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ABSTRACT
This paper presents part of an endeavour towards robots and robot
collectives that can adapt their controllers autonomously and self-
sufficiently and so independently learn to cope with situations un-
foreseen by their designers.

We introduce the Embodied Distributed Evolutionary Algorithm
(EDEA) for on-line, on-board adaptation of robot controllers. We
experimentally evaluate EDEA using a number of well-known tasks
in the evolutionary robotics field to determine whether it is a viable
implementation of on-line, on-board evolution. We compare it to
the encapsulated (μ+1) ON-LINE algorithm in terms of (the stabil-
ity of) task performance and the sensitivity to parameter settings.

Experiments show that EDEA provides an effective method for
on-line, on-board adaptation of robot controllers. Compared to
(μ + 1) ON-LINE, in terms of performance there is no clear win-
ner, but in terms of sensitivity to parameter settings and stability of
performance EDEA is significantly better than (μ+ 1) ON-LINE.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic methods; I.2.9 [Artificial Intelligence]: Ro-
botics—Autonomous vehicles; I.2.6 [Artificial Intelligence]: Learn-
ing —Parameter learning

General Terms
algorithms, performance, reliability

Keywords
evolution, robotics, on-line evolution, adaptive behaviour, controllers

1. INTRODUCTION
Evolutionary computing techniques for optimisation and design

have been used in robotics for well over a decade[24]. An over-
whelming majority of the work in this field has focussed primarily
on off-line evolution of robot controllers, where the evolutionary
process takes place as a separate development phase before proper
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deployment of the robots and there is no subsequent adaptation –at
least by evolution– of the controllers. Evolution is orchestrated by
an overseer –an external computer– outside the robots themselves:
the population of controllers undergoes selection and variation in-
side this computer. Fitness can either be evaluated in simulation
(again inside this computer), or in vivo by uploading the controller
onto a real robot that uses it for a while to collect information on
controller quality. While the latter is often referred to as ”embodied
evolution”, strictly speaking it only amounts to embodied fitness
calculations; the evolutionary operators for selection and variation
are not embodied in the robots.

In this paper we advocate a radically different approach to evo-
lutionary robotics with genuine embodiment and on-line evolution.
The essence of this approach is to implement evolutionary oper-
ators (selection, mutation, crossover) on-board and to evolve de-
signs on the fly, as the robots go about their tasks [6]. As explained
in [13], this approach offers the necessary adaptivity in collective
robotic systems to cope with a number of fundamental challenges:

• Unforeseen environments that are not fully known during the
design period.

• Changing environments where the extent and/or type of the
change make the pre-designed solutions inadequate.

• Reality gap, that is, the phenomenon that off-line design is
based on approximations and simulations, necessitating that
robots be fine-tuned to the real operational conditions after
deployment.

The essence of the problem we address here is producing/adapting
robot controllers on-the-fly, without humans in the loop. This prob-
lem is highly relevant in the light of the global trend of increasing
adaptivity and autonomy of computer systems, including those run-
ning on mobile hardware.

Considering a swarm of robots, we can distinguish two approach-
es to on-line, on-board evolution [6]:

Encapsulated evolution Each robot autonomously runs an inde-
pendent evolutionary algorithm: each robot implements a
centralised evolutionary algorithm and maintains a popula-
tion of genomes using some time-sharing scheme to evaluate
each controller;

Distributed evolution Each robot carries a single genome and uses
that as its controller. The population comprises of the collec-
tion of the controllers of all robots and evolutionary oper-
ations take place in an autonomous and distributed manner
by the robots interacting to exchange and recombine genetic
material.
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Obviously, these approaches can be combined to yield a hybrid
approach where each robot runs an autonomous evolutionary al-
gorithm and individual controllers are transferred between robots,
similar to the island model in parallel evolutionary algorithms.

In this paper we introduce the Embodied Distributed Evolution-
ary Algorithm (EDEA), a new algorithm that adopts the distributed
approach, and experimentally compare it with the (μ + 1) ON-
LINE algorithm as an exemplar of the encapsulated approach, which
was described in detail in [6, 7, 12]. The first assessment of the new
algorithm is based on task performance, using a number of well-
known tasks in the evolutionary robotics field: phototaxis, obstacle
avoidance, and collective patrolling.

Furthermore, we note that the robustness required for the robots’
controllers is also required for the evolutionary algorithm that adapts
the controllers: it, too, has to operate reliably under unforeseen and
possibly very different conditions. Unfortunately, the performance
of evolutionary algorithms is, in general, quite dependent on their
settings [5]. Hence, on-line evolutionary robotics requires an evolu-
tionary algorithm with robust parameter settings that perform well
over a wide range of problems, or an evolutionary algorithm that is
capable of calibrating itself on-the-fly. Therefore, we evaluate the
two algorithms not only in terms of performance, but also consider
the number of parameters they have and the sensitivity to settings
for these parameters (tuneability).

A third consideration is the stability of performance: reliable
robot control requires consistently good or at least acceptable per-
formance: a large variance in performance implies that an algo-
rithm may perform well in one instance only to fail in another with-
out any apparent difference in circumstances.

Summarising, the main objectives of this paper are: 1) to in-
troduce the EDEA algorithm and to determine whether it is a vi-
able implementation of on-line, on-board evolution for producing
robot controllers without humans in the loop, 2) to compare the
task performance of the distributed approach with the encapsulated
one (exemplified by EDEA and (μ+ 1) ON-LINE, respectively), 3)
to compare the robustness (i.e., parameter sensitivity) of the dis-
tributed and the encapsulated evolutionary algorithms.

2. RELATED WORK
In this paper we examine on-line on-board evolution [6] in a

bio-inspired manner motivated by the vision of self-adaptive, re-
liable, self-organising and self-developing swarms of robots and
artificial multi-robot organisms [16]. Other work on on-line evolu-
tion of robot colonies is presented in [8] that describes the evolu-
tion of controllers for activating hard-coded behaviours for feeding
and mating. In [2], Bianco and Nolfi experiment with open-ended
evolution for robot swarms with self-assembling capabilities and
report results indicating successful evolution of survival methods
and the emergence multi-robot individuals with co-ordinated move-
ment and co-adapted body shapes.

Watson et al. describe the notion of embodied evolution as the
evolution taking place within a population of real robots in a dis-
tributed and asynchronous manner and report results on a resource
gathering experiment [32]. Although their definition of embod-
ied evolution is similar to our concept of on-line distributed evo-
lution, EDEA’s implementation is quite different from their prob-
abilistic gene transfer algorithm, in which single genes are broad-
cast by every robot at a rate proportionate to its fitness. Experi-
ments with on-line distributed evolution also appear in [2]. The
(μ+1) ON-LINE algorithm –this paper’s exemplar for the encapsu-
lated approach– was reported on in [12] and [7]. Floreano et al use
encapsulated evolution in [11] to evolve spiking circuits for a fast
forward task. Encapsulated on-line evolution as a means for contin-

uous adaptation by using genetic programming is suggested in [25].
An island model evolutionary algorithm is used in [31] to evolve a
fast forward behaviour. Hybrid approaches are also taken in [8] (is-
land model) and [21] (hall-of-fame approach) though in both cases
evolved controllers merely activate hard-coded behaviours.

The majority of the experimental work in the field of evolution-
ary robotics has concentrated on the off-line evolution of robot con-
trollers, e.g. [14], [9], [23]. In many of these cases incremental evo-
lution is used to tackle complicated problems while co-evolution
has also been examined as a way to address complex tasks [10].
Collective robotics settings have been addressed with off-line evo-
lution as well: an extensive framework is presented in [19] while
application examples can be found in [1], [27] and [18].

A recent extensive review of the literature in the evolutionary
robotics field can be found in [22].

3. ON-LINE, ON-BOARD EVOLUTION
Any algorithm that implements on-line, on-board evolution has

to take some uncommon considerations into account:

• On-board evolution implies (possibly very) limited process-
ing power and memory, so the evolutionary algorithm must
show restraint concerning computations, evaluations and pop-
ulation sizes;

• The best performing individual is not as important as in off-
line evolution: because controllers evolve as the robots go
about their tasks, if a robot continually evaluates poor con-
trollers, that robot’s actual performance will be inadequate,
no matter how good the best individuals in the population.
Therefore, the evolutionary algorithm must converge rapidly
to a good solution and display a more or less stable level of
performance throughout the continuing search;

• On-line evolution requires that the robots autonomously load
and evaluate controllers without human intervention or any
other preparation: the evaluation of a controller simply picks
up the task where the previous evaluation left off. This in-
troduces significant noise in fitness evaluations because the
starting conditions of an evaluation obviously can have great
impact on a controller’s performance;

• Because the evolutionary algorithm has to be able to con-
tend with unforeseen circumstances, it must either be able to
(self-) adapt its parameter values as it operates or its param-
eters must be set to robust values that produce good perfor-
mance under various conditions.

Subsection 3.1 lists design choices specific to distributed evolu-
tionary algorithms for on-line, on-board evolution and introduces
the EDEA as a implementation of a distributed evolutionary algo-
rithm that takes all pertinent considerations in its stride. Subsection
3.2 provides some details on the (μ + 1) ON-LINE algortihm that
was designed to address these considerations with the encapsulated
approach.

3.1 A Distributed Algorithm
In distributed implementations of on-line, on-board controller

evolution, each robot contains a single genotype that it decodes into
its controller and evaluates during regular operation. The popula-
tion of the evolutionary process is the aggregate of genotypes held
by all the robots together; selection and variation occur through
robot interactions. Distributed on-line evolution renders many stan-
dard centralised evolutionary algorithm concepts inapplicable, specif-
ically requiring a different approach to selection and reproduction.
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A centrally orchestrated algorithm would be possible, but it would
limit the robots’ autonomy, lead to scalability issues for large popu-
lations and introduce a single point of failure into the system. Thus,
the crucial distinction of our envisioned distributed evolutionary al-
gorithm is the lack of a central authority to guide selection or re-
combination and the ability of the robots to decide autonomously
with whom and when to exchange genetic material, to generate new
individuals from it and to deploy them.

To mate –to exchange genetic controller encodings– autonomously,
the robots must identify potential partners, select one (disregard-
ing the possibility of multi-parent recombination) and, once off-
spring genetic material has been constructed, embody it: actually
run/evaluate the resulting controller on a robot, replacing that robot’s
current controller.

Partner identification For small populations –as in the experi-
ments described below– where all robots are constantly in commu-
nication range, the robots can have a global view of all the group
and contact random robots when interested in mating. This does,
however, not scale to large numbers of robots or to environments
where only some of the other robots are within communication
range. Alternatively, the robots could engage in some hard-coded
mate locating behaviour every so often as presented in [8]. Ob-
viously, this detracts from the time robots actually spend tackling
their proper tasks. Another approach relies on incidental physical
colocation with information being transmitted through some com-
munication channel with limited range as in the Probabilistic Gene
Transfer Algorithm (PGTA) [32]. While an elegant and scalable ap-
proach, it does assume a group of robots that is densely deployed
in space.

Although not used in the experiments here, EDEAcan maintain a
peer-to-peer network (using wireless communication) where each
individual has a small number of contacts and this overlay network
is preserved through gossiping protocols that maintain connected-
ness even in the face of massive node failures [15]. Similar net-
works for structuring the population of an evolutionary algorithm
have been successfully employed in experiments presented in [17].
Note the similarity of this set-up to cellular evolutionary algorithms
[29].

Partner selection Once potential partners have been contacted,
the robot has to select one to mate with. Selection strategies need
not be uniform: one role may display eager behaviour (willing to
mate with anyone) while another may hold a ‘picky’ stance (sub-
jecting mating candidates to stricter criteria) – not unlike male and
female behaviour in nature. It has been speculated that such a split
between male and female behaviour is beneficial because males are
forced to explore the genotype space as a result of the females’ se-
lectiveness [4, 20]. In a distributed evolutionary algorithm, there
is no need to fix an individual’s role one way or another: in PGTA,
for instance, every robot plays both roles by constantly broadcast-
ing its genes and at the same time evaluating received genes before
incorporating them into its own genome [32].

In EDEA, robots play both an eager and a selective role, on the
one hand selectively initiating the mating process using binary tour-
nament while on the other hand eagerly responding to any mate
proposal. Once a candidate has been selected, the initiating robot
(which plays the selective role) compares its own fitness with that
of the prospective partner to weight a probabilistic decision whether
or not to press on with mating.

Embodiment Once a partner has been selected and a new genome
created using standard recombination and mutation operators, the
resulting genome must be deployed in a robot to be evaluated, re-
placing the current controller. Since there is no global view of the
population in EDEA, the new controller must replace one in the di-

rect neighbourhood (in terms of the overlay network) if it is to be
deployed immediately. In fact, EDEA replaces the genome (only
one offspring is created per mating interaction) of the initiating
robot, justifying its fastidiousness during mate selection.

The Embodied Distributed Evolutionary Algorithm.
We introduce EDEA as an implementation of the distributed ap-

proach that follows from these considerations.

genome ← CreateRandomGenome; // Initialisation
initiating ← false;
myFitness ← 0;
for ever do // continuous adaptation

act();
age++;
fitness ← updateFitness();
if age > α then

offers ← P2PGetOffers(); // eagerly accept
for o ∈ offers do

P2PSend(o.sender, genome, myFitness);
end
if initiating then // selectively initiate

candidates ← P2PGetCandidates();
partner ← BinaryTournament(candidates);

if random() < candidate.Fitness
sc·myFitness then

genome ← Crossover(candidate, genome);
Mutate(genome); // Gaussian N(0, σ)
age ← 0;

end
initiating ← false;

else
initiating ← (random() < pc);

end
end

end
Algorithm 1: The EDEA evolutionary algorithm.

Algorithm 1 provides pseudo-code for EDEA, which has the fol-
lowing parameters:

Maturation age α Before a genome can be considered in the mat-
ing process, it must have been evaluated for at least some
time α to make its fitness measure reliable. The matura-
tion age does not define a standard duration of evaluation
but rather a lower bound, as a controller may continue to be
active after it reaches age α. Adjusting the value of α af-
fects speed of convergence because α implements a trade-off
between the reliability of fitness evaluations (long evaluation
times increase reliability) and the number of generations that
can be achieved in a fixed amount of time (short evaluation
time increase the number of evaluations).

Selection coefficient sc Once a potential partner has emerged as
the winner of a binary tournament from the neighbours of
the initiator, it is selected based on its fitness in comparison
to the fitness of the initiator. This confirmation is probabilis-
tic and the selection coefficient sc defines how fastidious the
receiver is: the probability of mating is calculated as:

fitnesscandidate

fitnessreceiver · sc
Thus, larger values for sc increase the selective pressure.

Preliminary experiments showed that the probability of initiating
mating does not have any appreciable impact on the evolutionary
process, so it has been set to a fixed value of 0.2. In large groups,
however, it may perhaps be used to regulate network load.

From [12], we expect the mutation step size σ to have consider-
able impact on the algorithm’s performance. We employ the deran-
domised self-adaptive strategy [26] to control this parameter during
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EDEA runs: this has been shown to work well in similar settings
with (μ+ 1) ON-LINE [7].

3.2 An Encapsulated Algorithm
As benchmark, we consider an example of the encapsulated case:

the (μ+1) ON-LINE algorithm as studied in [6, 7, 12]. In an encap-
sulated scheme, each robot contains an evolutionary algorithm to
adapt its controller without reference to other robots or any central
authority, therefore, it is not limited to situations involving groups
of robots: it can be applied to a single robot as well. Such an ap-
plication of encapsulated on-line evolution to a single robot realises
the basic notion of on-line on-board evolution: an evolutionary pro-
cess that continuously runs during deployment and task execution
in order to provide constant adaptation in a changing and unpre-
dictable environment. The (μ+ 1) ON-LINE algorithm is an adap-
tation of the classic evolution strategy [28] with a fairly small pop-
ulation generating only λ = 1 child per cycle1 to save on fitness
evaluations. The (μ + 1) ON-LINE algorithm employs standard
evolutionary algorithm operators (selection, variation and recom-
bination) on a population of size μ to develop a new individual.
That new individual –the challenger– is then evaluated by letting it
take control of the robot for τ time steps and measuring the robot’s
task performance over that period. If the challenger’s performance
proves better than that of the worst in the population, the challenger
replaces the current worst and the next iteration commences. To
cope with noisy fitness evaluations, (μ+ 1) ON-LINE re-evaluates
genomes in the population with a given probability. This means
that at every evolutionary cycle, either a new individual is gener-
ated and evaluated (with probability 1 − ρ), or an existing indi-
vidual is re-evaluated (with probability ρ). The fitness values from
subsequent (re-)evaluations of any given individual are combined
using an exponential moving average; this emphasises newer per-
formance measurements and so is expected to promote adaptivity
in changing environments;

For a detailed description of and discussion on (μ+1) ON-LINE,
refer to [6, 7, 12].

4. EXPERIMENTAL ASSESSMENT
To assess EDEA, we compare it to (μ + 1) ON-LINE in a num-

ber of well-established settings as described below. While having
multiple robots around is not a requirement for the encapsulated
algorithm, it is obviously essential in the distributed case and to
ensure equal circumstances, we have a group of 10 robots simulta-
neously tackling the problem in each instance. For the distributed
approach, this means that there is a single evolutionary process us-
ing 10 robots with a population of 10 (one genotype per robot). In
the encapsulated runs, there are 10 evolutionary processes (one in
every robot), each with a separate population of μ individuals.

To ensure a fair comparison, we perform a modest parameter
sweep for each algorithm in each task: multiple values are chosen
for the most influential parameters and the algorithm is run sev-
eral times for all parameter value vectors per task. We perform 20
repeats with different random seeds for each combination of task,
algorithm and parameter vector. With 10 robots in each run, this
yields 200 observations of robot performance for each combina-
tion. The values in the parameter sweep are chosen based on previ-
ous experience with the (μ+ 1) ON-LINE [12] [7] and preliminary
experiments with EDEA.

For each task, only the best parameter vector for each algorithm
was used in the final comparison of the performance of encapsu-

1A value that would be considered extremely small by evolution
strategy standards

lated and distributed evolution. The variety of performance across
parameter vectors can be seen as an indication of each algorithm’s
tuneability –the sensitivity to the parameter settings– the lower the
tuneability, the less effort one needs to spend to get the parameter
values just right.

In all experiments, the robots –simulated e-pucks in the Webots
simulator2– are controlled by simple perceptron neural networks
and the evolutionary algorithms determine the weights of the con-
nections between the neurons. The fitness functions are obviously
task dependent and are described with each task, below. The per-
ceptrons use a tanh activation function and receive inputs from
light, distance, pheromone and food sensors and camera (depend-
ing on the task) and have two or three (depending on the task) out-
put neurons that drive the wheels and LEDs. All inputs are nor-
malised in the [0, 1] interval before fed to the neurons. Equally, the
outputs are normalised to [0, 1] and interpreted as fraction of the
full speed for the motors and as an on/off value for the LEDs (val-
ues less than 0.5 turn the LEDs off while larger values turn them
on).

The experiments run for 10,000 seconds of simulated time; we
use time rather than number of evaluations or generations because
we are primarily interested in the performance of the robots in real
time, regardless of how that is achieved by the evolutionary algo-
rithm.

As stated in Section 3, we are primarily interested in the actual
performance of robots, not in the performance of the best individ-
ual in the population at any given time. Actual performance is mea-
sured as the average performance during a time-span, irrespective
of how many controllers may have been activate during that time.

Because of the limited group size of the experiments, we do not
use the gossiping maintenance scheme described in Section 3.1, but
randomly select potential partners from the whole population.

The settings for the experiments are summarised in Table 1.3

Phototaxis.
Phototaxis –seeking out or tracking a light source– is a very

straightforward task that has been addressed by many ER researchers.
The task is frequently combined with other tasks such as goal hom-
ing [30] and flocking [1]. In our comparison, we use the simplest
version of phototaxis: robots only have to move towards a station-
ary light source and then remain as close to it as possible. In the
phototaxis task, the robots use eight light sensors to detect light in-
tensity and base their behaviour on that. The fitness function simply
rewards intensity of received light:

f =
τ∑

t=0

8
max
i=1

(lightSensori) (1)

where lightSensori is the normalised input from a light sensor
between 0 (no light) and 1 (brightest light).

The arena is an empty (apart from the ten robots) square with a
light source in the middle: we ignore collisions between robots in
these experiments, so we can do without the robot’s distance sen-
sors. For this simple experiment, we also compare the performance
of both algorithms against a Braitenberg [3] controller as a baseline.

Fast Forward.
Fast forward –moving in as straight line as possible as fast as

possible while avoiding obstacles– is maybe the most common task

2http://www.cyberbotics.com/
3Source code for the algorithm as well as the experiments described
here is available at http://www.few.vu.nl/~ehaasdi/
papers/GECCO-EncapsvsDistr
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Experiment details

Task phototaxis, fast forward, collective pa-
trolling

Robot group size 10
Simulation length 10,000 seconds (simulation time)
Number of repeats 20

Controller details

NN type Perceptron
Input nodes Phototaxis: 8 light sensors + bias;

Fast forward: 8 distance sensors + bias;
Collective patrolling: 8 distance
sensors + 4 pheromone sensors + bias;

Output nodes 2 (left and right motor values)

Evolution details

Representation real valued vectors with −4 ≤ xi ≤ 4
Chromosome
length

Phototaxis, Fast forward: 18;
Collective patrolling: 26

Fitness See task descriptions
Mutation Gaussian N(0, σ)
Mutation step-size Derandomised self-adaptive
Crossover averaging

EDEA settings

Maturation time α 300, 600, 1200, 1800 time steps
Selection coeffi-
cient sc

0.5, 0.75, 1.0

Partner location peer-to-peer network
Partner selection binary tournament and fitness-based

probabilistic
Embodiment replace initiating parent

(μ+ 1) ON-LINE settings

Evaluation time τ 300, 600, 1200 time steps
Re-evaluation rate ρ 0.2, 0.4, 0.6
Re-evaluation strat-
egy

exponential moving average

Population size μ 6, 10, 14
Parent selection binary tournament
Crossover rate 1.0
Survivor selection replace worst in population if challenger

is better

Table 1: Experimental set-up

in evolutionary robotics research. In a confined environment with
obstacles this task implies a trade-off between avoiding obstacles
and maintaining speed and forward movement. The fitness function
we use has been adapted from [24]; it favours robots that are fast
and go straight ahead. Equation 2 describes the fitness calculation:

f =
τ∑

t=0

(vtrans · (1− vrot) · (1− d)) (2)

where vtrans and vrot are the translational and the rotational speed,
respectively. vtrans is normalised between −1 (full speed reverse)
and 1 (full speed forward), vrot between 0 (movement in a straight
line) and 1 (maximum rotation); d indicates the distance to the near-
est obstacle and is normalised between 0 (no obstacle in sight) and

1 (touching an obstacle). As for phototaxis, we also compare the
performance against a Braitenberg controller as a baseline.

Although fast forward is considered a trivial task, here some
extra difficulty is added by using a complicated maze-like arena
(Figure 1(a)) with tight corners and narrow corridors that fit only a
single robot and sometimes lead to dead ends. This arena structure,
compounded by the fact that multiple robots will be simultaneously
deployed, makes the task considerably harder than commonly seen
instances. This additional complexity is confirmed by the results of
the baseline trials: the Braitenberg controllers invariably get stuck
after a while (Section 5).

Collective Patrolling.
An obvious real-world task for a group of autonomous mobile

robots is that of a distributed sensory network, where the robots
have to patrol an area as a group and detect events that occur pe-
riodically. It differs from the previous tasks since it requires some
level of co-ordination: the success of the group depends not only
on the efficient movement of the individual robots but also on the
spread of the group across the arena to maximise the probability of
detecting events. Somehow, robots need to liaise so as not to patrol
the same areas. To this end, they are equipped with a pheromone
system: robots continuously drop pheromones (this is a fixed be-
haviour and not controlled by the evolved controller) while sensors
detect the local pheromone levels. The collective patrolling task is
described in [19] where controllers evolve off-line, although in that
work the approach to events is more complicated and the robots use
other sensory inputs.

The experiments for this task take place in the arena shown in
Figure 1(b).

Every Te = 50ms with probability pe = 0.0005, an event oc-
curs at a random location with a duration of de = 500 + N (0, 2)
seconds. Thus, in one run (10, 000 seconds) approximately 100
events occur and that at any time around 5 events are active in the
whole arena.

A robot detects an event whenever it comes within 0.3m of the
event, so a robot’s sensory coverage is 0.283m2. Since the arena is
25m2, a group of 10 robots can at any moment cover at most 11%
of the whole arena; conversely, a group of stationary robots should
detect around 11% of the events.

Pheromones are simulated as follows: the 5m × 5m arena is
divided into 500×500 cells, each with a pheromone level between
[0, 2]. Every second, each robots drops 1 unit of pheromones at
the cell the robot is currently in, and a linearly decreasing amount
in nearby cells up to a range of Rp = 0.07m. Pheromone levels
decay over time at a rate of Rc = −0.024/s in each cell.

As sensory input to the controller, 4 pheromone sensors are placed
at the periphery of the circular body at π

4
, 3π

4
, 5π

4
and 7π

4
. Each sen-

sor detects the accumulated pheromone levels of all cells in a range
of 0.05m (with detected levels decreasing linearly with distance
from the sensor). For fitness calculation only, a similar sensor is
positioned on the centre of the robot.

The fitness function penalises pheromones presence (detected by
the central pheromone sensor) and proximity to obstacles:

f =
τ∑

t=0

((1− p) · (1− d)) (3)

where p indicates pheromone presence between 0 (no pheromones)
and 1 (strongest pheromone level) at the current location and d indi-
cates the distance to the nearest obstacle and is normalised between
0 (no obstacle in sight) and 1 (touching an obstacle).

This fitness function rewards covering behaviour and does not
include the number of events detected, but we report the percentage
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of detected events as performance (e.g., in Fig. 4) rather than on the
fitness itself.

Although movement is not included explicitly, it should emerge
due to the continous dropping of pheromones and the deleterious
effect of staying in a place where the robot just dropped them.

(a) Fast forward arena (b) Patrolling arena

Figure 1: Arenas for two tasks; the circles represent the robots
to scale.

5. RESULTS
Figures 2 to 4 compare the performance of the encapsulated

(μ + 1) ON-LINE and distributed EDEA algorithms on the various
tasks, using the best performing parameter settings for that task.
The graphs on the left present performance –averaged over all re-
peats and robots– versus time. In these plots, the performance is
scaled so that the theoretical optimum is 1. For the phototaxis and
fast forward tasks, we additionally plot performance for the Brait-
enberg vehicles as a baseline.

To assess the volatility of the robot’s actual performance over the
course of the experiments, we calculate the differential entropy of
actual performance over the last 20% of each run: lower entropy
indicates a lower level of volatility. The right-hand plots show av-
erage entropy (grey bars) with standard deviation (black whisker
lines) for the 20 runs with the best performing parameter vector
over all robots for both algorithms.

Far all comparisons, we test the significance of difference with
t-tests at 95% confidence.
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Figure 2: Phototaxis results; EDEA is significantly better in
terms of both performance and stability.

Summarising these comparisons, EDEA performs significantly
better in the phototaxis and fast forward tasks and is more stable in
the phototaxis task (while there is no significant difference in stabil-
ity for the fast forward task). However, (μ+1) ON-LINE has signif-
icantly better performance in the patrolling task, although EDEA is
more stable there, as well.
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Figure 3: Fast forward results; EDEA performs better at this
task, the difference in stability cannot be shown to be signifi-
cant.
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Figure 4: Collective patrolling results; (μ + 1) ON-LINE per-
forms better, EDEA is significantly more stable.

For the phototaxis and fast forward tasks, the evolved controllers
compare very well to the Braitenberg baseline. Evolved photo-
taxis controllers match the behaviour of the benchmark while the
evolved fast forward controllers outperform the benchmark con-
troller –which gets stuck in cul-de-sacs where left and right sensory
input are equal– by a considerable amount.

EDEA (μ+ 1) ON-LINE
α sc μ ρ τ

Phototaxis 1800 0.5 10 0.4 300
1800 1 6 0.2 600
1800 0.75 6 0.4 300

6 0.6 1200
10 0.6 300
10 0.4 300
10 0.4 600

Fast forward 1200 0.75 6 0.6 300
1800 0.5 10 0.6 300
600 1 6 0.4 300
600 0.75

Patrolling 1200 0.5 10 0.6 300
1800 0.75 14 0.6 300
1800 1 14 0.4 300
1200 1 10 0.6 300
1800 0.5 10 0.4 300
1200 0.75 6 0.6 600

Table 2: The best performing vectors are listed in bold; the
remainder are vectors whose performance is not significantly
worse (according to 95% t-tests) than the best. Settings in ital-
ics denote a parameter vector that is common for all tasks.

Table 2 shows the parameter vectors that lead to optimal or near
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optimal (not statistically different from optimal according to 95%
t-test) performance. Interestingly, for all tasks there is at least one
(near) optimal vector with every value of sc tested. This seems to
indicate that sc may be kept constant as there will always be a value
for α that will work well with it.

EDEA (μ+ 1) ON-LINE

Phototaxis 25% (3/12) 25% (7/27)
Fast forward 33% (4/12) 11% (3/27)
Patrolling 50% (6/12) 22% (6/27)

Table 3: Tuneability comparison of EDEA and (μ+1) ON-LINE.
Shows, for each task, the percentage of parameter vectors that
yield (near) optimal performance.

Table 3 compares the tuneability –the dependence on parame-
ter settings to achieve good performance– of the two algorithms by
comparing the ratio of the parameter vectors that result in near opti-
mal performance out of all parameter vectors that were considered.
This shows that EDEA is more resilient when it comes to parameter
tuning: a substantially higher ratio of vectors leads to near optimal
performance for two tasks, while for phototaxis the same ratio of
vectors is near optimal.

6. DISCUSSION AND CONCLUSION
On the whole, on-line, on-board evolution of robot controllers is

a success: with only very small populations and within short times,
both EDEA and (μ+1) ON-LINE are able to evolve good controllers
for all three tasks, matching or even outperforming benchmark per-
formance. Although the tasks used are somewhat straightforward,
these same tasks have been used for off-line evolutionary robotics
experiments that had superior resources available in terms of pop-
ulation size, generations and time. In that light, the success of on-
line evolution as shown here is noteworthy and we can conclude
that EDEA does provide a successful implementation of the gen-
eral idea. It is a matter of further investigation whether the on-line
algorithms tested here will scale up to more complex tasks and en-
vironments.

In terms of performance, the comparison of these implementa-
tions of the encapsulated and distributed approaches shows no clear
winner: EDEA outperforms (μ+1) ON-LINE for the (simpler) pho-
totaxis and fast forward tasks, but (μ+ 1) ON-LINE is better when
it comes to patrolling. Of course, this comparison relies on the
parameter values of the evolutionary algorithms, which are deter-
mined by our tuning process. Forced by computational limitations
we only tested a small number of different parameter values. Nev-
ertheless, it seems safe to say that the relative performance of the
algorithms depends on the nature of the task, and the results simply
beg for a combined island model algorithm that may have the best
of both worlds.

In terms of sensitivity to parameter settings, EDEA does seem
to be the clear winner: even in the patrolling task, where (μ + 1)
ON-LINE performs better, EDEA has the advantage that half of the
tested parameter vectors were optimal while the performance is not
much (although significantly) worse than that of (μ+1) ON-LINE.
Moreover, substantially more effort was put into tuning (μ + 1)
ON-LINE than EDEA (2 parameters and 12 vectors for EDEA versus
3 parameters and 27 vectors for (μ + 1) ON-LINE). Table 2 indi-
cates that EDEA’s two parameters may be reduced to one: for all
tasks there is at least one (near) optimal vector with every value of
sc tested, so it seems that it is merely a matter of finding the appro-
priate setting for α for some constant sc (possibly through on-line

parameter control (e.g. based on racing), making EDEA completely
parameter-free).

One reason for EDEA’s success may lie in the fact that a dis-
tributed evolutionary algorithm exploits the presence of multiple
robots by effectively implementing concurrent evaluation of the
population, allowing evolution to progress rapidly in real time. Mean-
while, the encapsulated approach can only evaluate its populations
sequentially, falling rapidly behind in terms of evolutionary steps
taken.

On the other hand, the multiple instance nature of (μ + 1) ON-
LINE’s encapsulated approach can offer an advantage when dealing
with tasks or environments that involve competition or require var-
ious skills: here, the separate evolutionary algorithms of robots can
promote co-evolution, speciation and/or specialisation.

The advantage of the concurrent evaluation can be easily under-
stood for the tasks where EDEA shines, but the connection between
the patrolling task, where the encapsulated (μ + 1) ON-LINE al-
gorithm performs better, and the advantage of co-evolution and/or
speciation is not so straightforward. Here, performance is based
on the presence of pheromones –that all robots emit continuously–
and a robot must learn to move around efficiently while avoiding its
own as well as others’ pheromones to claim fresh locations. Robots
that have the same strategy for moving around are hamstrung in
such a scenario: they always trip over each other’s pheromones,
exactly because they follow similar paths. Obviously, in the dis-
tributed case, robots are more likely to have similar controllers (as
they are from the same population) than in the encapsulated case
(where each controller stems from a different, independently evolv-
ing population), and so are more likely to follow a trodden path. In
fact, the set-up here introduces a subtle form of competitive co-
evolution: although the task is a collective one, the robots actually
compete for sites in the arena to claim.

An obvious next step from this research is to try and have the
best of both worlds by merging the encapsulated and distributed
approach into an island-like model of autonomously evolving pop-
ulations in each robot with individuals migrating from one to an-
other. Research in this direction is currently underway.

Our conclusions need to be confirmed with more extensive ex-
periments of increased complexity –both in terms of task and con-
troller structure. Work to this end is underway.
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