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ABSTRACT

Most research on Strip Packing and Cutting Stock problems are fo-
cused on single-objective formulations of the problems. However,
in this work we deal with more general and practical variants of the
problems, which not only seeks to optimise the usage of the raw
material, but also the overall production process. The problems tar-
get the cutting of a large rectangle in a set of smaller rectangles
using orthogonal guillotine cuts. Common approaches are based in
the minimisation of the strip length required to cut the whole set
of demanded pieces (for strip problems) and in the maximisation
of the total profit obtained from the available surface (for cutting
stock problems). In this work we also deal with an extra objective
which seeks to minimise the number of cuts involved in the cutting
process, thus maximising the efficiency of the global production
process. In order to obtain solutions to these problems, we have
applied some of the most-known multi-objective evolutionary al-
gorithms, since they have shown a promising behaviour when tack-
ling multi-objective real-world problems. We have designed and
implemented hyperheuristic-based encodings as an alternative to
combine heuristics in such a way that a heuristic’s strengths make
up for the drawbacks of another.

Categories and Subject Descriptors

1.2.8 [Computing Methodologies]: Artificial Inteligence—Prob-
lem Solving, Control Methods and Search Heuristic Methods

General Terms
Algorithms

Keywords
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1. INTRODUCTION

Cutting Problems [24] arise in many production industries where
large stock sheets (glass, textiles, pulp and paper, steel, etc.) must
be cut into smaller pieces. Although many variants of the problem
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have been widely studied, here we have focused on general guil-
lotine problems which do not introduce constraints about the num-
ber of cutting stages. Guillotine problems obtain the pieces from
the sheet of raw material by using exclusively orthogonal guillo-
tine cuts. That means that any cut must run from one side of the
rectangle to the other end and be parallel to the other two edges
(Figure 1). The production of non-guillotinable cuts may entail a
more complex machinery operation. For this reason, and in or-
der to encompass a wider range of industrial cutting machines, we
have focused on the guillotinable formulation of the problems. The
paper industry is the most common real-world application which
requires quillotine cutting.

The first problem we have studied is the Two-Dimensional Guil-
lotine Strip Packing Problem (2DSPP). The 2DSPP arises in many
production industries where the raw materials are in the form of
rolls and involves the cutting of a complete set of n demanded
pieces from a large stock sheet of material using guillotine cut-
tings. The stock sheet has fixed width W and unlimited length L.
Each rectangular piece ¢ demanded has fixed dimensions (;, w;),
although they can be rotated 90 degrees, thus allowing for the di-
mensions (w;, [;) as well. In this problem the goal is to minimise
the strip length required to cut the whole set of demanded pieces.

The second studied problem is the Constrained Two-Dimensional
Cutting Stock Problem (2DCSP). The 2DCSP targets the cutting of a
large rectangle S of dimensions L x W in a set of smaller rectangles
using orthogonal guillotine cuts. The produced rectangles must be-
long to one of a given set of rectangle types D = {T1...T,}
where the i-th type 7; has dimensions /; X w;. Associated with
each type 7T; there is a profit p; and a demand constraint b;. Usu-
ally, the main goal is to find a feasible cutting pattern with x; pieces
of type T’; maximising the total profit.

Although in both problems the common goal consists in finding
the layouts which make a best usage of the available material, in
some industrial fields, the raw material is either very cheap or can
be easily recycled, so that, a more important criterion for the pattern
generation may be the speed at which the pieces can be obtained,
thus minimising the production times and maximising the usage of
the cutting equipment. The cutting process is specifically limited
by the features of the machinery available but, in general, it is de-
termined by the number of cuts involved in the packing patterns.

Figure 1: Guillotine and non-guillotine cuts



Moreover, the number of cuts required for the cutting process is
also crucial to the life of the industrial machines. Since the number
of cuts is an important aspect in determining the cost and efficiency
of the production process, a comprehensive optimisation methodol-
ogy should take also this criterion into consideration. Therefore, in
this study, the number of cuts is taken as a second design objective
in both cutting problems. This way, the problems can be posed as
multi-objective optimisation problems.

Many single-objective approaches have been proposed to solve
the 2DSPp. However, works dealing with the multi-objective ap-
proach are almost inexistent and they all are based on the usage
of Multi-Objective Evolutionary Algorithms (MOEAs). Moreover,
the approaches tackling such type of guillotine problem are based
on representations where the pattern layouts are explicitly encoded
using a post-fix notation. This encoding scheme is effective for the
smaller test problem instances, but not for the larger [4]. For this
reason, in this work, we propose a hyperheuristic encoding scheme
and MOEAs to solve the larger test problem instances of the multi-
objective 2DSPP. In the case of the 2DCSP, we haven’t found any
work dealing with a multi-objective formulation of the problem.
So, taking into account the similarities with the 2DSPP, the same
encoding scheme and algorithms are applied for this problem.

The remaining content of this paper is organised as follows. The
state-of-the-art on the solution of the widely studied single-objective
and multi-objective formulation of the problems is given in sec-
tion 2. Section 3 gives a general overview of multi-objective opti-
misation. In section 4, we present the approaches designed to deal
with the here studied multi-objective guillotine cutting problems.
The experimental results of these approaches are presented in sec-
tion 5. Finally, the conclusions and some lines of future work are
given in section 6.

2. APPROACHES FOR 2DSPP AND 2DCSP

As occurs with most cutting and packing problems, the prob-
lem of finding an optimal solution for the 2DSPP is NP-hard, so
research has focused mainly on developing heuristics which can
provide good (though not necessarily optimal) and fast solutions to
otherwise intractable problems. Exact algorithms, on the contrary,
ensure the achievement of optimal solutions but cannot deal with
large and real instances of the problem. This is why a wide va-
riety of heuristic strategies have been formulated, so as to obtain
good quality solutions in an acceptable computational time. Some
of the best-known level-oriented algorithms which are able to deal
with guillotine cuttings are [17]: First-Fit Decreasing Height, Next-
Fit Decreasing Height, Best-Fit Decreasing Height, and SPLIT.
Many papers propose improvements to these level-based placement
heuristics, or combine them with other approaches, such as genetic
algorithms [1]. As a more general and sophisticated method, differ-
ent types of hybrid algorithms and meta-heuristics have been con-
sidered [1, 9, 12, 18].

In spite of the great number of works dealing with this problem,
only a few deal with real-world multi-objective constraints [13, 20].
These existing approaches for this multi-objective formulation of
the 2DSPP are all based on the application of MOEAs. The cutting
patterns provided by the approach presented in [4, 20] always al-
low for guillotinable cuts, while those achieved by [13] can only be
non-guillotinable. Works dealing with guillotine cuttings [4, 20],
which have been taken as a reference in our work, are based on a
codification of solutions where the cutting layouts are directly rep-
resented through a post-fix notation. The approach proposed in [4]
clearly improved the previous proposal presented in [20]. However,
although the results obtained in [4] were competitive, not only com-
pared to the other existing multi-objective approach [20], but also
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when compared to some single-objective algorithms [16], we re-
alised that the search space defined by the chosen encoding scheme
became intractable for large problem instances. For this reason,
it is necessary to check other type of encoding schemes. In this
sense, we have designed an intermediate alternative which com-
bines the solution encoding with the usage of decoding heuristics.
For this proposal we have considered the properties of the exist-
ing wide variety of heuristics for the 2DSPP and we have designed
a hyperheuristic-based encoding scheme which may allow us to
combine them in an successfully way. Such codification introduce
coding of solutions, incorporating low-level placement heuristics
to decode the solutions. In [5], we have solved the 2DSPP using
this hyperheuristic-based encoding scheme. So, here, the study in-
cludes a new problem, 2DCSP, making a comparative and trying to
obtain more global and general conclusions.

Focusing on the second problem - 2DCSP - a large number of ex-
act algorithms [11, 21, 22] have been proposed to solve the single-
objective formulation of it. There are also many heuristics to solve
the problem. Most of these heuristics solve the non-guillotine ver-
sion of the problem [2]. Only a few of them, deal with the guillotine
case [17]. For this problem, we haven’t found any related work
dealing with multiple objectives, so we have taken as a reference
the existing approaches for the multi-objective 2DSPP. Consider-
ing the similarities between both problems, we have also applied
MOEAs and a hyperheuristic encoding scheme to solve the multi-
objective 2DCSP. This way, we can check the efficiency of hyper-
heuristics when applied to problems with a wide solution space and
a large number of specific-designed heuristics.

3. MULTI-OBJECTIVE OPTIMISATION

Multi-objective or multi-criteria optimisation problems (MOPs)
[19] arise in most real-world disciplines. While in single-objective
optimisation the optimal solution is usually clearly defined, this
does not hold for MOPs. Instead of a single optimum, there is
rather a set or front of alternative trade-offs, known as Pareto-
optimal front, constituted by the non-dominated solutions y. These
solutions are optimal in the sense that no other solutions in the
search space are superior to them when all objectives are consid-
ered. The final aim when dealing with MOPs is to obtain a non-
dominated solution set which, in the best case, will coincide with
the Pareto-optimal front. From the resulting final solution set, a
human decision maker will be able to select a suitable compromise
solution.

For the guillotine problems here analysed, the maximisation of
the total profit or the minimisation of total length, involves an op-
timal usage of the raw material, thus implying the generation of
compact cutting patterns containing little internal trim loss. For
real instances, filling all the internal gaps usually involves the lo-
cation of a higher number of pieces. Usually a higher number of
cuts is necessary to obtain a higher number of pieces. For this rea-
son, we can state that both objectives have at least a certain degree
of conflict, and so, we will obtain sets of non-dominated solutions
from which final users will be able to choose.

Since exact approaches are practically unapproachable for most
MOPs, a wide variety of (meta)-heuristic algorithms have been de-
signed. Two common approaches for simplifying the MOPs solu-
tion are: convert the original problem into a single-objective one
by combining or aggregating the multiple objectives into a single
function; or, translate some of the objectives into constraints. Usu-
ally, a more appropriate approximation involves the application of
techniques that can specifically deal with multiple objectives and
MOPs intrinsic complexity (very large search spaces, uncertainty,
noise, disjoint Pareto curves, etc.).



Figure 2: Heuristics

Evolutionary algorithms (EAs) have shown great promise for
calculating solutions to large and difficult optimisation problems
and have been successfully used across a wide variety of real-world
applications. In fact, when applied to MOPs, EAs seem to perform
better than other blind search strategies. Although this statement
must be qualified with regard to the no free lunch theorems for op-
timisation, to date there are few, if any, alternatives to EA-based
multi-objective optimisation. The use of EAs to solve problems
of this special nature has been motivated mainly because they are
able to capture multiple Pareto-optimal solutions in a single simu-
lation run - which is possible thanks to their population-based fea-
ture - and to exploit similarities of solutions by recombination. EAs
that are specifically designed to deal with multiple objective func-
tions are known as MOEAs.When designing MOEAs two major
problems must be addressed: how to accomplish fitness assign-
ment and selection in order to guide the search towards the Pareto-
optimal set, and how to maintain a diverse population in order
to prevent premature convergence and achieve a well distributed
trade-off front. Many alternatives have been proposed in an at-
tempt to adhere to such design goals:VEGA, NPGA, NSGA [6],
SPEA [26], IBEA [25], etc.

4. HYPERHEURISTIC-BASED ENCODING
SCHEMES

A hyperheuristic is a heuristic search method that seeks to au-
tomate, often by the incorporation of machine learning techniques,
the process of selecting, combining, generating or adapting sev-
eral simpler heuristics (or components of such heuristics) to effi-
ciently solve computational search problems. One of the motiva-
tions for studying hyperheuristics is to build systems which can
handle classes of problems rather than solving just one problem.

As mentioned before, for both guillotine cutting problems, 2DCSP
and 2DSPP, we can find a wide range of placement heuristics in the
literature. Taking this into account and considering the properties
of hyperheuristics, in this work, we propose a hyperheuristic en-
coding scheme which make the most of the existing heuristics, and
at least takes into account the implicit features of the problem. We
apply this encoding scheme to solve both problems, 2DCSP and
2DSPP. As hyperheuristics are a more general procedure for opti-
misation which deals with the process to choose/combine the right
heuristics for solving the problem at hand, the used evolutionary
operators are more general and could be used for other problems
that are implemented using hyperheuristics.

4.1 Low-level heuristics

The first decision to implement a hyperheuristic-based approach
lies on the definition of the set of placement heuristics to be com-
bined. In the literature we can find a huge amount of heuristics for
non-guillotine cutting problems, but the number of proposals for
the guillotine case is not so extensive. From the existing heuris-
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tics we have selected four of the most-known. Originally, they all
fix the orientation of the objects such that their width is not lower
than their height. Then, objects are ordered from highest to lowest
length. Once the order of the pieces to be packed is established,
the heuristics must decide where to arrange a given object at a
given moment, considering the open and still unfilled levels (see
Figure 2). The selected heuristics are briefly described next:

o Next Fit Decreasing Height NFDH) [3]: rectangles are packed
left justified on a level until the next rectangle will not fit, in
which case it is used to start a new level above the previous
one, on which packing proceeds.

First Fit Decreasing Height (FFDH) [3]: places each rectan-
gle left justified on the first (lowest) level in which it will fit.
If none of the current levels has room, then a new level is
started.

e Best Fit Decreasing Height (BFDH) [16]: packs the next
rectangle left justified on that level, among those that can
accommodate it, for which the residual horizontal space is
a minimum. If no level can accommodate it, a new one is
created.

o Best Fit Decreasing Height* (BFDH¥*) [1]: seeks to improve
BFDH heuristic by allowing object rotations, so that when
the algorithm searches to include the current object into a
sub-area it tests both orientations. This heuristic is not appli-
cable to the 2DCSP, which does not allow rotation of pieces.

4.2 Representations

For the 2DSPP an individual is represented by a sequence (PH, p,-
o,1), where PH is the identifier of the original low-level place-
ment heuristic to be applied, p is the number of pieces that such a
heuristic must arrange on the available material, o determines the
order criterion and r is a rotation criterion. (see Figure 3). Chro-
mosomes have a variable length j, which goes from j = 1 (there
is one single sequence (PH,n,o,r) so that the same heuristic ar-
ranges all the available pieces) to j = n (the n available objects
are arranged on an independent way, i.e., Vi € [1,n],p; = 1).
Note that in a valid representation all the demanded objects must
be arranged by the heuristics, i.e., (3 7]_, pi) = n. The basic order
criteria used are: decreasing lengths, decreasing widths, decreas-
ing areas and decreasing perimeters. The rotation criteria used are:
width greater or equal than the lengths, lengths greater or equal
than the widths, rotate no object and rotate all the objects. For the
generation of the initial individuals, sequences (PH,p,o,r) are
generated, until there are no more pending pieces to be arranged,
where PH is randomly selected from the set of four used place-
ment heuristics, p is randomly selected from the interval [1, ap)
where a,, is the number of remaining or still available pieces, o is
the order criterion randomly generated among the four available,
and 7 is the rotation criterion randomly generated among the four
available.

Placement Heuristic — | PH1 PHi PHI

Number of pieces —— p1 pi pl

Order criterion —— o1 oi ol

Rotation criterion —— rl

Figure 3: Representation based on hyperheuristics
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Figure 4: Two-point crossover

For the 2DCSP, we use a similar representation (PH, p, 0), were
PH, p and o have the same meaning as in the 2DSPP representa-
tion. In this problem the pieces cannot be rotated, so this criterion is
not used and we cannot apply the BFDH* heuristic. For the gener-
ation of the initial individuals, sequences (P H, p, 0) are generated,
until there are no more pending pieces to be arranged. PH is ran-
domly selected from the set of three used placement heuristics, p is
randomly selected from the interval [1, a,,] where a,, is the number
of remaining or still available pieces, and o is the order criterion
randomly generated among the four available.

4.3 Evaluation of Objectives

In these non-direct codifications, MOEAs evolve populations of
individuals which represent hyperheuristics, so that, the chromo-
some must be interpreted to obtain the problem solution. The repre-
sentation is analysed from left to right, applying for each sequence
(PH,p,o0,7) or (PH,p,o0), the heuristic PH in order to locate
the next p pieces. These pieces are arranged fulfilling with their
corresponding terms of order and orientation. When pieces are lo-
cated on the top of existing levels, verticals constructions are cre-
ated. When a new level is opened at the right of the existing ones, a
horizontal combination of the adjacent levels is generated. The de-
codification of the chromosome provides a problem solution repre-
sented by a post-fix notation of vertical and horizontal cuts. In case
of 2DCSP, the decodification is done until no more pieces fit in the
material. Then, such a solution can be evaluated in order to ob-
tain the values of the two objectives: overall length and number of
necessary cuts for 2DSPP, and total profit and number of necessary
cuts for 2DCSP. For this purpose, the methods applied are based on
the usage of stacks and the post-fix notation, which represents the
chromosome [18]. For the evaluation of the second objective - the
number of cuts - an iterative method is applied. The chromosome
is traversed from left to right, interpreting every element and creat-
ing the indicated constructions, thus calculating the partial widths
and lengths. At least one cut is necessary for each implied vertical
or horizontal combination of pieces. If the combined rectangles do
not match in length (for vertical builds) or in width (for horizontal
builds), an extra cut is required for the construction. At the end of
the process, the complete final pattern is obtained. In this case, the
value of the first objective in 2DSPP - overall length - is immedi-
ately given by the length of the resulting final pattern. The value of
the first objective in 2DCSP - total profit - is given by the sum of the
profits of the pieces that can be located on the available surface.

4.4 Operators

Several crossover and mutation operators were designed and tested

with these representations. Some of them are more general and
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others more specific to deal with certain constraints of the repre-
sentation. After designing and testing these crossover operators,
we detected that the one achieving better results is the two-point
crossover which is based on the accumulated number of pieces
for the points selection. This two-point crossover considers the
number of accumulated pieces within the representation. So, two
number of pieces np,; and np, are randomly generated, such that
1 < np; < np, < n. For each parent, it is necessary to find
the chromosome positions where the number of arranged pieces
sums np; and np,. When the sum of the pieces do not coin-
cide with the generated value np, the first sequence (PH;, pi, 0;)
or (PH;,pi,0i,71;), satisfying Zi:o pz > mp should be split
into two different sequences (PH j,p;,0;) and (PHg, px, o) or
(PH,,pj,04,7r;)and (PHy, p, ok, i), suchthat PH; = PH; =
PH;, pr = (3. _oP=) — np, and p; = p; — pi (see Figure 4).
Once the two cross points are determined inside both parents, the
central pairs between them are exchanged among the two parents
in order to generate the new off-springs.

From all the designed and tested mutation operators, the one
showing a more promising behaviour is based on the application
of three different type of movements inside the chromosome. Each
of the following movements is applied upon the algorithm mutation
probability p.,:

e add: randomly selects a sequence (PH;, p;, 0;) or (PH;, p;,-
0i,7;) inside the representation. Then, it generates a new se-
quence (PH,p,o) or (PH,p,o,r), where PH is a random
selected heuristic, o is a random selected order criteria, r is
a random selected rotation criterion, and p is a random num-
ber within the interval [1, p;]. Then, p; is updated with the
value p; — p. If after the update, p; # 0, pairs in positions
1,...,J are displaced one position to the right, increasing the
total length of the individual ( = j + 1). Finally, the new
sequence is introduced in position <.

remove: randomly selects a sequence (PH;, p;, 0;) or (PH,-
pi, 0;,7;) inside the representation. If the selected sequence
is the last one in the representation (i = j), then p;—1 =
Di—1 + pi. In other case, p;+1 = pi+1 + p: and the pairs in
positions i+1, . . ., j are displaced one position to the left. In
both cases, the length is updated (j = 57 — 1). This operation
can be applied only if initially j > 1.

replace: randomly selects a sequence (P H ;, p;, 0;) or (PH ;-
Di, 0i,7;) inside the representation. PH; is randomly fixed
to one of the defined low-level heuristics.



Table 2: Single-ob,

Table 3: Single-objective low-level heuristics and multi-objective approach for 2pDCsp

Table 1: Configuration for hyperheuristic encoding schemes

Problem | Algorithm  Crossover  Mutation Population
2DSPP NSGA-IT 0.6 0.4 50
2DCSP NSGA-IT 0.7 0.3 50

jective low-level heuristics and multi-objective approach for 2DSPP

Solution nice200_40 path200_40 nice500_5 path500_5
Approach length cuts length cuts length cuts length cuts
NFDH 111 371 127 350 109 943 120 896
FFDH 107 374 114 364 106 946 113 904
BFDH 107 374 114 392 106 946 113 904
BFDH* 107 373 114 354 106 946 111 905
Hyp. 106.53  356.56 | 103.51  348.66 | 104.61 85473 | 104.63  881.23
Encod. Scheme | 114.33 33630 | 115.81 318.90 | 109.07 816.55 | 135.11  830.96

Solution ATP33s ATP37s CL_07_100_08 Hchl5s
Approach profit cuts profit cuts profit cuts profit cuts
NFDH 166780 15 271275 12 9506 2 27738 8
FFDH 166780 15 271275 12 9506 2 27738 8
BFDH 166780 15 271275 12 9506 2 27738 8
Hyp. 215027.70  30.50 | 357343.00 34.00 | 18964.00 25.06 | 38280.00  17.00
Encod. Scheme | 60633.60 3.03 133168.80  4.00 9999.00 2.00 9936.00 3.00

S. EXPERIMENTAL EVALUATION

The experimental evaluation was performed on a dedicated De-
bian GNU/Linux cluster of 20 dual-core nodes. Each node con-
sists of two Intel® Xeon 2.66 GHz and has 1GB RAM and a Gi-
gabit Ethernet interconnection network. The framework and the
approach for the problem were implemented in C+ and compiled
with gcc 4.1.3 and MPICH 1.2.7. For the computational study, some
test instances available in the literature [23] have been used for the
2DSPP, and others [7, 10] have been used for the 2DCSP. We use
these benchmarks to compare our results with the existing results.

In order to avoid the implementation of the most widely used
MOEAs, our approaches are based on METCO [15], a Parallel
Plugin-Based Framework for Multi-Objective Optimisation. The
framework provides implementations of MOEAs such as NSGA-
II [6], SPEA2 [26], IBEA [25], etc. It allows the users to simply
specify the details related to the problem (representation, evalua-
tion of objectives, operators, ...) without having to worry about the
internal details of the algorithm implementation. The framework
also provides a simple, flexible, and efficient interface to setup and
tune the parameters being used inside the algorithms. In order to
perform more accurate parametrisation, the tool is able to run on
parallel environments.

Inside METCO we have defined two individuals - one for the
2DSPP and other for the 2DCSP - using the hyperheuristic encoding
scheme presented in section 4. For each problem, we have defined
the corresponding representation, evaluation, generation, and oper-

Table 4: Optimal and Approximated Solutions

Instance Single-objective Solution Hyp. Approach
profit cuts profit cuts
ATP33s 236611 34 215027.70  30.50
60633.60 3.03
ATP37s 387276 39 357343.00  34.00
133168.80  4.00
CL_07_50_09 22088 14 13129.00 12.00
9506.00 2.00
CL_07_100_08 | 22443 30 18964.00  25.06
9999.00 2.00
Hchl2 9954 21 8992.00 18.00
1800.00 3.00
Hchl5s 45410 31 38280.00 17.00
9936.00 3.00

ator methods involved. The approaches were evolved using three
different MOEAs: NSGA-II, SPEA2, and an adaptive version of
IBEA. Every pair algorithm-problem was tested using different sets
of parameter configurations. In general, the hyperheuristic results
were able to improve the heuristic ones, but, after performing an
initial tuning, we have selected the pair algorithm-parameter bet-
ter performing for each problem. The better performing algorithms
and parameters, and so, used for the next experiments, are shown
in Table 1. Note that mutation probabilities are relatively high be-
cause the mutation operator is not too aggressive. As in previous
cutting related works [4, 20], NSGA-II clearly showed a better be-
haviour than the other tested algorithms. The results using them
have been omitted due to lack of space.

The application of MOEAs that generate solutions to the 2DSPP
and the 2DCSP according to two different optimisation criteria has a
major advantage for potential customers: such approaches provide
a set of solutions offering a range of trade-offs between the two
objectives, from which clients can choose according to their needs,
e.g. cost associated with the raw material or even times imposed for
the production process. However, dealing with more than one op-
timisation objective does not necessarily imply a reduced solution
quality at the expense of possibly optimising multiple objectives.
On the contrary, for the problem 2DSPP studied, the direct encod-
ing scheme approach has been checked and, by considering both,
the number of cuts and the length, the approach derived solutions
with wastage levels similar to most previous approximations which
just seek to optimise the overall length [4]. For larger problems,
where a high amount of pieces must be arranged, the search space
of solutions is too large, and so, the single-objective approaches
which seek to optimise the overall length obtain better results. For
this reason, we have designed an encoding scheme which can deal
with a more reduced search space for the considered cutting prob-
lems, so that solutions with quality comparable to those achieved
by the single-objective approaches can be obtained.

Following such a goal, we have designed a hyperheuristic-based
encoding scheme which combines different existing low-level heuris-
tics in order to improve the solutions given when the heuristic meth-
ods are individually applied. Table 2 and Table 3 show the values
of the two optimisation objectives when the low-level heuristics
are individually applied and when the proposed multi-objective ap-
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Figure 5: Attainment surfaces for 2DSPP hyperheuristic encoding scheme

proach is applied for both, 2DSPP and 2DCSP, respectively. Tables
show results for four different problem instances. Both problems
have been tested with many more instances, but for reasons of space
we only shows a set of them, from the smallest to the most com-
plex ones. Note that in the case of the 2DCSP the BFDH* heuristic
is not applicable. For the hyperheuristic approaches, thirty execu-
tions are performed, using the algorithm and configuration param-
eters given in Table 1. The stop criterion is fixed to 30 minutes
for the 2DSPP and to 10 minutes for the 2DCSP. For each repeti-
tion, two solution points are selected: the lower length or higher
profit one - depending on the problem - and the lower number of
cuts one. The average values are shown for the lowest-length or
highest-profit solution (first row of the encoding schemes) and the
lowest-cuts solution (second row).

Analysing Table 2, we can see that the hyperheuristic approach
is able to improve - for both objectives - the values obtained by
the heuristics, i.e, by the application of hyperheuristics principles
and a multi-objective approach, we have improved the solutions
obtained by tailor-made algorithms for the single-objective 2DSPP.
On the other hand, we can analyse Table 3 to study the results for
the 2DCSP. As we can notice, for each test problem instance the
three single-objective heuristics provide the same solution, and re-
sults given by the hyperheuristic approach improve these values,
i.e., combining the heuristics we have obtained better results.

Unlike in case of the 2DSPP, for the 2DCSP the single-objective
optimal solution is known for the selected instances. In Table 4 the
optimal single-objective solutions of the 2DCSP instances are com-
pare to the solutions given by the multi-objective approach. As in
the previous tables, here two different solutions are shown for each

pair instance-approach: the average best solution when considering
the profit objective, and the average best solution when attending to
the number of cuts objective. Looking at the results we realise that
the hyperheuristic approach is not able to reach the single-objective
optimal profit values, although it achieves solution with profit val-
ues rather close to the optimal profit, but using lower number of
cuts. It is important to note that the applied hyperheuristic is based
on single-objective heuristics which don’t provide high quality re-
sults for this problem because originally, they have been created to
deal with level-oriented cutting problems.

Until the moment, we have just analysed the solutions obtain-
ing the extreme values for each of the objectives (length/profit and
cuts). Now, it is necessary to compare the complete set of solutions
obtained by the encoding schemes. We would like to clearly iden-
tify the search space area being explored. Directly plotting Pareto
fronts could be rather messy since we are dealing with the results
of thirty executions, so as an alternative we have used attainment
surfaces [8]. An attainment surface is the family of tightest goals
that has been attained by the approximation set defining it. Using
attainment surfaces, it is much easier to identify “gaps” in the dis-
tribution of points. If we want to display the outcome of multiple
runs of one or more optimisers instead of plotting one front for each
of the executions, we can make use of the summary attainment sur-
faces [14]. Note that if we have performed n different runs, the
summary attainment surface s weakly dominates summary attain-
ment surfaces s+ 1, s+2, . .. n. Summary attainment surface plots
are easier to interpret than plots of many result surfaces since sum-
mary surfaces never cross each other.

Figure 5 shows, for four different instances, the summary at-
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Figure 6: Attainment surfaces for 2DCSP hyperheuristic encoding scheme

tainment surfaces 1, 15, and 30, obtained by the hyperheuristic
approach when applied to the 2DSPP. The approximate solutions
given by each individual heuristic are also attached. The hyper-
heuristic encoding scheme shows a good compromise between the
objectives, and the attainment surfaces have many points which
dominate the approximate solution given by the individual heuris-
tics. Similar results are shown in Figure 6 for the 2DCSP. In this
case, the solutions optimising the profit objective are also included
in the figure. We can note that the hyperheuristic approach is not
able to reach the single-objective optimal profit values. There are
no points which dominates the exact values, but the hyperheuristic
approach provides profit values rather close to the optimal profit,
using a number of cuts much less than the number of cuts corre-
sponding to the optimal profit. Moreover, it is important to note
that the implementation of a tailor-made exact algorithm involves
a certain difficulty and a huge computational cost, unlike the hy-
perheuristic, which is a fairly general implementation for guillo-
tine cutting problems. Anyway, the hyperheuristic is able to pro-
vide competitive results when compare to the individual heuris-
tics, as happened with the 2DSPP. As an additional advantages of
the multi-objective approaches, we provide a set of solutions from
which a human decision maker is able to select the suitable com-
promise final solution.

6. CONCLUSIONS

Real-world multi-objective formulations of the 2DSPP and 2DCSP
have been presented. The two objectives considered for the 2DSPP
were minimise the overall length of the raw material and the to-
tal number of cuts needed to obtain the complete set of demanded
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pieces. The two objectives considered for the 2DCSP were max-
imise the total profit and minimise the total number of cuts to ob-
tain the total demanded pieces. The advantage of having a multi-
objective approach is to capture multiple Pareto-optimal solutions
in a single simulation run, so that, then, a human decision maker
will be able to select a suitable compromise solution. Many ap-
proximations to the single-objective formulation of the problems
appear in the literature, but the number of multiple-objective ap-
proaches for the guillotine 2DSPP is very reduced, or even un-
known for the guillotine 2DCSP. We have chosen the NSGA-II
algorithm and we have proposed a new type of codification based
on the combination of different low-level heuristics. This way, we
can reduce the search space with regard to the search space using
a post-fix notation, which is specially necessary to solve the larger
test problem instances of the multi-objective 2DSPP. Moreover, we
obtain a quite general implementation for guillotine cutting prob-
lems. Results demonstrate that the 2DSPP and 2DCSP hyperheuris-
tic encoding schemes are able to obtain competitive solutions when
compared to single heuristics. Even more, it achieves solutions
which completely dominate the ones obtained by the single heuris-
tics. However, when we use hyperheuristic encoding scheme for
the 2DCSP, the approach is not able to reach the optimal profit val-
ues. Nevertheless, it provides profit values rather close to the op-
timal profit, using a number of cuts much less than the number of
cuts corresponding to the optimal profit.

In 2DCSP case we have the exact values for the test problem in-
stances and for the 2DSPP we only have the approximate values
given by the individual heuristics. So, as future work, it would
be interesting to implement an exact algorithm for the 2DSPP to



obtain the exact solutions of the here used test problem instances,
and to check the ‘real’ competitiveness of the 2DSPP hyperheuris-
tic approach. Moreover, we think that an important line of future
research lies on the design of other heuristics to add them to the
hyperheuristic encoding scheme for the 2DCSP. Finally, we could
compare results obtained using these hyperheuristics with other en-
coding scheme results, for example, using a direct encoding scheme
for both problems.
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