
Scaling up a Hybrid Genetic/Linear Programming
Algorithm for Statistical Disclosure Control

M.C. Serpell
Department of Computer
Science, University of the

West of England, Coldharbour
Lane, Bristol, BS16 1QY, UK

martin2.serpell@uwe.ac.uk

J.E. Smith
Department of Computer
Science, University of the

West of England, Coldharbour
Lane, Bristol, BS16 1QY, UK
james.smith@uwe.ac.uk

A.R. Clark
Department of Mathematics

and Statistics, University of the
West of England, Coldharbour
Lane, Bristol, BS16 1QY, UK
alistair.clark@uwe.ac.uk

A.T. Staggemeier
Centre for Statistical and

Analytic Intelligence, Office for
National Statistics, Newport,

NP10 8XG, UK
Andrea.Staggemeier@ons.gsi.gov.uk

ABSTRACT
This paper looks at the real world problem of statistical dis-
closure control. National Statistics Agencies are required
to publish detailed statistics and simultaneously guarantee
the confidentiality of the contributors. When published sta-
tistical tables contain magnitude data such as turnover or
health statistics the preferred method is to suppress the val-
ues of cells which may reveal confidential information. How-
ever suppressing these ‘primary’ cells alone will not guar-
antee protection due the presence of margin (row/column)
totals and therefore other ‘secondary’ cells must also be sup-
pressed. A previously developed algorithm that hybridizes
linear programming with a genetic algorithm has been shown
to protect tables with up to 40,000 cells, however Statisti-
cal Agencies are often required to protect tables with over
100,000 cells. This algorithm’s performance highly depended
on the choice of mutation operator so firstly this dependency
was removed. As the algorithm is unable to protect larger
tables due to the time it takes for its fitness function (a lin-
ear program) to execute a series of modifications have been
applied. These modifications significantly reduced its exe-
cution time which in turn greatly extend the capabilities of
the hybrid algorithm to the point that it can now protect
tables with up to one million cells.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimisation—Con-
strained optimization; G.2.3 [Mathematics of Comput-
ing]: Optimisation—Applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

General Terms
Algorithms, Performance, Economics, Experimentation, Se-
curity

Keywords
Statistical Disclosure Control, Cell Suppression Problem,
Genetic Algorithms, Mathematical Programming

1. INTRODUCTION
National Statistics Agencies publish useful statistical re-

ports relating to their nation, however they must ensure
that the confidentiality of those who contributed the data
to these reports is not compromised. Protecting this con-
fidentiality is known as Statistical Disclosure Control and
it contains many different methods. One of which is Cell
Suppression where table cells that break confidentiality are
suppressed (not published), these cells are referred to as pri-
mary suppressed cells. In order to guarantee their protection
other cells must be suppressed to create a suppression pat-
tern, these are referred to as secondary suppressed cells. The
problem of creating suppression patterns that both protect
all the primary suppressed cells and minimise the amount of
information that is lost (information loss) from the statisti-
cal table is known as the cell suppression problem. In the
ideal situation the statistical agency would be able to create
an optimal cell suppression pattern that not only suppresses
the minimum amount of information but also guarantees to
protect all confidential information in the statistical table for
any table size. This however has been shown to be NP-Hard
[13]. The use of non-mathematical programming techniques
is limited as they do not guarantee to adequately protect
the confidential information in the statistical table.

The protection of 2-dimensional statistical tables has been
well catered for. Fischetti and Salazar [8] and Castro [4]
developed a integer programming (IP) network flow model
that can optimally protect 2-dimensional non-hierarchical
tables with up to 500,000 cells and near optimally protect
2-dimensional hierarchical tables with up to 250,000 cells
(hierarchical tables contain sub-totals within the body of the
table - they have a far more complex structure). Protecting

1675

statistical tables with more than two dimensions has been
more problematic. An IP model initially proposed by Kelly
et al. [13] and reformulated by Fischetti and Salazar [8] has
been used to optimally protect 2+-dimensional hierarchical
tables with 10,000 cells however this technique can be un-
reliable due to the limitations of the mathematical solver.
A modular approach [6] that partitions tables prior to their
protection more reliably protects 2+-dimensional hierarchi-
cal tables with 10,000 cells but the price for doing this is
slight over-suppression.

1.1 The Incremental LP Model
Typically the statistical data that is collected is published

as 2-dimensional tables of aggregates, however these are
themselves generated from a multi-dimensional dataset. For
example the BRES reports published by the Office for Na-
tional Statistics (ONS) in the UK are published as a set of
2-dimensional statistical tables. However the source BRES
data, from which these tables are generated, is a 4-dimensional
hierarchical table of aggregates indexed by industry type
(SIC), geography, part/full-time employment and public/
private employment with over 1,000,000 cells. Therefore
any protection applied to these 2-dimensional tables indi-
vidually could be compromised by the fact the cells in the
tables are linked. Protecting the source data as one large
multi-dimensional table would guarantee protection but this
would be computationally difficult.

An incremental linear programming (LP) heuristic model
that protects cells one at a time was developed by Kelly et al
[13] and has been shown to reliably protect 2+-dimensional
hierarchical tables with up to 40,000 cells. This model how-
ever will not scale and over-suppresses, that is to say it
suppresses more cells than it needs to. Let us consider a
statistical table containing n cells each with a cell value ai

where i = 1, ..., n and m constraints that describe the rela-
tionships between the cells. The cell value ai is known to lie
within the bounds lbi to ubi and the lower and upper pro-
tection limits (lpli and upli) are provided by the National
Statistics Agency. In the incremental LP the relative lower
and upper bounds, LBi = ai − lbi and UBi = ubi − ai, are
used instead of lbi and ubi. The information loss associated
with suppressing a cell is given by wi, however ci is used in
this model where ci = 0 if cell i is already suppressed and
ci = wi if cell i is not suppressed. M is an array that asso-
ciates cell i with each constraint equation j (row or column),
j = 1, ..., m. If a cell i is in a constraint equation j then
Mij = 1, otherwise Mij = 0. The variables y−i and y+

i are
the lower and upper uncertainties provided by cell i. P is the
set of primary suppressed cells, these are the cells that must
be protected to guarantee confidentiality. For each p ∈ P
a suppression pattern that safeguards the upper and lower
protection levels is found. After the suppression pattern for
the upper protection level is found for p any cell i /∈ P that
has a value y−i + y+

i > 0 and ai > 0 has it’s weighting ci

set to 0. This procedure is also carried out for the lower
protection levels. After this process has been repeated for
all p the cells i /∈ P that have had their weightings ci set to
0 become the secondary suppressed cells.

This model solves the Cell Suppression Problem for each
primary suppressed cell in turn. Clark and Smith [5] found
that the order in which each primary suppressed cell was
protected significantly affected the quality of the suppres-
sion pattern produced. To overcome this problem they used

min
∑n

i=1 ci(y
+
i + y−i) (1)

subject to

M(y+ − y−) = 0 (2)

0 ≤ y+
i ≤ UBi for i = 1, ..., n (3)

0 ≤ y−i ≤ LBi for i = 1, ..., n (4)

for each p ∈ Pin turn :
upper protection level

y−p = 0 (5)

y+
p = uplp − ap (6)

lower protection level

y−p = ap − lplp (7)

y+
p = 0 (8)

Figure 1: The Incremental LP Model of Kelly et al
(1992) for the Cell Suppression Problem. This is
used as part of the fitness function.

a Genetic Algorithm (GA) to find a“best”permutation with
which to protect the primary suppressed cells using this
model. The fitness cost used by the GA is

∑n
i=1 ziwi where

zi = 1 if cell i is suppressed and 0 if it is not suppressed. wi

is the weighting given to the information loss should cell i be
suppressed. Which cells are suppressed is determined using
the incremental LP model which as Equation 1 shows neces-
sarily works by minimising a partial fraction (y+ and y− are
continuous variables) rather than the full amount since that
would present a non-linear problem. Therefore the fitness
function for the GA is the combination of the incremental
LP model followed by the cost calculation.

1.2 Improvements to Previously Reported GA
The decision of what values to assign to the parameters

that control a GA have a great impact on its performance.
The self-adaption of mutation parameters has been proved
successful in the continuous domain [3] [15] and for binary
combinatorial problems [2] [9] [14] [17]. Removing the need
for the GA user to find optimal settings for the mutation op-
erator and/or rate saves them a considerable amount time.
It can also reduce the risk of poor performance arising from
inappropriate settings when extensive operator tuning is not
possible or practical, and so can improve performance over a
wider range of problem instances. The GA associated with
this class of problem has many possible mutation operators
to choose from, each with an associated parameter. The
choice of mutation operator has previously been shown to
be critical and problem dependent [16]. The self-adaption
of mutation operator and/or rate has already been proved
successful for permutation representations [16]. An added
benefit of using self-adaptation is that it reduces the chances
that the GA will get stuck in a local optima. To demonstrate
this comparison of the performance of a GA that self-adapts

1676

the mutation operator and four that use the fixed mutation
operators, swap, insert, scramble and inversion [7], was car-
ried out. Fig. 2 shows the change in suppression pattern
costs as the genetic algorithms search for the ‘best’ suppres-
sion pattern for a 2-dimensional statistical table with one
hierarchical dimension and 748 cells of which 105 are pri-
mary suppressed cells.

Figure 2: Suppression pattern cost by the number
of calls to the fitness function for the five different
genetic algorithms.

Although the problem of over-suppression of the incre-
mental LP model can be reduced by the use of a GA the
problem of scalability remains. To protect a statistical table
using the incremental LP model two LPs need to be solved
for each primary cell, one to guarantee the fulfilment of the
lower protection level requirement and one to guarantee the
fulfilment of the upper protection level requirement. As the
size of the tables increases so does the number of primary
cells that need to be protected and hence so does the number
of LPs that need to be solved. Also as the table size grows
so too does the amount of time it takes to solve each of the
LPs. Hence, combining these two effects, we can see that the
time taken to run the incremental LP model grows polyno-
mially with the size of the table. It is this rapid growth in
execution time that limits the size of statistical table that
the incremental LP model can protect. This problem be-
comes so acute, as the tables become larger, that the only
way to protect them is to reformulate the model.

The purpose of this paper is to describe how the incre-
mental LP model was reformulated to allow it to protect
statistical tables with up to one million cells. Section 2 de-
scribes the experimental framework and datasets used for
this study. Section 3 describes the series of reformulations
that were applied to the incremental LP model to make it
applicable to solving real world problems. Section 4 contains
our conclusions and suggested future work.

2. METHODOLOGY
The algorithms developed in this paper were implemented

in the C++ language using the open source COIN-OR frame-
work and in particular the CLP solver [1]. Experiments were

run on a 2.33GHz PC running Windows XP. The datasets
used in this work, sections 3.1 to 3.6, were artificial multi-
dimensional statistical tables of varying size produced using
a dataset generator provided by ONS. In order to make these
datasets as realistic as possible the generator used a Poisson
distribution to assign the number of contributors to each
table cell and −1/ log r to generate each contributor’s con-
tribution, where r is a random number [0..1]. Other factors
like the proportion of zero valued cells and primary cells
were randomly assigned. Using the ONS dataset generator
allowed the large number of datasets required for statisti-
cal analysis to be created. It also removed the problem of
real datasets being allowed off-site. The comparison in sec-
tion 3.7 used datasets provided by ONS. The results from
these experiments were analysed using the statistical pack-
age SPSS. The Friedman’s ANOVA test has been used to
see if there is a significant difference in the performance of
the different algorithms. The Wilcoxon’s Signed Rank test
was used when a comparison of the performance of just two
of the algorithms was required.

3. REFORMULATING THE MODEL

3.1 Protect a Subset of the Primary Cells
It has long been anecdotally known that some primary

suppressed cells (P) are sufficiently protected by other pri-
mary suppressed cells in a statistical table prior to it being
protected and that they can therefore be removed from the
Cell Suppression Problem. The minimum set of primary
suppressed cells that need to be protected were identified
and named as initially exposed primary suppressed cells (I).
For practical reasons the set of candidate initially exposed
primary suppressed cells (K) are used instead of I, as they
easier to identify. As | I |≤| K |≤| P | is always true and
| I |¿| P | is often true (in practice we have examined ta-
bles with one million cells and |P | > 10, 000 but |K| = 0) it
is more efficient to protect K instead of P . By protecting
members of K instead of P the number of LPs that need
to be executed is reduced and this in turn allows statisti-
cal tables to be protected quicker and/or larger tables to be
protected.

3.2 Add Grouping to the Model
The incremental LP model protects candidate initially ex-

posed primary suppressed cells (K) one at a time and this
limits the size of the statistical table that can be protected
due to the number of LPs that need to be solved. This
limitation however can be reduced if instead of protecting
these cells one at a time they are protected in groups. To
protect these cells in groups the incremental LP model must
be reformulated. If G is the set of groups that partition
K and g ∈ G then all the cells in g must have their upper
protection levels protected together and their lower protec-
tion levels protected together. When grouping is applied to
the incremental LP model the grouped LP model shown in
Fig. 3 is obtained.

In order to place cells in K into groups the following rule
must be adhered to. Let P be the set of primary suppressed
cells and K be the set of candidate initially exposed primary
suppressed cells. Let J be the set of constraint equations
describing the rows and columns of a statistical table and
j ∈ J be the set of cells in a particular row or column j. Let
G be the set of groups that contain all the cells in K and

1677

min
∑n

i=1 ci(y
+
i + y−i) (9)

subject to

M(y+ − y−) = 0 (10)

0 ≤ y+
i ≤ UBi for i = 1, ..., n (11)

0 ≤ y−i ≤ LBi for i = 1, ..., n (12)

for each g ∈ G in turn :
upper protection level

y−p = 0 ∀p ∈ g (13)

y+
p ≥ uplp − ap ∀p ∈ g (14)

lower protection level

y−p ≥ ap − lplp ∀p ∈ g (15)

y+
p = 0 ∀p ∈ g (16)

Figure 3: The Grouped LP Model.

g ∈ G be a subset of K. Then to ensure that the upper pro-
tection levels can be satisfied without causing unnecessary
over-protection Equation 17 must be satisfied.

∑

i∈(j∩g)

(upli − ai) ≤
∑

i∈(j∩P)(upli − ai)

2
(17)

To ensure that the lower protection levels can be satisfied
without causing unnecessary over-protection Equation 18
must be satisfied.

∑

i∈(j∩g)

(ai − lpli) ≤
∑

i∈(j∩P)(ai − lpli)

2
(18)

Together Equation 17 and Equation 18 ensure that, when
there is more than one primary cell in a row or column,
only half or less of the uncertainty required to protect the
primary cells in that row or column can be attributed to a
given group. To ensure that there is no unnecessary over-
protection Equation 19 must be satisfied.

∀j ∈ J,∀g ∈ G · (| j ∩ g |≤ 1) ∨ (UR ∧ LR) (19)

Where UR is the upper protection rule given by Equation 17
and LR is the lower protection rule given by Equation 18.
Equation 19 ensures that each group, g, contains either zero
or one members of K from row or column j or only those
members of K (in j) whose required uncertainty can be offset
by the remaining members of P (in j) that are not in g.

The candidate initially exposed primary suppressed cells
(K) were placed in groups in increasing protection level or-
der as this has previously been shown to be a good order
when protecting cells one at a time [5]. Tests have shown
that for the smaller statistical tables (< 30, 000 cells) group-
ing the cells in K prior to protecting them did not necessar-
ily lead to lower cost suppression patterns as it reduces the
number of points on the fitness landscape. However for the
larger statistical tables grouping them prior to protecting

them is better than protecting them one at a time. This is
because as the size of the statistical table increases so does
the number of LP’s that need to be run to find the fitness of
a single permutation of the cells in K. Grouping limits the
number of LP’s required. A fixed number of groups mean a
fixed number of LP’s to find the fitness of each permutation.
This means that, in general, the fitness of each permutation
can be found quicker which means more permutations can
be examined in a given time (i.e. more searching of the fit-
ness landscape). It is the ability to search more of the fitness
landscape that gives grouping the advantage for statistical
tables with > 30, 000 cells.

3.3 Notes on Generalising and Landscapes
A common GA approach would be to use a rapid surro-

gate fitness function [12] or to use fitness inheritance [11]
[18]. However for the cell suppression problem these ap-
proaches can’t be used because of the problem of infeasibil-
ity. To guarantee feasible solutions a mathematical model
needs to be used and these common GA approaches do not
deal well with the constraints that form an integral part of
the mathematical model, so the computationally expensive
mathematical model must still form part of the fitness func-
tion. Therefore the solution used here is to reduce the size
of the fitness landscape. Obviously the way this is done is
important therefore the method chosen and described in 3.2
is designed to reduce over-protection and so ensure that the
set of points sampled by the grouping landscape is among
the better points on the full landscape.

The integer programming (IP) model for cell suppression
[13] “sees” the full landscape of 2n different suppression pat-
terns. If there are |P | primaries then the incremental version
of the IP (all incremental versions are greedy constructive
heuristic) samples |P |! of the solutions, there are no guar-
antees that this subset contains the global optimum. The
linear relaxation, incremental LP model, which is the one
used in this paper, also sees |P |! solutions but these may
not be the same subset as the incremental IP model. The
grouping function with |G| groups only samples |G|! points,
but these are still all within the original space. However
these may not be within either of the two subsets identi-
fied above. Also there are|G||P |/|G|! different groupings to
choose from. If we had time we could examine all of the
possible groupings, however this is unlikely and so we need
a principled way of sampling from these or of picking one
from these.

Grouping is definitely faster in searching the fitness land-
scape as evaluating each point on the landscape only re-
quires 2|G| LPs to be run rather than 2|P |. Without group-
ing there are more basins of attraction and therefore less
chance of sampling each in the initial population. Also on
average every step means sampling more points (since the
neighbourhoods are bigger) and more scope for the basins
to be deeper, so even if the initial population for the incre-
mental LP model had a point in the “optimal” basin it still
might not have time to reach the bottom. However there is a
trade-off between doing a better search in a smaller sample
versus the likelihood that the smaller sample will contain
“good” solutions. Equations 17 - 19 show the formulation of
fast grouping rules that ensure the grouping is in fact biased
away from poor solutions, therefore allowing a better search
of a smaller sample of “good” solutions.

1678

3.4 Using a Surrogate Fitness Function
We have seen that for larger statistical tables the lower

cost suppression patterns are achieved by protecting cells in
K in groups. Unfortunately this approach cannot be directly
applied to larger statistical tables, those with > 40, 000 cells.
The problem lies with the pre-processing stage that identi-
fies the members of K. Part of this pre-processing stage
requires the running of two linear programs for each of the
primary suppressed cells. To get around this problem a dif-
ferent subset of primary suppressed cells that we call Ku

are used, where Ku ⊆ K, these are the candidate initially
exposed primary suppressed cells that can be identified us-
ing an unpicking algorithm. As an unpicking algorithm does
not require the use of a mathematical solver it can handle
large statistical tables, for example it took only 42 seconds to
unpick a one million cell statistical table. Tests on a large
variety of statistical tables showed that in approximately
99% of cases K = Ku. In the cases where K was larger
than Ku it was so by, on average, only one or two primary
cells. Therefore the self-adaptive GA part of the algorithm
uses a surrogate fitness function which is the incremental LP
model modified to protect members of Ku in groups. Once
the ‘best’ permutation of the groups has been identified they
are again protected followed by protecting an extra set of
groups comprising the subset P \Ku, this final step ensures
that all primary suppressed cells are protected. Using this
approach 3-dimensional non-hierarchical tables with up to
209,300 cells and 3-dimensional hierarchical tables with up
to 142,200 cells were successfully protected.

3.5 Reducing the Number of Groups
An experiment was carried out to determine whether re-

ducing the number of groups that the primary cells are as-
signed to will allow larger tables to be protected. The al-
gorithm described in Section 3.4 was modified to put the
primary cells in Ku into two groups and to give it a larger
time limit of 50 hours. This algorithm was then used to pro-
tect four different 3-dimensional non-hierarchical statistical
tables, each with approximately 250,000 cells, see Table 1.

Dimensions (incl. Number of Number of Size of
margin totals) Cells Primary Cells Ku

100 × 33 × 78 257,400 44,617 960
100 × 25 × 96 240,000 59,853 1,135
100 × 73 × 35 255,500 24,981 1,797
100 × 66 × 38 250,800 86,250 403

Table 1: The four statistical tables with approxi-
mately 250,000 cells.

Due to the grouping rules the cells in Ku were placed
into three groups for two of the tables and four groups for
two of the tables. Each of the four tables were successfully
protected, however the algorithm over-ran its allotted time
of 50 hours. During a run time of approximately 120 hours
16 calls were made to the fitness function meaning that it
took approximately 7.5 hours to protect each permutation
of groups for each statistical table. This has shown that
reducing the number of groups that the primary cells are
assigned to does allow larger tables to be protected. However
the time taken to protect these tables is excessive and the

benefits of landscape search and self-adaption have been lost.
To get around this problem further time saving is required.

As part of our pre-processing an ‘unpicker’ algorithm is
used to find exposed primary cells, Eu. For the four statisti-
cal tables shown in Table 1 the number of primary cells that
failed the lower protection level requirement only, upper pro-
tection level requirement only and both were recorded, see
Table 2. From Table 2 we can see that most of the exposed

Dimensions Lower Upper Both
(incl. margin totals) only only

100 × 33 × 78 0 887 76
100 × 25 × 96 0 1,086 51
100 × 73 × 35 7 1,070 733
100 × 66 × 38 0 403 0

Table 2: Number of primary cells failing protection.

cells, Eu, failed the upper protection level requirement. Of
those members of Eu that failed the lower protection level
requirement the vast majority also failed the upper protec-
tion level requirement. If, in the surrogate function, we only
protected those members of Eu that failed the upper pro-
tection level requirement then many of the members of Eu

that failed the lower protection level requirement would also
be protected. This would still leave many of the statisti-
cal table’s under-protected, but as this is a surrogate fitness
function it is only the rank order that is of concern. Once
the ‘best’ order has been found full protection is then ap-
plied to the statistical table as before. This modification to
the surrogate fitness function greatly reduces the number of
LPs that need to be solved and hence significantly reduces
the time required to protect the tables.

To find the ‘best’ permutation we currently run a GA
with a pool size of ten. However when there are three or
less groups it is more efficient to examine all permutations
of the groups of cells in Ku. Therefore to find the ‘best’
permutation this strategy is now followed. The combina-
tion of these changes reduced the time required to protect
the four statistical tables containing approximately 250,000
cells to approximately 60 hours and it allowed for the pro-
tection of much larger tables. The reformulated model was
used to protect a range of larger and more complex statis-
tical tables. The size, dimensions and the number of pri-
mary cells has been recorded in Table 3. The largest table
protected was a 3-dimensional non-hierarchical table with
one million cells. The largest 3-dimensional hierarchical ta-
ble that was successfully protected had 532,400 cells. The
largest 4-dimensional non-hierarchical table that was suc-
cessfully protected had 264,600 cells. As the table complex-
ity increases then the size of the table that can be protected
decreases.

3.6 Speeding up the Model
There are circumstances in which we know that margin

totals (and sub-totals) in a published statistical table will
always need to be suppressed. For constraint equations that
contain at least one primary suppressed cell and have a mar-
gin total (or sub-total) that is not a primary suppressed cell.
Let J be the set of cells in a constraint equation and xi be
the nominal value of each of the cells in J . Let m be the
margin total or sub-total in J . Let p be the primary cell

1679

Dimensions Number of Number of
(including margin totals) Cells Primary Cells

51(H) × 77(H) × 40 157,080 16,224
88(H) × 50 × 40 176,000 24,076
100 × 66 × 38 250,800 86,250

21 × 35 × 60 × 6 264,600 44,934
489 × 1026 501,714 68,445
243 × 2132 518,076 109,855

100 × 242(H) × 22(H) 532,400 59,416
100 × 56 × 97 543,200 164,239
90 × 90 × 90 729,000 164,927

100 × 100 × 100 1,000,000 227,590

Table 3: The statistical tables with up to one million
cells. (H) indicates that the dimension is hierarchi-
cal.

with the largest value of max(lplp, uplp) in the set J \ m,
where lplp is the lower protection level and uplp is the up-
per protection level for cell p. Then m must be suppressed
if Equation 20 is true.

(xm < xp + lplp) or (xm < xp + uplp) (20)

This test provides an easy means of finding margin totals
(or sub-totals) that must be suppressed in a published sta-
tistical table. These preselected margin totals are temporar-
ily treated as primary suppressed cells. Calculating the re-
quired upper protection limit for these preselected margin
totals however would allow a check to be carried out to see
if the grand margin total needs to be suppressed. This would
apply also to the suppression of grand sub-totals. The re-
quired lower and upper protection levels are calculated as
follows.

lplm = lplp −
∑

i∈J\p\m

xi (21)

uplm = uplp −
∑

i∈J\p\m

xi (22)

Where J is the set of cells in a constraint equation, xi is
the nominal value of each of the cells in J , m is the margin
total or sub-total in J , p is the primary cell with the largest
value of max(lplp, uplp) in the set J \ m, lplp is the lower
protection level and uplp is the upper protection level for
cell p. This process can be repeated until no new cells can
be suppressed. The newly suppressed margin totals are then
turned back into ordinary cells but their cell weightings, wi,
are reduced to zero ensuring that they will be selected as
secondary suppressed cells when the table is protected. It is
this modified statistical table that is then protected. If the
cells were left as primary cells then testing has shown that
this would increase the execution time of the LPs.

Similarly it is also possible to preselect some cells with
large values to be secondary suppressed cells. Again imagine
a constraint equation with at least one primary cell that
requires a large protection level and an unsuppressed margin
total, in such a case though the margin total does not need
to be suppressed. Let p be the primary cell with the largest
value of max(lplp, uplp) and m the margin total. The largest
non-primary, n, needs to be suppressed if Equation 23 is

true.

(xm − xn < xp + lplp) or (xm − xn < xp + uplp) (23)

Up until now grouping has mainly been based on the size
of the protection level requirement of the cells being placed
into the groups, primary cells with small protection level
requirements being grouped together and primary cells with
large protection level requirements being grouped together.
However a better suppression pattern may be generated if
cells in the same row/column are protected together, where
possible primary cells in the same row/column will be placed
in the same group.

The pre-selection of secondary cells and grouping changes
to the model were tested against twenty three statistical
tables with between 40,000 and 260,000 cells, the results are
shown in Table 4. Each algorithm attempted to place all
the members of Ku into just two groups. Each algorithm
was given a maximum of 50 hours (180,000 seconds) to run
although it was allowed to over-run if initialling the parent
pool took longer.

Statistical testing showed no significant difference in the
suppression pattern costs. This was unexpected as it was
thought that grouping cells by row/column would lead to
lower cost suppression patterns. However it did identify
a significant difference in the time taken to find the ‘best’
suppression pattern. In particular the combinations that
grouped cells by row/column on average found the ‘best’
suppression pattern fastest, on average finding it 10.61%
faster than the equivalent algorithm that grouped cells by
the size of their required protection levels. This speed up
was due to grouping by row/column producing fewer groups
than grouping by required protection levels. This in turn
meant that less LPs needed to be solved to find the ‘best’
suppression pattern. Statistical tests showed that grouping
by row/column was on average quicker than grouping by the
size of the cells required protection levels (95% confidence
when only the margin total was preselected and 95.4% when
both the margin total and large cell values were preselected).
Hence grouping by row/column should always be used. The
pre-selection of margin totals for secondary suppression was
found to shorten the time taken to find the ‘best’ suppres-
sion pattern by 1.25%. Similarly the pre-selection of the
large valued cells shortened the time by a further 1.38%.
Of the forty six comparisons between the times taken to
find the ‘best’ suppression patterns, thirty four were quicker
when both the margin totals and large valued cells were
preselected and twelve when the margin totals only were
preselected. Hence, with 99.4% confidence, pre-selection of
both the margin totals and large valued cells for secondary
suppression should be used to speed up the algorithm.

3.7 A Comparison With Other Algorithms
The performance of the algorithm was compared against

that of Hypercube, Modular, Optimal and Marginal which
form part of the statistical disclosure control tool, τ -Argus
[10]. Each algorithm was used to protect thirty non-hierarchical
2-dimensional magnitude statistical tables provided by ONS.

The algorithm and Marginal protected all thirty tables,
Hypercube ten, Modular twelve and Optimal two. The
difference between the suppression pattern costs found by
the algorithm and Modular were not statistically significant.
The algorithm was significantly better than Hypercube and
Marginal.

1680

4. CONCLUSIONS AND FUTURE WORK
The hybrid algorithm developed by Clark and Smith [5]

used the incremental LP model as the fitness function for
a GA. This reduced the problem of over-suppression of the
incremental LP model however it did not improve its scal-
ability. In this paper a series of reformulations have been
reported that have allowed the algorithm to successfully pro-
tect statistical tables with up to one million cells. This refor-
mulated model is currently being tested on the BRES data
described in Section 1. Further improvements in the time
required to protect the tables can easily be achieved by using
a commercial mathematical solver and a faster PC. However
to protect still larger tables will require further reformula-
tion.

Future improvements to this algorithm are likely to come
from improving the GAs ability to search the fitness land-
scape and further reducing the time taken to run the fit-
ness function i.e. the reformulated incremental LP model
(grouped LP model). Improvements to the GA may come
by better tuning it to this particular problem. Though the
choice of mutation operator and rate are selected via self-
adaption no effort has been put into selecting the ‘best’
crossover operator. Future work may include the tuning of
this and other GA parameters. Future work on the grouped
LP model should further reduce its over-suppression and
the time it takes to execute. Reducing its time to execute
will allow for a more thorough search of the fitness land-
scape which in turn should lead to lower cost suppression
patterns. Useful knowledge may be gained by examining all
the permutations of the groups and it may be productive to
consider using a GA to do the grouping.

The datasets used in this paper will be made available for
download from http://www.cems.uwe.ac.uk/
∼jsmith/Statistical Disclosure Control.html.

5. ACKNOWLEDGMENTS
This work was funded by the Office of National Statistics

(ONS) and the EPSRC Maths CASE project 019/007. The
authors wish to thank colleagues at ONS for their useful
insights.

6. REFERENCES
[1] Computational infrastructure for operations research,

2006. www.coin-or.org.

[2] T. Bäck. Self adaptation in genetic algorithms. In
F. Varela and P. Bourgine, editors, Toward a Practice
of Autonomous Systems: Proceedings of the 1st
European Conference on Artificial Life, pages 263–271.
MIT Press, Cambridge, MA, 1992.

[3] H.-G. Beyer. The Theory of Evolution Strategies.
Springer, Berlin, Heidelberg, New York, 2001.

[4] J. Castro. Network flows heuristics for complementary
cell suppression: An empirical evaluation and
extensions. In J. Domingo-Ferrer, editor, Inference
Control in Statistical Databases, volume 2316 of
Lecture Notes in Computer Science, pages 59–73.
Springer, 2002.

[5] A. Clark and J. Smith. Improvements to cell
suppression in statistical disclosure control. Technical
report, University of the West of England, 2006.
End-of-Project Report for the Office for National
Statistics (ONS).

[6] P.-P. de Wolf. Hitas: A heuristic approach to cell
suppression in hierarchical tables. In
J. Domingo-Ferrer, editor, Inference Control in
Statistical Databases, volume 2316 of Lecture Notes in
Computer Science, pages 81–98. Springer Berlin /
Heidelberg, 2002.

[7] A. Eiben and J. Smith. Introduction to Evolutionary
Computation. Springer, 2003.

[8] M. Fischetti and J. Salazar-González. Models and
algorithms for the 2-dimensional cell suppression
problem in statistical disclosure control. Mathematical
Programming, 84(2):283–312, 1999.

[9] M. Glickman and K. Sycara. Reasons for premature
convergence of self-adaptating mutation rates. In 2000
Congress on Evolutionary Computation (CEC’2000),
pages 62–69. IEEE Press, Piscataway, NJ, 2000.

[10] A. Hundpool. τ -argus statistical disclosure control
software, 2004. http://neon.vb.cbs.nl/CASC/tau.html.

[11] J. hung Chen, D. E. Goldberg, S. ying Ho, and
K. Sastry. Fitness inheritance in multiobjective
optimization. 2002.

[12] Y. Jin. A comprehensive survey of fitness
approximation in evolutionary computation. Soft
Computing-A Fusion of Foundations, Methodologies
and Applications, 9(1):3–12, 2005.

[13] J. Kelly, B. Golden, and A. Assad. Cell suppression:
Disclosure protection for sensitive tabular data.
Networks, 22(4):397–417, 1992.

[14] M. Preuss and T. Bartz-Beielstein. Sequential
parameter optimisation applied to self-adaptation for
binary-coded evolutionary algorithms. In L. et al,
editor, Parameter Setting in Evolutionary Algorithms,
pages 91–120. Springer, 2007.

[15] H.-P. Schwefel. Numerical Optimisation of Computer
Models. Wiley, New York, 1981.

[16] M. Serpell and J. Smith. Self-adaption of mutation
operator and probability for permutation
representations in genetic algorithms. Evolutionary
Computation, 18(3):491–514, 2010.

[17] J. Smith and T. Fogarty. Self adaptation of mutation
rates in a steady state genetic algorithm. In
Proceedings of the 1996 IEEE Conference on
Evolutionary Computation, pages 318–323. IEEE
Press, Piscataway, NJ, 1996.

[18] R. E. Smith, B. A. Dike, and S. A. Stegmann. Fitness
inheritance in genetic algorithms. In Proceedings of the
1995 ACM symposium on Applied computing, SAC
’95, pages 345–350, New York, NY, USA, 1995. ACM.

1681

Table 4a: Suppression Pattern Costs (primary + secondary costs)
Dimensions Order by Increasing Protection Level Order by Row/Column
(including No Marginals Marginals Marginals Marginals

margin totals) pre-selection Only and Large Only and Large
100 × 112(H) × 4 (44,800 cells) 14,200,364 14,634,496 13,347,366 13,002,724 13,719,646

100 × 27 × 18 (48,600 cells) 1,206,282 890,307 888,160 817,250 820,074
100 × 21 × 24 (50,400 cells) 1,004,490 1,066,570 1,095,378 978,857 1,011,579

100 × 5 × 106(H) (53,000 cells) 10,514,077 8,076,508 9,254,447 9,707,584 9,721,753
100 × 7 × 83 (58,100 cells) 1,153,866 1,124,224 1,071,203 1,003,650 1,118,858
100 × 20 × 31 (62,000 cells) 509,375 403,207 401,323 489,424 488,345

100 × 6 × 112(H) (67,200 cells) 8,664,779 9,490,609 8,846,818 9,189,121 9,475,840
100 × 20 × 36 (72,000 cells) 524,462 457,476 450,346 498,571 494,505
100 × 76 × 10 (76,000 cells) 2,233,823 1,776,019 1,770,470 1,775,372 1,752,982

100 × 4 × 212(H) (84,800 cells) 4,286,570 2,919,503 5,463,395 7,186,450 6,724,912
100 × 85 × 10 (85,000 cells) 965,846 1,027,987 1,131,146 924,343 980,024

100 × 11 × 90(H) (99,000 cells) 1,130,691 1,100,494 1,046,512 875,815 1,062,524
50 × 50 × 40 (100,000 cells) 545,253 464,305 499,235 467,139 480,445
50 × 50 × 40 (100,000 cells) 398,934 402,845 443,264 406,300 368,961
100 × 43 × 27 (116,100 cells) 681,301 729,314 629,563 635,362 662,598

100 × 158(H) × 9 (142,200 cells) 3,013,141 6,508,584 4,245,042 5,646,202 3,795,041
100 × 30 × 51 (153,000 cells) 1,473,847 1,197,542 1,242,531 1,222,712 1,176,491
100 × 91 × 23 (209,300 cells) 1,311,253 1,336,358 1,283,137 1,477,550 1,440,611
100 × 25 × 96 (240,000 cells) 1,205,047 905,265 938,788 816,237 791,300
100 × 66 × 38 (250,800 cells) 4,020,419 4,885,828 2,605,882 5,152,570 4,211,123
100 × 55 × 46 (253,000 cells) 685,567 622,599 628,427 597,919 628,164
100 × 73 × 35 (255,500 cells) 1,313,824 893,249 889,924 1,007,851 1,001,572
100 × 33 × 78 (257,400 cells) 1,153,866 1,124,224 1,071,203 1,003,650 1,118,858

Table 4b: CPU Time (seconds)
Dimensions Order by Increasing Protection Level Order by Row/Column
including No Marginals Marginals Marginals Marginals

margin totals pre-selection Only and Large Only and Large
100 × 112H × 4 (44,800 cells) 23,326 19,945 23,606 37,621 32,963
100 × 27 × 18 (48,600 cells) 75,632 69,084 68,747 81,112 78,299
100 × 21 × 24 (50,400 cells) 429,165 421,867 408,658 185,883 176,021

100 × 5 × 106H (53,000 cells) 142,507 138,645 133,836 128,252 120,023
100 × 7 × 83 (58,100 cells) 337,506 327,831 286,579 339,577 327,393
100 × 20 × 31 (62,000 cells) 24,365 25,349 26,626 25,026 21,051

100 × 6 × 112H (67,200 cells) 59,645 58,268 56,660 50,280 71,035
100 × 20 × 36 (72,000 cells) 51,829 49,626 48,671 38,253 40,255
100 × 76 × 10 (76,000 cells) 22,860 21,277 20,184 20,752 25,259

100 × 4 × 212H (84,800 cells) 24,338 17,014 16,194 21,479 19,499
100 × 85 × 10 (85,000 cells) 79,644 113,044 101,082 91,298 95,935

100 × 11 × 90H (99,000 cells) 526,959 554,947 553,654 180,708 167,982
50 × 50 × 40 (100,000 cells) 128,930 130,230 128,637 67,651 65,174
50 × 50 × 40 (100,000 cells) 64,839 60,923 58,627 62,985 62,547
100 × 43 × 27 (116,100 cells) 187,156 191,088 192,511 190,340 194,431

100 × 158H × 9 (142,200 cells) 32,985 41,040 37,721 37,426 32,274
100 × 30 × 51 (153,000 cells) 626,596 575,495 510,073 182,036 191,359
100 × 91 × 23 (209,300 cells) 9,384 8,796 9,964 10,833 7,609
100 × 25 × 96 (240,000 cells) 326,008 303,999 252,491 207,350 195,656
100 × 66 × 38 (250,800 cells) 14,286 16,901 20,049 13,195 18,869
100 × 55 × 46 (253,000 cells) 153,074 131,129 118,503 111,759 86,965
100 × 73 × 35 (255,500 cells) 45,805 41,678 41,086 40,967 39,407
100 × 33 × 78 (257,400 cells) 337,506 327,831 286,579 339,577 327,393

Table 4: The suppression pattern costs (primary + secondary costs) and the required CPU time (seconds)
for different combinations of grouping and pre-selection of secondary cells. H indicates that the dimension is
hierarchical. These values are for a single run. The lowest values are highlighted in bold.

1682

