the next. Participants were instructed to use this
button once all good programs on the current screen had
been selected. During the evolutionary process, this initi-
ated the reproductive behavior of the IAGA and produced
a new generation of programs based on subject preferences.
The new generation was presented as a new screen of eight
unique programs. New screens progress as new generations
are produced until the TAGA is stopped and the process
enters playoff rounds. Playoff screens were simply a clan-
destine opportunity for participants to essentially vote for
the programs they preferred. Since generation and playoff
screens looked and behaved similarly, participants did not
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Figure 2: Example graphical representation of an

know whether they were engaging in evolutionary or playoff
rounds. Ensuring that the optimization task be temporally
succinct was an important factor in implementing the IAGA
for this study. Although the 5.0% sampling of the search
space seemed small, it was quite reasonable considering the
required time commitment and the fact that participants
would be judging 60 to 80 programs during evolutionary
generations and comparing an additional 20 to 30 more dur-
ing three to five playoff rounds.

2.3 Listening Evaluation

This study incorporated both music comprehension and
speech perception testing. Six subjects participated in test-
ing using the TAGA programs they had optimized for music
and the clinically fit speech programs they used in everyday
life. Two participants also had clinically fit everyday mu-
sic programs in addition to their everyday speech programs.
Each program was tested separately. This protocol allowed
for comparisons between the quality of the IAGA-fit pro-
gram relative to clinically fit programs, and thus provided a
practical evaluation of the effectiveness of the TAGA fitting
process. Music testing utilized the Clinical Assessment of
Music Processing (CAMP) test, as described by [11]. One
component of the CAMP test battery incorporates a melody
identification test using common melodies which have been
processed to remove identifying temporal cues. The CAMP
battery also utilizes a timbre recognition test in which the
listener is asked to identify commonly recognizable musical
instruments by their distinctive spectral overtone signatures.
Speech testing utilized the AzBio sentence test, as described
by [13]. Sentences are natural and conversational in nature,
but the test is generally considered more difficult than tra-
ditional tests, such as HINT and CUNY sentences. To make
the AzBio test more difficult so as to avoid ceiling effects,
sentences were presented at 60 dBA in 4-talker babble noise.
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TIAGA fitting session.
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Figure 3: CAMP timbre recognition scores for six
participants. Each subject used both GA and ev-
eryday programs. Two also used clinically fit music
programs. Group mean scores for the GA program
were 20.5% higher (statistically significant) than for
the everyday program.

2.4 Results and Discussion

2.4.1 Music Program Optimization

The TAGA software was developed to record all data re-
garding each fitting session. These data include algorithmic
information, such as randomly generated values and results
of reproduction, and information provided by the subject,
such as time-stamped button presses and program selec-
tions. A top-level analysis of these data was possible by
representing them graphically, as is demonstrated for one
session in Figure 2. Each screen encountered while using
the TAGA software is represented within a dark or light grey
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Figure 4: CAMP melody recognition scores for six
participants. Each subject used both GA and ev-
eryday programs. Two also used clinically fit mu-
sic programs. The difference between group mean
scores were not statistically significant.

vertical stripe. The process progresses from left to right, as
indicated by the numbering along the bottom. Blue num-
bers indicate evolution generations, whereas those in orange
indicate playoff rounds. The eight different programs en-
countered on each screen can be found within each stripe.
The programs in the top half depict those that sounded good
to participants, whereas programs in the bottom half depict
those that did not. Each program is represented by a ver-
tically arranged combination of color coded parameters and
parameter values. For the purpose of this discussion, pa-
rameter names have been replaced by an ordinal numeric
identifiers ranging from P1 to P8. Parameters are shown
along the left-hand side. Parameter names in red indicate
parameters that were considered invisible to the subject in
terms of their contribution to fitness. Parameter names have
also been removed, but a legend along the right-hand side
illustrates the different colors associated with different val-
ues (V1, V2, or V3) as well as the number of value levels
within each parameter.

2.4.2  Music and Speech Testing

Six participants were tested while wearing either their
TAGA music programs or their everyday speech programs.
Additionally, two participants were also tested while wear-
ing previously fit clinical programs specifically designed for
music listening. The CAMP test battery included tests of
both instrumental timbre and musical melody recognition.
Results from timbre recognition subtest (Figure 3) show that
the IAGA program outperformed clinical speech programs
by a statistically significant group mean performance mar-
gin. The melody recognition subtest (Figure 4) did not show
statistical differences between programs. This was likely
due to the small subject sample size, which was definitely
the case when comparing clinically fit music programs. Al-
though these results are inconclusive, they are encouraging.

The AzBio test results (Figure 5) are also encouraging.
The results were again not statistically significant but demon-
strated that the music program fit by the IAGA could also
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Figure 5: AzBio sentence recognition scores for six
participants. Each subject used both GA and ev-
eryday programs. Two also used clinically fit mu-
sic programs. The difference between group mean
scores were not statistically significant.

be used for speech perception. This study will continue with
an expanded subject pool.

The testing results provide a real world validation of the
TAGA. They offer practical proof that the steps taken to
augment a traditional IGA produced an algorithm capable
of meeting the unique challenge of fitting CI programs. This
contention is further buttressed when comparing their re-
spective algorithmic data, particularly in the context of min-
imizing participant fatigue while expanding the diversity of
the search.

3. THE USE OF IAGA FEATURES IN THE
COCHLEAR IMPLANT EXPERIMENT

The TAGA modifies several components of the IGA to
better reflect the psychometric theory and practice. In the
experiment of the preceding section, one factor (proportion
of the space searched) was controlled and results for designs
selected using IAGA were presented. From the data, it is
clear that participants were able to use the IAGA effectively.
What is not clear from the data is the extent to which the
psychometric goals of the IAGA were met. In the final sec-
tion of the paper, we consider several of these goals in light
of the outcomes in the cochlear implant experiment.

3.1 Fatigue mitigation - reduced time commit-
ment

Participant fatigue is largely a function of the time re-
quired by the task at hand. A cursory analysis of the exem-
plary data in Figure 1 illustrates the temporal characteristics
of the TAGA fitting procedure. The algorithm performed
nine evolutionary generations before reaching or surpassing
the 5.0% search space sampling threshold. During the evo-
lution, the participant experienced 72 programs, 52 of which
were unique, and indicated that music sounded good in 15
of those presentations. Following evolution, the subject re-
quired four playoff rounds to determine which program was
ultimately the best for listening to music. Although the



Table 1: Comparing the IAGA used for optimizing
music programs to traditional 10-bit IGA used for
optimizing speech programs.

TAGA | IGA

Study

Participants 7 20

Evolutions 16 104
Search Space

Unique programs 972 | 1024

Parameters per program 8 7
Selection

Programs selected per generation 2.3 4

Proportion of times user selected | 16.5% | 100%
four programs
Search

Screens per session 10.6 21.4

Proportion of search space visited | 5.3% | 6.7%
per evolution

Duplicate programs per generation 0 1.6

New programs per generation 4.9 3.2
Incongruous Operations

Invisible parameters per evolution 2.4 2.6

Proportion of programs in tabu list 8.3 0
per evolution

entire process required 13 screens, it took 901.0 seconds
(15:01). On average, each comparison screen required only
69.31 seconds (01:09) to complete. The 16 fitting sessions
involved in this study required an average of 10.63 screens
and all optimized a music listening program in less than 20
minutes. This represents a substantial improvement over
the previous IGA implementations. The IGA required an
average of 21.40 similarly configured screens for a similar
purpose. The TAGA timeframe is consistent with regular
clinical programming sessions, and as such, would not im-
pose undue fatigue.

3.2 Fatigue mitigation - relaxed task load

Fatigue can also be a function of mental demand. Ac-
tive critical listening for extended periods of time can be
a demanding burden of concentration for a normal hearing
listener, but it is often much more difficult for the hearing
impaired listener. A particularly striking aspect of the ses-
sion shown in Table 1 is how many programs were judged
as good, for listening to music and therefore selected for
reproduction, in each generation. The previous IGA im-
plementations required that four programs were selected in
every generation. The TAGA employed the variable accep-
tance rule and had no such requirement. Participants were
free to select any programs that met their personal fitness
criteria. As a result, participants using the ITAGA selected
an average of 2.28 programs per generation, and there was
only a 16.47% chance that they would select four. The dis-
tribution of selection count is shown in Figure 6. Whereas
the previous IGA studies required four design selections ev-
ery generation, participants in this study were more likely to
choose fewer and even zero programs. Selecting one, two, or
three programs per generation was more likely than choosing
four. Allowing participants the freedom to select only those
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programs as were appropriate, rather than forcing them into
deliberations, eased the mental demand of this application.

L of
T

count per
T T T

Selection likeliho

3 4 5
Number of programs

Figure 6: Likelihood breakdown of selecting any-
where from zero to eight programs presented in a
generation. Participants were instructed to select
any or none of the eight. Data were compiled over
16 evolutions comprising 221 generations.

3.3 Search efficiency of the IAGA

Another interesting point of comparison between the IAGA
and previous IGA implementations is the occurrence of du-
plicate programs in a generation. By design, the TAGA
eliminates duplicate designs from appearing in any given
generation. This enables the search to more broadly sample
the search space rather than wasting operations on redun-
dantly presented designs. The information about would-be
duplications is retained as tagging data. The traditional
IGA has no such provision, and redundancies are common.
Therefore, whereas TAGA generations contain no duplicate
designs, IGA generations contained 1.65 duplicates in pre-
vious studies. To put this within the context of creating a
more extensive and diverse search, the ITAGA added an aver-
age of 4.93 new programs and explored an additional 0.51%
of the available search space in every generation. The pre-
vious IGA implementations only added an average of 3.19
programs and explored an additional 0.31% of the available
search space per generation. These numbers speak to the
increased efficiency of the TAGA.

3.4 Participant sensitivity to design parame-
ters

The graphic representation in Figure 1 also informs about
the participant’s sensitivity to certain parameters. In this
example, the subject did not seem to show a strong pref-
erence for two parameters (P4 and P7) during this session,
and they were classified invisible. Information such as this
could be useful during a clinical programming session as it
may streamline the process by suggesting which parameters
are more important than others. In this study, program-
ming sessions identified 2.38 invisible parameters per evo-
lution on average. It should be emphasized that different
sound characteristics may interact unpredictably with dif-
ferent processing parameters, so invisible parameters iden-
tified in one setting may not be those identified in another.
For comparative purposes, the invisibility calculation was
applied to data from IGA sessions. This analysis identified
an average of 2.56 invisible parameters per evolution, which
was a similar result. Removing invisible design parameters
from the design space is likely to further simplify the delib-
erative burden and improve the efficiency of the search.



3.5 Coupling the IGA with a tabu operator

Incorporating a tabu operation within a GA has the po-
tential of positively affecting the algorithm. However, the
TAGA tabu operator was interestingly inconsequential in
this study. Tabu programs had to be rejected in two gen-
erations and thus considered “not good” for music listening.
These programs were subsequently removed from the search
space and placed on a tabu list. In theory this approach can
reduce the size of the design space and thus improve the GA
search. In this study, only an average of 8.25 programs were
rejected per evolution. This represented only 0.85% of the
search space. Applying the same “2 strikes, you’re out” con-
dition on the earlier IGA evolutions showed the tabu opera-
tor to be similarly negligible in terms of pruning the search
space. In these cases, the tabu list included an average of
22 programs per evolution. That number, although small, is
also inflated because the previous IGA implementations did
not remove would-be tabu programs. The common condi-
tion among the IAGA and IGA implementations is a small
and sparsely populated search space. Further study may be
warranted to characterize this properly, but the tabu oper-
ator in these experiments provided modest improvement at
best.

4. CONCLUSION

Modifications to the general structure of IGAs have been
proposed from the standpoint of psychometric theory and
practice. The TAGA provides efficiencies in the human-
guided search while still achieving evolutionary behavior that
is normally associated with GAs. In an example applica-
tion, cochlear implant recipients demonstrated their ability
to use the IAGA to improve their perception of music. Post
hoc analysis of the evolutionary behavior of the participants’
searches supports the claims of greater efficiencies when us-
ing the TAGA.
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