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ABSTRACT
The P300 component of the brain event-related-potential is
one of the most used signals in brain computer interfaces
(BCIs). One of the required steps for the application of
the P300 paradigm is the identification of this component
in the presence of stimuli. In this paper we propose a direct
optimization approach to the P300 classification problem. A
general formulation of the problem is introduced. Different
classes of optimization algorithms are applied to solve the
problem and the concepts of k-best and k-worst ensembles
of solutions are introduced as a way to improve the accuracy
of single solutions. The introduced approaches are able to
achieve a classification rate over 80% on test data.

Categories and Subject Descriptors
G.1 [Optimization]: Global optimization; G.3 [ Proba-
bilistic methods]

General Terms
Algorithms

Keywords
brain-computer-interfaces, P300, ensembles, neuroinformat-
ics, classification

1. INTRODUCTION
Brain Computer Interfaces (BCIs) [8, 9, 11, 21] allow to

translate the brain signals into commands without the need
for motor intervention. The use of BCIs has provided an
unprecedented alternative for the communication of individ-
uals with severe communicative impairments. Exemplary
uses of BCI technology include games, virtual environments
[13], and space applications [15].
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There is a variety of neural signals that have been iden-
tified for BCI such as slow cortical potentials, μ and β
rhythms, cortical neuronal action potentials, and P300 evoked
potentials. They can be recorded using different experimen-
tal paradigms and when used for BCI, exhibit different in-
formation rates.

One of the neural signals that have been successfully used
in the implementation of BCIs is the P300 event-related po-
tential. It is evoked in scalp-recorded electroencephalogra-
phy (EEG) by external stimuli. One example of the use of
this type of signal is the P300-speller. The P300 paradigm
presents 36 letters in a 6×6 matrix on the computer screen.
Columns and rows of the matrix flash up in a random or-
der and the subject has to be concentrated on the letter it
wants to write. Around 300 ms after the corresponding let-
ter is flashing up, the P300 component of the event-related
potential (ERP) [3] arises.

To determine when a P300 potential has been evoked and
the event that has produced it, classification methods are
applied to the EEG signals. Among the classification tech-
niques used with the P300 Speller are Pearson’s correlation
method [6], stepwise linear discriminant analysis [2], support
vector machines [7], and matched filtering [6].

The classification of P300 potentials can be approached
as a direct optimization problem in which the optimal solu-
tion would correspond to a perfect classifier. However, this
is not the approach followed by the most common applied
algorithms [6]. This fact might be due to the scarce analy-
sis of the characteristics of the objective function associated
to the classification problem. In addition, direct optimiza-
tion approaches do not employ, to the same extent that other
learning algorithms, the available knowledge about the prob-
lem. Finally, the solutions given to the P300 classification
problem should be robust for unseen data, and it is difficult
to guarantee this behavior for solutions achieved by direct
optimization techniques.

In this paper, we address the P300 classification problem
as a direct optimization problem. Our objective is to de-
termine which are the factors that influence the complexity
of the problem for optimizers. We also investigate how dif-
ferent types of optimization algorithms behave for the P300
classification problem.

The paper is organized as follows. In the next section,
brain computer interfaces are reviewed and the P300 classi-
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Figure 1: Schematic representation of the P300
speller as seen by the user on the display and chan-
nels location and distribution of the P300 response.

fication problem is introduced. In Section 3, the formulation
of the P300 classification problem as a direct optimization
approach is presented. Section 4 describes the steps in the
processing of the brain signals and present the optimiza-
tion methods used in our experiments. The experimental
framework and the numerical results of our experiments are
explained in Section 5. Finally, the conclusions of our paper
are given in Section 6.

2. BRAIN COMPUTER INTERFACES
A BCI can be divided into a signal acquisition module and

a signal processing or transformation module [21]. The sig-
nal acquisition is executed using EEG, Magnetoencephalog-
raphy (MEG), or other techniques for recording brain ac-
tivity. The transform algorithms usually employ machine
learning techniques to convert the neural signals to com-
mands (e.g. cursor or robot arm commands). The user may
receive some feedback of this activity (e.g by looking a cursor
movement on the screen).

We use the BCI2000’s P300 speller paradigm, described
originally in [4] and later used in [2]. Data recorded using
this paradigm is employed in the section of experiments to
compare the applied optimization algorithms.

The P300 Speller presents to the experiment participant
a 6 × 6 matrix of characters. Each row and each column
are intensified; the sequential series of intensifications are
presented as a random sequence. The user focuses his at-
tention on one of the 36 cells of the matrix. The row and
the column containing the character to be communicated
constituting the rare set. The other ten intensifications con-
stituting the frequent set. If the participant is attending to
the stimulus series, the row and the column containing the
target character will elicit a P300 response.

The responses evoked by these infrequent stimuli (i.e., the
2 out of 12 stimuli that did contain the desired character)
are different from those evoked by the stimuli that did not
contain the desired character and they are similar to the
P300 responses previously reported [2, 4]. Figure 1 shows a
schematic representation of the P300 speller as seen by the
user on the display and the distribution of EEG channels
in P300 experiments (spatially distributed dots that cover
the scalp) and the P300 evoked signal (different intensity
associated to different colors (see color bar)) that is concen-
trated around the brain central region. EEG channels refer
to the EEG electrodes positions. Each channel records brain
signals from the scalp area it where is located.

3. P300 CLASSIFICATION AS DIRECT OP-
TIMIZATION

The presence or absence of a P300 evoked potential from
EEG features can be considered a binary classification prob-
lem with a discriminant function having a decision hyper-
plane defined by [6]:

w · f(x) + b = 0 (1)

where x is a feature vector, f(.) is a transformation function,
w is a vector of classification weights and b is the bias term.

In [6], it is shown that different classification methods can
be posed in terms of alternative strategies for solving w and
b. The general problem is simplified because it is assumed
that a P300 response is elicited for one of the six row/column
intensifications, and that the P300 response is invariant to
row/column stimuli. Therefore, the resultant classification
is taken as the maximum of the sum of scored feature vectors
for the respective rows, as well as for the columns:

r∗ = argmaxrows

[∑
irow

w · f(xirow )

]
(2)

c∗ = argmaxcolumns

⎡
⎣ ∑

icolumn

w · f(xicolumn)

⎤
⎦ (3)

Class labels of +1 and −1 are assigned to the target and
non-target stimuli, respectively. This design selects the re-
sponse with the largest positive distance from the trained
separating hyper-plane [6]. Since Equations (2) and (3) are
invariant to the constant bias term b, it does not need to be
computed.

The problem is transformed then in finding a vector of
weights that maximizes the predicted accuracy for the train-
ing data. From the output of Equations (2) and (3), the
predicted character is located at the intersection of the pre-
dicted row and column in the matrix.

A very simple example of how to compute the weights for a
particular classification algorithm, is the use of the Pearson
correlation method. In this case, f(x) = x, i.e., the features
are not transformed. Let y be the class label variable, the
weight wi corresponding to feature xi is computed as the
correlation between xi and y. In this way, the higher the
absolute value of wi is, the more significant the predictor
variable xi is for the model.

Using the correlation for computing the weights is a very
efficient method. However, it does not consider dependen-
cies between the different features. Therefore, investigating
a direct optimization approach is an interesting alternative,
particularly if the optimization method used is extremely
efficient.

There are several steps involved in the preprocessing of
the original brain signal and its conversion to the feature
vector used in Equation 1. Preprocessing is a sensitive phase
since the volume of available information is high. During the
experiments, signals are continuously recorded from multiple
channels.

The P300 potential is evoked between 300 and 350 ms
after the presentation of the stimulus. Therefore, we could
expect the brain signals corresponding to this period to be
the most informative. Another related issue is the subset
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of channels from which the processed information is more
relevant. Since the P300 has a maximal amplitude over the
central and parietal scalp areas, it is expected that channels
in this area will be the most informative. However, the exact
amount of information each channel delivers is very subject-
dependent and recent results suggest that the accuracy of
P300-based classifiers can be increased by using a subject-
dependent sets of channels [7, 14]. In this paper we start
from an initial set of 64 channels.

We summarize these ideas by defining the extended P300
speller optimization problem, in which the variables involved
are the following.

• Set of channels ({C1, . . . , Cnchannels}) from which in-
formation is considered: Determining the most infor-
mative subset of the total number of available channels
is a difficult optimization problem itself.

• Time window (TW ): As mentioned above, the time
window of the P300 evoked potential is known. How-
ever, inter-subject variability and other considerations
make convenient to take a longer period of time. De-
termining the optimal time window in terms of the
classification accuracy is also an optimization problem.

• Number of features per time window (nFeat): The
time window of the signal is usually split in equal parts.
From each part, a feature is constructed by averaging
or doing some other type of signal transformation. De-
ciding which is the optimal number of features to take
is part of the optimization problem.

• Vector of (nchannels × nFeat) weights. This is the
direct optimization problem explained in the previous
section.

All the previous factors influence the accuracy of a solu-
tion and its robustness when applied to unseen data (test
set). The general optimization problem is unlikely to be ef-
ficiently solved by an optimizer. Notice, for instance, that
the number of weights depends on two other variables of the
problems, therefore, solutions to the general optimization
problem will have different number of components.

Since one of our goals is to understand the complexity of
the optimization approach and investigate the suitability of
different optimization algorithms, we focus on one scenario
in which all the parameters, except the weights, are fixed.
We also select a subset of 23 channels from the initial set of
64 channels.

4. OPTIMIZATION METHODS FOR THE
P300 SPELLER

In this section we describe the different components of our
optimization approach to the P300 classification problem.

4.1 Problem representation fitness function
We present the results for a fixed set of channels that

comprises the following 23: P1, Pz, P2, PO7, PO3, POz,
PO4, PO8, O1, Oz, O2, Iz, P3, P4, CP3, CP1, CPz, CP2,
CP4, C1, Cz, C2 and FCz. The choice of the channels
has been motivated because they cover part of the central
and parietal scalp areas. Our selection of channels captures
most of channels previously used in [7]. The time win-
dow size is of 755ms and for each time window, we take

5 features. We use a continuous vector representation for
w, wi ∈ R, i ∈ {1, . . . , n}, in which each wi is repre-
sented using a single variable. As the range of values for
the weights, we arbitrarily take xi ∈ [−10, 10]. The number
of variables will be equal to the total number of features, i.e.
n = 23× 5 = 115.

To explain the fitness function, it is important to take into
account the concepts of intensification and repetition men-
tioned in Section 2. For each of the 85 characters that are
shown to the subject of the experiment, there are 15 repeti-
tions of the 12 intensifications corresponding to the 6 rows
and 6 columns. To determine for which of the six columns
(respectively rows) a P300 potential has been evoked, the
brain signals corresponding to the 15 repetitions are aver-
aged for each of the (85 × 12) characters.

The averaging step intends to counteract the noise in sin-
gle repetitions. As a result, there is a vector xi of average
signals for each target character i ∈ {1, . . . , 85}. For each
target character, the vector is combined with the 12 vectors
of signals (6 vectors for column and 6 for row intensifica-
tions). The putative character is found as the intersection
of r∗ and c∗, where r∗ and c∗ have been found as in Equa-
tions 2 and 3. Finally, the objective function is the number
of times that the putative character coincides with the tar-
get character, i.e. the classification accuracy induced by the
weight vector.

4.2 Basic optimization approach
In the basic optimization approach, we employ different

direct optimization algorithms and evaluate them in the task
of finding the optimal configuration of w. The main steps
shared by all the optimization methods are described in Al-
gorithm 1.

Algorithm 1: Steps for the problem solution

1 Load the EEG training data for each channel, each
character, and each repetition.

2 Compute the vector of features as the average sig-
nal in the time window, for each channel, each
character and each repetition.

3 for i = 1 : maxiter
4 Apply the optimization algorithm and output

one solution
5 Evaluate different subsets of the optimal solutions

(vector weights) in the test data.

In Algorithm 1, maxiter corresponds to the number of
times the optimizer is called within one cycle. The weight
vectors found by the optimizers are evaluated on a test data
set of brain signals recorded from the same individual in
the same experimental conditions. The test data comprises
information about 100 characters shown to the subject.

4.3 k-best and k-worst ensembles
We devise two alternative ways to evaluate the set of

output optimal solutions. The first, traditional procedure,
corresponds to evaluate each single solution independently.
The second procedure, that we call, ensemble method corre-
sponds to the combination of weight vectors. The rationale
behind this idea is that weight vectors may specialize in
different types of brain signatures, for example, brain signa-
tures associated to different channels. The combination of

1749



these solutions may be more sensitive to the detection of the
P300 evoked potential.

When used as a part of a classifier, a simple voting model
is used. During a single classification task, first a puta-
tive character is proposed by each of the ensemble mem-
bers. Then, the character that receives the highest number
of votes is selected. If there exist more than one candidate
with the same number of maximum votes, then the putative
character suggested by the member with the highest fitness
in the training set, is selected.

To decide which of the solutions will be part of the en-
semble, first, solutions are ordered according to the accuracy
computed in the training set. Then the k first solutions are
selected as part of the ensemble. We call such a parametrized
ensemble the k-best ensemble. Notice, that for k = 1, we
have the case of the traditional approach of evaluating as
the best candidate, the solution with the highest score in
the training set.

Additionally, we use a different ordering of the solutions
to construct the classifiers. In this case, solutions are sorted
in ascending value of the training-set classification accuracy.
The first solution will correspond to the weight vector with
the lowest accuracy. We call the ensembles constructed in
this way k-worst ensembles. This type of ensembles are
interesting because they can serve to extract information
about the gain in classification from the combination of
lowest-quality solutions. The gain in k-best ensembles will
be less for increasing k, since the best solutions are the first
to be added to the ensemble.

4.4 Description of the optimization algorithms
As a first step of our experiments we use the Linear Dis-

criminant Analysis (LDA) method [12] to evaluate the com-
plexity of the classification task. LDA finds a linear com-
bination of features which separates two or more classes of
objects or events. Using LDA as a classifier produced clas-
sification accuracies of 0.42 and 0.59 for the first and second
subjects, respectively.

For conducting the experiments, the following algorithms
have been selected: the Genetic Algorithm (GA), the Differ-
ential Evolution algorithm (DE), the General Opposition-
Based Differential Evolution algorithm (GODE) and the
Random Hill Climbing search (RHC). GAs are the most used
Evolutionary Algorithms (EA) in the literature. They were
popularized by the work of John H. Holland in [5]. Since
then, they have experienced a deep development and have
been applied to solve complex problems in many different
domains. The DE algorithm proposed by Storn and Price
[17] is one of the recent evolutionary algorithms that, due
to its results, has quickly gained popularity on continuous
optimization. DE has shown better performance than many
other EAs in terms of convergence speed and robustness over
a broad spectrum of problems [19]. Opposition-Based Learn-
ing (OBL), introduced by Tizhoosh [18], is a machine intelli-
gence strategy, which considers the current estimate and its
opposite at the same time in order to achieve a better ap-
proximation of the current candidate solution. This idea has
been used to enhance population-based algorithms. GODE
is one of these successful applications which has shown ex-
cellent search abilities in solving both low-dimensional and
high-dimensional problems [20]. Finally the RHC is a very
simple stochastic search that, at each step, selects randomly
a dimension, assigns it a random value of the interval and

restores the original value if the fitness of the new solution
is worse than the original solution.

All the algorithms were allowed a maximum of 1, 000, 000
generations. Based on the parameter values of the literature,
the following configurations for each algorithm have been
analyzed:

• DE-1 : Population size: 20, CR: 0.5, F: 0.5, selection:
random

• DE-2 : Population size: 50, CR: 0.5, F: 0.5, selection:
random

• GA-1 : Population size: 50, Crossover operator : BLX-
α, Mutation operator: Gaussian, Crossover probabil-
ity: 0.9, Mutation Probability: 0.01, selection: tour-
nament 2, elitism: 100%

• GA-2 : Population size: 50, Crossover operator : BLX-
α, Mutation operator: Gaussian, Crossover probabil-
ity: 0.9, Mutation Probability: 0.01, selection: tour-
nament 2, elitism: 50%

• GA-3 : Population size: 50, Crossover operator : BLX-
α, Mutation operator: Gaussian, Crossover probabil-
ity: 0.9, Mutation Probability: 0.1, selection: tourna-
ment 2, elitism: 100%

• GA-4 : Population size: 50, Crossover operator : BLX-
α, Mutation operator: Gaussian, Crossover probabil-
ity: 0.9, Mutation Probability: 0.1, selection: tourna-
ment 2, elitism: 50%

• RHC : The maximum number of random changes is
equal to the maximum number of allowed evaluations.

• GODE-1 : Population size: 20, CR: 0.5, F: 0.5, Prob-
ability of OBL po = 0.4 ,selection: random

• GODE-2 : Population size: 50, CR: 0.5, F: 0.5, Prob-
ability of OBL po = 0.4 ,selection: random

4.5 Related work
Among the classical methods used for feature extraction

are autoregressive parameter estimation, wavelets transform,
Karhunen-Loeve transform and other types of transforma-
tions [11]. Frequently employed classification methods in-
clude linear classifiers (e.g. thresholding, Bayesian, linear
discriminant analysis) and also non-linear classifiers such
as support vector machines, k-nearest neighbors and neu-
ral networks [10].

There is some previous work that combines the use of clas-
sification strategies with optimization. In [16], a regularized
logistic regression method is combined with multi-objective
variable selection using EDAs for the classification of MEG
data. The experimental results showed that the proposal
was able to improve classification accuracy compared with
approaches whose classifiers have the set of channels fixed
a priori. The concept of ensemble has been applied with a
different interpretation in the context of P300 classification
[14]. In this paper, the ensemble is formed by support vector
machines (SVMs) which are learned from different subsets
of the training dataset.
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5. EXPERIMENTS
The main objectives of our experiment are: 1) To test the

direct optimization approach as an alternative for the P300-
classification problem. 2) To investigate the different factors
of the P300 classification problem (direct-optimization) for-
mulation that influence in the behavior of the algorithms
and in the quality of the achieved results.

Alg/k 1 3 5 10 15 20 25
DE − 1 0.69 0.73 0.74 0.77 0.79 0.80 0.79
DE − 2 0.73 0.74 0.78 0.76 0.77 0.77 0.78
GA− 1 0.64 0.69 0.75 0.75 0.74 0.76 0.77
GA− 2 0.75 0.78 0.78 0.80 0.80 0.80 0.79
GA− 3 0.69 0.76 0.78 0.79 0.78 0.79 0.79
GA− 4 0.71 0.74 0.76 0.77 0.78 0.80 0.80
RHC 0.65 0.75 0.81 0.80 0.79 0.79 0.79

GODE − 1 0.73 0.76 0.77 0.78 0.79 0.79 0.80
GODE − 2 0.72 0.74 0.78 0.79 0.77 0.78 0.78

Table 1: Accuracy results computed from the test-
data and averaged between the two subjects. Re-
sults have been achieved with different k-best en-
sembles.

The identification of these factors is a required step for
the conception of optimization algorithms suitable for this
problem. Other issues that are investigated in our experi-
ments are the capacity of the ensemble method to improve
the results of single solutions and to compare the behavior
of the different optimizers used for our experiments.

The data set used in our experiments represents a com-
plete record of P300 evoked potentials recorded with BCI2001
using the paradigm described in [2], and originally by [4].
Training and test data sets were recorded from two different
individuals and used as part of the BCI competition III [1].

5.1 Numerical results
Table 1 summarizes the average results achieved by the

optimizers, alone and combined as part of ensembles. The
average classification accuraccies are, in general, above the
the 0.75 threshold, which is a good value. As a reference,
the best results available for this dataset, and winners of
the BCI III competition, achieved an average classification
rate of 0.965 [14]. However, this approach applies a sophis-
ticated machine learning approach that includes the itera-
tive application of ensembles of SVMs. More importantly,
the authors use the information recorded from the set of 64
channels and apply an initial filtering to the data, steps that
our algorithm does not require. The ranking of the average
classification accuracy achieved by the 10 contributions to
the contest were {0.965, 0.905, 0.9, 0.895, 0.875, 0.83, 0.785,
0.75, 0.335, 0.075} [1]. Most of these approaches, either ap-
ply SVMs or other machine learning procedures such as
PCA, boosting, etc. Almost all the methods apply filter-
ing of the initial signal and/or channel selection based on
the accuracy computed from the training set.

Another observation that follows from the analysis of Ta-
ble 1 is that the quality of the results improves when the
number of members in the classifier is increased. Best re-
sults are achieved for k ≥ 5. The k-best ensembles clearly
outperform the results achieved by the single solutions. In
terms of the behavior of the algorithms for the training set,

0 5 10 15 20 25
0.6

0.65

0.7

0.75

0.8

0.85

Number of solutions in the ensemble

A
cc

ur
ac

y 
(T

es
t S

et
)

 

 
DE1

DE2

GA1

GA2

GA3

GA4

Random−HC

GODE1

GODE2

Figure 2: Results of the k-worst ensembles for indi-
vidual 1 as k increases.

there are only statistical differences between algorithm RHC
and the other algorithms (data not shown).

To analyze the differences between the P300 classification
problem for the two subjects from a different perspective, we
respectively show in Figures 2 and 3 the accuracies achieved
by the k-worst ensembles for the different optimizers. For
sake of clarity, we have averaged the results of the optimizers
which are different only in their parameters values. It can
be seen in the figures that, also for the k-worst ensembles
there is an increase in the accuracies when k is increased.
It is also evident that higher accuracies are achieved for the
second individual. For this subject, accuracy values over
0.88 are achieved. Among the algorithms, there seems to be
an advantage of the RHC algorithm over the rest. This is a
somewhat unexpected result since this method is based on
a single point search and uses none information about the
search space.
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Figure 3: Results of the k-worst ensembles for indi-
vidual 2 as k increases.

We conclude the analysis of the ensembles by comparing
the output of the k-best classifiers, when k is increased, for
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Figure 4: Average results of the k-best ensembles
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Figure 5: Mapping between the accuracy values ob-
tained for training and test sets by the best found
solutions for individual 1.

all the algorithms. These results are shown in Figure 4,
where the numbers associated to the algorithms correspond
to their order in Table 1. It can be seen from Figure 4 that,
while some algorithms show an almost flat shape, e.g. Algo-
rithm 2, corresponding to situations in which the addition
of members to the ensemble does not produce an increase of
the classification accuracy, other algorithms exhibit a char-
acteristic saw shape, which correspond to situations in which
new added ensemble members contribute to improve the ac-
curacy. One of the issues that research on direct optimiza-
tion approaches to the P300 classification problem reveals,
is that the optimization algorithms could be conceived with
the goal of finding a complementary set of solutions instead
of a single optimal solution. The solutions could serve as
an enhanced, more robust, ensemble. We did not modify
our optimization algorithms to deal with this question. It is
open for future research.

In the next step, we investigate the mapping between the
training and test accuracy values for the two subjects. This
is a critical point since, in the direct optimization formula-

tion, we can expect good results of the methods, only if the
information provided by the objective function in the train-
ing set is also informative (or predictive) about the quality
of the solutions in the test set.

In Figures 5 and 6, the mapping between training and
test objective values for the 225 optimal solutions, is shown.
Since many solutions are assigned the same position in the
graph (there are only 101 possible accuracy values), we have
added a small random noise to the points coordinates to ease
the visualization.
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Figure 6: Mapping between the accuracy values ob-
tained for training and test sets by the best found
solutions for individual 2.
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Figure 7: Correlations between the problem vari-
ables for individual 1.

The comparison between the two figures confirms that the
second fitness landscape is easier for all the algorithms. For
this function, most of the solutions are located above the
0.95 value in the X axis. Solutions shown in Figure 5 are
more scattered in the X axis. The correlations between the
accuracy values of the training and test sets were 0.1763
and 0.0972 for the first and the second individual, respec-
tively. The low correlations illustrate one common problem
in BCI experiments: intersession variability. Brain signals
can strongly vary between sessions and classifiers should be
able to adapt to these changes.
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We also analyzed the correlations between the problem
variables from the sets of solutions found by the algorithms.
The analysis of the correlations has two goals. The first
one, is to identify complex patterns of correlations that may
explain the difficulties of the optimizers in solving the prob-
lems. If correlations are common and strong, then some
optimization methods, specially suited to deal with interac-
tions between the variables could be recommended for this
problem.

The second use of the analysis of correlations is to de-
tect features that interact in the solution of the problem. If
there is a couple of weights with a significant correlation,
the corresponding features they map could be candidates of
brain signatures. We are thinking of situations in which the
solutions obtained by direct optimization are preprocessed
and analyzed by statistical techniques to create more ac-
curate classifiers. The correlations computed from the two
complete sets of 225 solutions are shown in Figures 7 and 8.
There are different patterns of correlations for the two prob-
lems. The first problem, has a larger number of correla-
tions below the −0.3 threshold. The second problem has a
few very strong negative correlations between the variables.
This is the type of correlations that could serve as a clue for
the identification of brain signatures associated to the P300
evoked potential.

We also evaluated the distribution of the optimal solu-
tions. How similar are the optimal solutions between them?
How similar are the solutions found by each algorithm or
between algorithms? Figures 9 and 10 respectively show the
matrices of similarities between the 225 solutions using the
Euclidean and Correlation measures. Higher values in the
colormap shown in the figures represent that solutions are
more similar between them. Solutions have been ordered ac-
cording to the order of the algorithms presented in Table 1.
The first 25 solutions correspond to the DE − 1 and the
last 25 to GODE − 2 algorithms. The most dissimilar set
of solutions produced by an algorithm is that output by the
GA−2 algorithm. In general, the solutions produced by the
GAs are more dissimilar between them than to the other so-
lutions. In Figure 10, some red stripes denote the existence
of more similarities between some pairs of algorithms. The
most important conclusion from this analysis is that other
criteria, in addition to optimality, could be included in the
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Figure 9: Similarity values between the genotypes of
the best solutions found for individual 1. The simi-
larity measure is based on the Euclidean distance.
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Figure 10: Similarity values between the genotypes
of the best solutions found for individual 1. The
similarity measure is based on the correlation.

search for solutions to the P300 classification problem. Di-
versity, or similarity between the selected optimal solutions
could be used as a way to improve the k-best or k-worst
ensembles.

6. CONCLUSIONS
In this paper we have proposed a framework for the solu-

tion of the P300 classification problem as a direct optimiza-
tion problem. We have made a dissection of the factors that
influence the complexity of the general problem and focused
on the optimization of weights.

The k-best and k-worst ensembles have been proposed as
feasible ways to combine the information contained in differ-
ent solutions. The ensemble approach has shown to improve
the results reached by single solutions. For the data sets con-
sidered, we have achieved average classifications accuracies
over 0.8 using only a subsets of the 64 channels available.
Considering the simplicity and generality of the approach
proposed, these are satisfactory results.

Moreover, we have further evaluated different facets re-
lated with the direct optimization approach and illustrated
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the benefits of obtaining a set of possible solutions. These
benefits include the extractions of common patterns shared
by the solutions that can indicate regularities of the P300
classification problem for the given individual. Since the
P300 paradigm is used for a broad spectrum of BCI applica-
tions [7, 11, 14], our results could be applied in these areas.

There are several ways in which our results can be ex-
tended. One possibility is to analyze the problem for a wider
sets of channels. However, the inclusion of all the channels
may provoke, on the one hand, the addition of redundant or
noisy information and, on the other hand, make more diffi-
cult the optimization problem. Also, a preprocessing of the
signals should be added to our algorithm. Finally, it would
be possible to add more information to the fitness function.
This information could be related with the robustness of the
fitness values when the number of repetitions is decreased.

The successful application of machine learning techniques,
able to generalize to unseen data, and in some cases are
also able to deliver interpretable information about the brain
processes involved in the experiments, has limited the appli-
cation of direct optimization approaches to BCI problems.
There are many opportunities in the application of optimiza-
tion techniques in BCI research. We see the results presented
in this paper as an initial step in this direction.
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