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ABSTRACT 
Our SPARTEN (Spatially Produced Airspace Routes from 
Tactical Evolved Networks) tool generates coordinated mission 
plans for constellations of unmanned aerial vehicles by allowing 
the mission planner to specify the importance of each objective 
for each mission. Using an evolutionary algorithm-based, multi-
objective optimization technique, we consider factors such as area 
of analysis coverage, restricted operating zones, maximum ground 
control station range, adverse weather effects, military terrain 
value, airspace collision avoidance, path linearity, named area of 
analysis emphasis, and sensor performance. By employing novel 
visualizations using geographic information systems to represent 
their effectiveness, we help the user “look under the hood” of the 
algorithms and understand the viability and effectiveness of the 
mission plans to identify coverage gaps and other inefficiencies. 
In this paper, we apply multi-objective evolutionary algorithms to 
the air mission planning domain, with a focus on the visualization 
components. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – heuristic methods, plan execution, formation, and 
generation, scheduling. 

J.7 [Computers in Other Systems]: Military – heuristic methods, 
plan execution, formation, and generation, scheduling. 

General Terms 
Algorithms, Performance, Design, Experimentation,  

Keywords 
Evolutionary algorithms, multi-objective evolutionary algorithms, 
air operations, mission planning, unmanned systems 

1. INTRODUCTION 
The dependability, persistence, and versatility of unmanned aerial 
systems (UAS) have made them indispensable assets for 
providing intelligence, surveillance, and reconnaissance (ISR) 
over the battlefield [1]. As larger constellations of heterogeneous, 
multi-purpose UAS are tasked to perform more diverse missions 
in unpredictable, dynamic environments, they are transitioning 
from remote control into the realm of autonomy. One area in 
which intelligent systems can augment human capabilities is 
mission planning. As more UAS are employed, the ISR collection 
routes that they fly must be better coordinated to maximize 
coverage effectiveness and also take into account complex factors 
such as sensor performance for specific target types in different 
terrain with varying military value, as well as weather effects on 

the platform and sensor. For mission planners to develop 
confidence in these autonomous mission planning tools, the tools 
must demonstrate that they can reliably accomplish mission 
objectives by providing operators with a deep understanding of 
the capabilities and limitations of their UAS during varying 
mission scenarios [2]. 

We are developing a tool called SPARTEN (Spatially Produced 
Airspace Routes from Tactical Evolved Networks) that generates 
optimized coordinated mission plans for UAS constellations. In 
this paper, we present our application of multi-objective 
evolutionary algorithms to this domain, with a focus on our novel 
visualization techniques using geographic information systems 
(GIS). Our visualizations help algorithm developers and end-users 
“look under the hood” of the algorithms in a domain-specific way 
to understand the viability and effectiveness of the mission plans, 
supporting identification of coverage gaps and other 
inefficiencies. 

2. FRAMEWORK 
The goal of SPARTEN is to produce a set of optimal flight 

routes for gathering ISR data over a specific area of analysis. As 
shown in Figure 1, input data comes from a variety of sources and 
is represented within the Scenario Model. The Collection Plan 
Request comes from the mission planner and includes operational 
mission details such as the location of the area of analysis (AOA), 
the start and end times of the operation, the location of restricted 
operating zones (ROZs), and the location of specific named areas 
of interest (NAIs). The AOA is the polygonal region on the 
ground where ISR data is being collected, and can be anywhere 
from a few square kilometers to a few thousand square kilometers 
depending on the operational scenario. ROZs are regions in 3-D 
space that should be avoided during specified time windows. 
NAIs are specific targets or target areas, represented by polygons 
that are of particular interest during the mission. Each NAI has a 
specific target type (e.g. dismounted soldier, pickup truck, etc.). 
Also included in the Collection Plan Request are the location of 
the other databases and configuration parameters for the 
Evolutionary Algorithm (EA) such as the mutation and crossover 
rates. The Air Maneuver Network (AMN), described further in 
Section 2.1, is a geospatial database containing a planar network 
whose nodes represent air control points and launch sites for 
unmanned aerial vehicles (UAVs), and are connected by edges 
that specify bi-directional transitions between nodes. Sensor 
performance and weather effect data are updated as new forecasts 
become available and are attributed on the AMN. Weather effects 
include details such as where and when inclement weather will 
have a potentially adverse effect on UAV or sensor performance, 
and wind speeds at various altitudes. The sensor performance 
metric provides the probability of detecting different types of 
targets at specific locations at specific times within the scenario 
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timeframe. The UAS Data consists of the available aircraft for the 
mission, their launch sites, and performance characteristics of the 
various air vehicles, such as flight endurance, operating altitudes, 
and available onboard sensors. The final inputs are the User 
Weights, where the mission planner specifies the relative 
importance of each objective on a scale of 1 to 10. For example, 
they may decide that Coverage, Sensor Performance, and Military 
Value are the most important for the current mission and weight 
them the highest (10). Adverse Weather Avoidance and NAI 
Emphasis might be secondary concerns and so be weighted with 
medium importance (5). The remaining objectives may be of little 
concern and so are weighted as 0 or 1. We describe how these 
weights are used during optimization in Section 2.2.4. The Cost 
Factor Maps (CFMs) are concise representations of the mission 
plan tradeoff spaces that facilitate the rapid computation of fitness 
values for candidate collection plans. Each CFM contains 
geospatially and temporally specified data for each edge on the 
AMN that indicates how that region in space and time is affected 
by the given concern. Additional optimization factors, such as 
collision avoidance, coverage, maximum ground control station 
(GCS) range, latency, and linearity (described in Table 1) are 
taken into account when the algorithm is run. 

 
Figure 1. SPARTEN architecture 

The CFMs, along with the Scenario Model and the 
optimization factors, provide all of the data necessary to run the 
Evolutionary ISR Collection Planning Algorithm, which then 
generates the Solution Representation. The results within the 
Solution Representation are presented to the mission planner 
using the Mission Flight Plans, the Summary Metrics, and the 
Sortie Routes. Mission Flight Plans are in NATO’s Common 
Route Definition (CRD) format, an XML-based representation of 
military flight plans. The Summary Metrics are GIS-based 
representations in ESRI’s ArcMap that show how well a given 
solution performs through the lens of each optimization objective. 
The Sortie Routes are also GIS-based representations that show 
the flight routes for reference on a background map of the AOA. 

2.1 Air Maneuver Network 
The AMN maintains topological and temporal reference 

frames to represent flyable air corridors for a variety of mission 
types. In this work, we expand the concept of the AMN presented 
in [3] to include a topological representation of the AOA that lets 
SPARTEN treat continuous airspace as a discrete state space. 
Practically, the AMN is a set of planar networks at various 
altitudes whose nodes represent air control points and launch sites 
for UAVs connected by edges that specify bi-directional 
transitions between nodes. The direction of an edge accounts for 
effects, such as relative wind speed and sensor performance, 
which depend on travel direction. A valid route for any asset is a 

set of ordered edges, where there is a node that connects any two 
edges. Although an AMN may have planar networks at numerous 
altitudes, we consider only the single level case in this paper. A 
representative AMN is shown in Figure 3, where the AOA is a 
large yellow rectangle, ROZs are polygons cross-hatched in red 
(Figure 2(a)), and NAIs are polygons hatched in blue (Figure 
2(b)). AMN edges are shown as green lines connecting the small 
green circles that are AMN nodes (Figure 2(c)). The icon in 
Figure 2(d) indicates where UAS launch and recovery sites are 
located, and the icon in Figure 2(e) indicates where ground 
control stations are located. 

 
(a) ROZ 

 
(b) NAI 

 
(c) AMN 

 
(d) GCS (e) UAS 

Figure 2. AMN symbology 

 
Figure 3. Air maneuver network 

Edges represent flight segments and each edge carries a list of 
attributes relating to flight along that edge for each time interval. 
These include NAIs, ROZs, weather effects, sensor performance, 
military value of the underlying terrain, and GCS range. The 
attributes are calculated individually in advance, based on 
available information, such as weather forecasts. Each edge also 
has a length, where the length of the edge corresponds to the 
traversal distance for the flight segment. Edge attributes are used 
to evaluate potential solutions during the execution of the 
Evolutionary ISR Collection Planning Algorithm. No attributes 
are associated with nodes, since nodes represent instantaneous 
transitions between edges. However, launch sites, which can also 
serve as the terminus of an edge, have associated attributes that 
indicate which type of aircraft can use that resource. A valid route 
for any asset must start and end at a launch site. 

 
Figure 4. ISR collection route 
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Figure 4 shows a sample flight route for an ISR mission being 
flown using that AMN. In this view, the flight route is represented 
by darker and thicker lines in the beginning of the route that taper 
to lighter, thinner lines at the end of the route. This mechanism 
allows overlapping lines to show where the same area has been 
covered multiple times.  

2.2 Optimization Objectives 
Each collection plan has multiple objectives against which it is 
evaluated during the selection phase. The mission planner weights 
each objective with an integer from 0 to 10 to indicate its relative 
importance. Each objective’s fitness function (y) returns a value of 
[0, 1], which indicates how well a collection plan (S) satisfies the 
objective. A fitness value of zero is the lowest possible value, and 
one is the highest possible value. We describe coverage, sensor 
performance, and military value in more detail below, but a 
summary of all the objectives used to evaluate collection plans is 
listed in Table 1 for reference. 

Table 1. SPARTEN optimization objectives 

Objective Description 

Adverse 
Weather 
Avoidance 

Average weather effects value for all the edges 
in the collection plan, weighted by traversal 
time 

Collision 
Avoidance 

Degree to which the flight routes of all aircraft 
in the solution avoid each other in time and 
space 

Coverage 
Fraction of edges within the area of analysis 
covered by a UAV within a collection plan 

GCS Range 
Average ground control station visibility value 
for all the edges in the collection plan, weighted 
by traversal time 

Latency 
One minus the reciprocal of the average number 
of times each edge is covered by a UAV within 
a collection plan 

Linearity 
Measure of the aggregate curvature of all the 
flight paths within the collection plan 

Military 
Value 

Weighted average of the military values 
associated with each edge that is covered by a 
UAV within a collection plan 

NAI 
Emphasis 

Weighted power mean over the set of average 
coverage values of each named area of interest 

ROZ 
Compliance 

Total time that UAVs are not in restricted 
operating zones divided by the total time UAVs 
are in the air 

Sensor 
performance 

Average of the probability of detection (PD) 
values for all the edges in the collection plan 

2.2.1 Coverage 
The coverage objective measures the number of edges in a 
collection plan that are completely within the AOA and covered at 
least once by a UAV. The coverage fitness function y for the 
collection plan S is calculated as a fraction to map it to the fitness 
value range of [0, 1], and is given by y(S)=n/a, where n is the 
number of AMN edges covered at least once and a is the total 
number of edges completely within the AOA. 

2.2.2 Sensor Performance 
The sensor performance objective measures probability of 
detection (PD) values for the collection plan. The sensor 
performance fitness value is calculated as the average of the PD 
values for all the edges in the collection plan, weighted by the 
traversal time associated with each edge. Each PD value is 
dependent on the edge being traversed, the time of traversal (e.g., 

day, night, twilight), the sensor used (e.g., electro-optical, infra-
red), and the target type being sought (e.g., pickup truck, 
dismounted soldier). The sensor performance fitness function y 
for the collection plan S is given by the following equation, where 
K is the number of unique UAVs used in the collection plan, Ik is 
the number of unique edges in UAV k’s flight path, sk is the 
sensor being used by the kth UAV, tik is the time at which the kth 
UAV is flying over the ith edge, ak is the target type that UAV k is 
assigned to observe, r(sk,ti,a) is the PD value given sk, ti, and a, 
and ∆tik is the time required for UAV k to traverse the ith edge. 

 
2.2.3 Military Value of Terrain 
The military value objective measures the military relevance 
associated with each edge. For example, edges over terrain that is 
a potential ambush spot or a chokepoint at a crossroads in a 
mountain pass would have higher intrinsic military value while 
areas of open desert or ocean would have lower intrinsic military 
value. The fitness value is calculated as an average, weighted by 
the traversal time associated with each edge in the collection plan. 
The fitness function y for the collection plan S is given by the 
following equation, where K is the number of heterogeneous 
UAVs used in the collection plan, Ik is the number of edges on 
UAV k’s flight path, mi is the intrinsic, time-invariant military 
value in the range [0, 1] of the ith edge in the collection plan, and 
∆tik is the time required for UAV k to traverse the ith edge in its 
flight path. 

 
2.2.4 Weighting of Objectives 
The mission planner running the SPARTEN engine specifies a 
weighting value on a scale of 0 (unimportant) to 10 (very 
important) for each objective listed in Table 1, with the exception 
of collision avoidance, which is always given a high priority. The 
fitness values for each objective are multiplied by the normalized 
weight to incorporate the relative importance of each specific 
objective in the context of the current mission scenario. The 
weights are normalized such that they sum to 1.  

2.3 Cost Factor Maps 
Cost Factor Maps layer on top of the base AMN, including 

NAIs, ROZs, weather effects, sensor performance, military value 
of the underlying terrain, and ground control station ranges. We 
build on the work in [4] by enhancing CFMs to describe the 
mission plan tradeoff spaces in advance of collection route 
evolution. This facilitates rapid fitness evaluations during the 
evolutionary process. Each CFM contains geospatially specified 
data for each edge on the AMN that indicates how that region in 
space and time is affected by the given concern. By computing the 
CFM in advance, we can offload much of the computational 
complexity involved in fitness evaluation so that it can be done 
quickly. 

Figure 5 shows a sample CFM from SPARTEN for military value 
of terrain (see Section 2.2.3). The CFM displays in red where the 
underlying terrain has a high military value, in yellow and orange 
where it is moderate, and in green where it is low. Figure 6 shows 
a CFM for sensor performance for a particular type of infra-red 
sensor on an ISR mission, where there is high probability of 
detection (in green), moderate PD (in yellow and orange), and low 
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PD (in red). The region in the lower right of the AOA is 
particularly poor with regard to PD, as a result of severe weather 
activity in that area that adversely affects the sensor. Every edge 
in the AMN is included in the CFM, with the addition of a transit 
edge between the launch site and the closest node on the AMN. 
This is in contrast to the solution metric maps (shown below in 
Figure 11, Figure 12, and Figure 13) that only include edges that 
are actually traversed by a UAV in the solution. Since coverage 
can only be computed after a candidate solution has been 
generated, coverage has no CFM computed in advance. 

 
Figure 5. Military value emphasis cost factor map 

 
Figure 6. Sensor performance cost factor map 

3. ALGORITHM 
Each candidate solution consists of a set of flight routes, one for 
each available UAV. Each flight route is represented by an 
ordered list of waypoints that corresponds geospatially to nodes 
on the AMN. Each waypoint has a latitude, longitude, altitude, 
timestamp, and assigned sensor. This set of flight routes makes up 
an ISR collection plan, and has a corresponding genetic 
representation (Section 3.1). The Evolutionary Algorithm 
maintains and evolves a population of Collection Plans using 
selection (Section 3.2) and variation (Section 3.3) operators. 
Crossover operates both on sorties (Section 3.3.1) and individual 
waypoints (Section 3.3.2). Mutation variation is performed using 
insertion (3.3.3), and deletion (Section 3.3.4) operators. Our 
coevolutionary approach is described in Section 3.4. 

3.1 Genetic Representation 
The collection plan is a coordinated flight plan for a 

constellation of UAVs. Each of the UAVs in the collection plan 

flies multiple sorties within the mission. Each sortie has three 
flight segments, where the linear combination of these flight 
segments flown by a UAV during all its sorties within a mission is 
called a flight path. 

1. Departure from the launch and recovery site to an AMN 
node within the area of analysis 

2. Mission execution (selection, crossover, and mutation 
operate only on this segment.) 

3. Return from an AMN node to the launch and recovery site 

The mission plan individual is a two-tiered structure. Each full 
chromosome represents a complete flight plan, with each “sortie 
gene” representing one sortie for one asset. This representation 
allows sorties to be reordered and swapped among assets via 
crossover. Each sortie gene is itself a chromosome of “waypoint 
genes” that specify the individual nodes in the AMN that will be 
traversed during that sortie. Variation operators on the waypoint 
genes allow modification to the sequence of waypoints that will 
be followed during sortie execution. The two-tiered representation 
extends the approach presented in [5] to support sorties and the 
AMN concept. The launch times of the sorties in each gene are 
fixed at evenly spaced points during the length of the mission. 

3.2 Selection Operators 
The selection operation selects individuals to breed for the next 
generation. The algorithm assesses each individual against 
multiple objectives (such as coverage, military value, or GCS 
range), and then computes one number for each objective, called 
the individual’s fitness value for that objective. The fitness values 
of each individual are then compared to determine which 
individuals are selected. Selection reduces genetic diversity, but 
promotes a net increase in fitness by weeding out weaker 
individuals in the population. 

SPARTEN implements a two-individual tournament selection 
operator. The tournament initially applies a sequence of constraint 
functions, which test validity of both plans. The primary 
constraint used in SPARTEN is a collision check; a collision is 
defined as two UAVs occupying the same edge in the AMN at the 
same time.  

Within the tournament, if one of the two mission plan individuals 
violates the constraints, then the other individual “wins” the 
tournament and is selected. If both collection plans have 
violations, then a tiebreak is attempted and the individual with the 
fewest collisions “wins.” If both individuals are valid, then the 
selection operator considers their fitness functions. 

SPARTEN has one fitness function for each objective. Each 
objective is weighted by the user to indicate its relative 
importance. Each fitness function returns a value from 0 to 1, 
inclusive. 

Since the mission plan individual’s overall fitness is determined 
by its fitness value on multiple objectives, and the distributions of 
fitness values vary based on the objective, the fitness values 
returned by these fitness functions must be carefully balanced to 
be able to compare the fitness of two individuals.  

SPARTEN sums the weighted signs of the differences between 
the individual’s objective fitness values to determine the winner 
of the tournament. We define T to determine the winner of a 
tournament between individuals A and B as shown below, where 
N is the number of fitness functions under consideration. For 1 ≤ n 
≤ N, Fn(X) is the fitness value of the nth fitness function applied to 
individual X, and Wn is the user-specified weight for the nth fitness 
function. If (T > 0), A is selected. If (T < 0), then B is selected. 

1694



 

3.3 Variation Operators 
The variation operators modify an individual’s genetic material to 
create new individuals for the subsequent generation. SPARTEN 
uses two types of crossover operators: sortie operators that 
exchange sortie genes between assets, and waypoint-level 
operators that exchange waypoint-based genetic material. The 
insertion and deletion mutation operators create fresh genetic 
material at the waypoint level. 

3.3.1 Sortie Crossover 
Sortie crossover is performed between two mission plan 
individuals and involves the exchange of entire sortie genes. The 
operation is a single-point crossover whereby a sortie from 
individual A is swapped with a sortie from individual B. Let A be 
an individual with n sortie genes, a0 through an-1. Let B be an 
individual with n genes b0 through bn-1. The number of sorties in 
the representation is equal for all individuals, although some 
sorties may be empty, effectively representing a “no-op.”  

Crossover between A and B yields two new individuals, A’ and B’. 
A’ has genes a0 through ax and bx+1 through bn-1. B’ has genes b0 
through bx and ax+1 through an-1, where x is a random integer from 
the uniform distribution [0, n-2]. The probability of any selected 
individual in the population being involved in a sortie crossover is 
equal to a user adjustable parameter that defaults to 1.0. 

3.3.2 Waypoint Crossover 
The waypoint-level crossover operator exchanges genetic 
information between two sortie genes located in the same position 
in two mission plan individuals (e.g., the “third” sortie gene or the 
“fifth” sortie gene in each). The exchange between the genes is 
done within a single sortie gene, chosen at random. For this 
example, suppose the “blue” sortie is chosen from individual A 
(Figure 7(a)). The “green” sortie is a symmetric sortie in 
individual B (Figure 7(b)).  

The crossover operator first selects one node from sortie A (N1) 
and one node from sortie B (N2). N1 is selected randomly from 
the list of nodes in sortie A. N2 has a distinct, random position. 
These nodes are shown in red in Figure 7(c). Next, the crossover 
operator splits the two sorties as shown in Figure 7(d). Let A0, Af, 
B0, and Bf be the start and end nodes of the first and second sortie. 
In Figure 7(d), these happen to be at the same location but this 
does not necessarily have to be the case. Sortie A is split into P1, 
defined as [A0, N1] and shown in light blue, and P2, defined as 
[N1, Af] and shown in dark blue. Sortie B is similarly split into P3 
and P4, respectively defined as [B0, N2] and [N2, Bf] and shown 
in dark green and light green. In the third step, a middle section, 
P5 (shown in pink), is calculated as the shortest path between N1 
and N2. The resultant sorties are A’ = P1 + P5 + P4 as shown in 
Figure 7(e) and B’ = P3 + P5 + P2 as shown in Figure 7(f). The 
final sorties A’ and B’ are shown in Figure 7(g) and Figure 7(h). 

 
(a) Initial sortie A (b) Initial sortie B (c) Crossover points

(d) Split sorties 
 

(e) Result sortie A’ (f) Result sortie B’

 
(g) Final sortie A’ 

 
(h) Final sortie B’ 

Figure 7. Waypoint crossover 

3.3.3 Insertion Mutation 
Insertion adds a new flight segment in the middle of an existing 
sortie. The original sortie is shown in Figure 8(a) with the launch 
and recovery site shown as a yellow node near the bottom center 
of the sortie route. The insertion mutation operator selects a node, 
N1, from the list of nodes in the sortie (shown in red along the 
blue sortie). Another node, N2, is selected out of the set of nodes 
in the AMN (shown in red, down to the right of the sortie). Next, 
the insertion mutation operator removes node N1 and its two 
adjacent edges from the sortie, creating two new terminal nodes, 
N3 and N4, as shown in Figure 8(b). In the third step, shown in 
Figure 8(c), the insertion mutation operator creates two new paths, 
P1 and P2, to connect the sortie to the new node and complete the 
sortie loop. P1 is defined as the shortest path between N2 and N3; 
P2 is the shortest path between N2 and N4. These new paths are 
shown in yellow, and the resultant sortie is shown in Figure 8(d).  

(a) Initial sortie (b) Partial sortie 

 
(c) Sortie with new segment (d) Final sortie 

Figure 8. Insertion mutation 

3.3.4 Deletion Mutation 
Deletion removes a flight segment in the middle of the existing 
sortie, replacing it with the shortest-path route between two 
randomly selected nodes, as demonstrated in the following 
example. The original sortie within the AOA is shown in Figure 
9(a) with the launch and recovery site shown as a yellow node 
near the bottom center of the sortie route. The deletion mutation 
operator selects two nodes, N1 and N2, from the list of nodes in 
the sortie. These nodes are shown in red Figure 9(a). Next, the 
deletion mutation operator removes the middle section of the 
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sortie defined as (N1, N2), as shown in Figure 9(b). In the third 
step, the deletion mutation operator calculates a new path (P) to 
complete the loop as shown in orange in Figure 9(c). The final 
sortie is shown in Figure 9(d). 

 
(a) Initial sortie (b) Partial sortie 

(c) Sortie with new segment (d) Final sortie 
Figure 9. Deletion mutation 

3.4 Coevolutionary Algorithm 
We generate results with multiple objectives by employing a 
coevolutionary algorithm similar to Parmee and Watson [6] where 
single-objective algorithm instances are used to independently 
optimize the different fitness functions, resulting in multiple 
populations of solutions. Each single-objective run starts with a 
population size equal to a user specifiable parameter (the default 
is 10), and then evolves until terminated by the user. Selection is 
determined solely by the one objective function. At the end of 
each generation the user is presented with the fitness of the 
current elite individual and two visualizations: the fitness metrics 
along a Gantt chart and the same metrics geospatially presented 
on a map of the mission plan. When the user decides that the elite 
individual is sufficiently fit, the single run is completed. 

An aggregate population is formed from the union of a subset of 
each single objective run to bootstrap the initial population for the 
next stage. Each subset contains the fittest individuals in its 
superset. There is always at least one individual in each subset and 
the number of individuals in any two subsets never differs by 
more than one. The aggregate population is then evolved over all 
objectives simultaneously. The selection operator T uses a 
weighted sum of the signs of fitness differences, Where wi is the 
weight associated with the objective function Fi, and the two 
individuals under comparison are A and B. 

 
The user no longer has any input on the algorithm, which 
proceeds as a standard SPARTEN execution for a time specified 
by a user configurable parameter indicating the number of multi-
objective generations to evolve, and is typically between 200 and 
5,000, depending on the size of the AOA. 

 
Figure 10. Sample coevolutionary algorithm 

For example, a user may want a solution that maximizes coverage, 
military value, and sensor performance together. The algorithm 
would proceed as in Figure 10, first optimizing on the three 
objectives independently. Then the results are combined into a 
single population to seed a multi-objective run using weighted 
average of the objective criteria. Newly generated random 
individuals are also added to the combined population to increase 
genetic diversity. 

In previous work, we had some success applying the NSGA-II 
algorithm [7] to a similar problem [5]. However, for the present 
application, the use of the Parmee and Watson-style approach was 
motivated due to the need to simultaneously optimize as many as 
10 objective functions, and NSGA-II’s focus on dominance 
reduces its effectiveness for such many-objective applications [8]. 
Research suggests combining single-optimization runs may be 
preferable for such problems (e.g., [9]), although we have not yet 
explored this research question in our current work. From an end-
user perspective, our current approach also presents opportunities 
for human-on-the-loop preference articulation in which the 
operator can monitor visualizations similar to those in Figure 11, 
Figure 12, and Figure 13 (Section 3.5) while the algorithm is 
executing. When the mission planner determines that the solution 
for a given objective is sufficient, they can manually accept the 
result and stop the evolution of that particular objective. We will 
provide a further analysis of the human-on-the-loop results and 
implications in future work. 

3.5 Fitness Visualizations 
Each fitness function results in the computation of a scalar value. 
While computing a single scalar value for each function facilitates 
the use of evolutionary approaches, they only provide general 
information to the user regarding plan quality. To facilitate 
improved human understanding and evaluation of optimized 
collection plans, we have developed a variety of geospatial 
visualizations using ESRI’s ArcGIS software. These 
visualizations show a graphical representation of the AMN over 
the underlying terrain, using line attributes to represent different 
aspects of the solution. Figure 11 shows a plan in which the 
coverage objective has been almost completely optimized. Notice 
that there are very few AMN edges (from Figure 3) missing in 
Figure 11. This allows the user to quickly look at the display and 
see potential gaps in coverage, where they may decide to employ 
alternate means (e.g., additional special purpose aircraft, satellites, 
ground personnel) to take up the slack. 

This solution was generated after evolving for 300 generations 
using a population size of 10; one elite; individual crossover 
probability = 1.0; gene crossover probability = 0.7; and a mutation 
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probability = 0.2. The coverage weight was 10 and the other 
objectives were weighted at 0. 

We have also developed an alternate temporal view of metrics that 
can be displayed simultaneously with the geospatial information. 
This visualization is displayed below the geospatial plot in Figure 
11. It is a one-dimensional view where time increases to the right. 
Each colored bar represents the quality of the solution as the 
mission execution time increases. Each asset is represented by a 
row, with breaks within the rows for different sorties. The 
operator may note specific time windows in which an asset is 
ineffective and manually adjust the plan for those times. 

 

 

 
Figure 11. Coverage solution visualizations  

The final visualization shows the change in fitness value for the 
best fit individual from the population after each generation. The 
initial population starts with relatively high fitness, but these 
solutions include airspace collisions and are therefore 
unacceptable. After selective pressure removes the solutions with 
collisions from the population, the coverage value steadily begins 
to increase again and converge to the optimized value. A similar 
phenomenon occurs for military value and sensor performance. 
Currently, we only visualize these last two when optimizing for a 
single objective. 

Figure 12 shows a similar example using the military value 
metric. In this visualization, green edges are over regions of 
terrain with high military value and red edges are over regions 
with lower military value. Yellow and orange edges indicate 
intermediate military value. This informs the mission planner of 
the strengths and weaknesses of the collection plan, and where 
during the flight routes UAVs are likely to detect targets (green 
regions) and where their sensors are likely to be less effective. 
The solution shown in Figure 12 was generated using the same 
configuration parameters as for coverage, running for 300 
generations with the military value weight set to 10 and the other 
weights set to 0. Figure 13 shows the sensor performance metric 
for a plan, allowing the user to see what areas are receiving sensor 
coverage at potentially diminished quality. Again, the same 
configuration parameters as for coverage were used, running for 
300 generations with the sensor performance weight set to 10 and 
the other objectives all set to zero. Red lines indicate that the 

quality of coverage along that edge is likely to be dramatically 
reduced. 

 

 

 
Figure 12. Military value solution visualizations 

 

 

 
Figure 13. Sensor performance solution visualizations 

These visualizations are useful for several reasons. From a 
research perspective, we can watch them evolve over time to gain 
better understanding of the algorithm’s performance. For 
example, major changes to the collection plan may result in only 
small changes to the overall fitness, such that watching raw fitness 
scores change as the generations progress does not necessarily 
give an accurate picture of how the algorithm is traversing the 
search space. In contrast, we can explore the geospatial and 
temporal visualizations to gain a better understanding of how 
different parts of the search are explored as the algorithm runs. 
For example, we can observe that coverage may remain relatively 
unchanged during destructive crossover (because all the nodes are 
still being visited as a result of the crossover), but a metric such as 
sensor performance may be greatly affected because the weather 
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will change as the sorties are executed. We can use these 
observations to help tune fitness weights and search parameters, 
such as reducing crossover probability as the algorithm 
progresses, or reducing the magnitude of mutations. 

For the end-user, these visualizations are essential to 
understanding quality of plans that are returned by the algorithm. 
The raw fitness values are foreign and somewhat meaningless to a 
mission planner in charge of managing a UAS constellation. The 
operational user would much prefer to know precisely where 
sensor coverage is expected to fail or to know which NAIs are not 
being effectively covered. The purpose of SPARTEN, after all, is 
not to provide a fully-automated planning solution that removes 
the human from the planning process entirely. Rather, SPARTEN 
is a decision support aid that will provide the human planner with 
high-quality plans that they can further tweak to meet objectives 
that cannot be effectively captured in the fitness functions. Our 
visualizations provide much-needed context and military 
relevance to the fitness scores, which are a great asset to the 
human planner. 

Figure 14 shows a solution that was generated using the same 
configuration parameters as for the single-objective runs that was 
run for 300 generations and takes into account the coverage, 
military value, and sensor performance weights simultaneously. In 
this view, the colors represent a normalized average of the 
weighted fitness values of the objectives being optimized. 

 
Figure 14. Solution using combined objectives 

4. CONCLUSIONS AND FUTURE WORK 
We have presented a method to optimize collection plans for 
constellations of UAVs and provided examples of visualization 
aids that help the researchers and operational users make sense of 
the results. Our approach provides a promising decision aid to 
help mission planners create more effective mission plans for 
constellations of UAVs by making use of available geospatial and 
temporal data. 

There are a number of potential areas for follow-on research that 
we are currently pursuing. Primarily, we are interested in using 
the described visualizations to support improved human 
interaction with the evolutionary algorithm, as opposed to the 
current post-hoc analysis. Presenting plans to the user during the 
evolutionary process does not present a significant technical 
challenge, although determining effective approaches for 
performance evaluation of the interactive coevolutionary 
algorithm remains an open research question. Additional 
improvements will focus on increasing the operational readiness 
of SPARTEN. For example, we plan to increase the fidelity of the 
simulations to support more detailed and accurate flight plans.  

We also plan to field test our SPARTEN algorithms using a 
representative set of small UAVs to gather ISR data over an 
exemplary AOA. We will also add additional optimization 
objectives, such as acoustic modeling, to support gathering ISR 
data while avoiding detection by enemies.  
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