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ABSTRACT 
In this article we propose to couple reputation systems for wireless 
sensor networks with a genetic algorithm in order to improve their 
time of response to adversarial activities. The reputation of each node 
is assigned by an unsupervised genetic algorithm trained for detecting 
outliers in the data. The response of the system consists in assigning 
low reputation values to the compromised nodes cutting them off 
from the rest of the network. The genetic algorithm uses the feature 
extraction process that does not capture the properties of the attacks, 
but rather relies on the existing temporal and spatial redundancy in 
sensor networks and tries to detect temporal and spatial 
inconsistencies in the sequences of sensed values and the routing 
paths used to forward these values to the base station. This solution 
offers many benefits: scalable solution, fast response to thwart 
activities, ability to detect unknown attacks, high adaptability, and 
high ability in detecting and confining attacks. Comparing to the 
standard clustering algorithms, the benefit of this one is that it is not 
necessary to assign the number of clusters from the beginning. The 
solution is also robust to both parameter changes and the presence of 
large amounts of malicious data in the training and testing datasets.   

Categories and Subject Descriptors 
C.2.0 [Computer Communication Networks]: General – Security 
and Protection; C.2.1 [Computer Communication Networks]:  
Network Communication and Design – Wireless Communication; 
I.2.6 [Artificial Intelligence]: Learning; I.5.3 [Pattern 
Recognition]: Clustering 

General Terms 
Algorithms, Performance, Design, Reliability, Experimentation, 
Security. 

Keywords 
Wireless sensor networks; reputation system; unsupervised genetic 
algorithm. 

1. INTRODUCTION 
Technological advances achieved in the previous decade have paved 
the way for the development and deployment of wireless sensor 

networks (WSN). Their development was mainly motivated by 
military applications, but over the years their deployment has been 
introduced to other areas, i.e. control and monitoring in industry, 
environment, health, etc. 

WSNs consist of a huge number of sensor nodes. For this reason, 
the nodes have to be very cheap, so they exhibit very limited power 
and computational resources, small memory size and low bandwidth 
usage. The nodes within a WSN are densely deployed in the area or 
the phenomenon to be observed, thus providing high level of 
redundancy, which can serve as a way to discriminate the erroneous 
nodes. Furthermore, WSNs are often deployed in unattended or 
even hostile environments, making their securing even more 
challenging. However, due to the limited resource, the 
implementation of complicated security techniques is impossible. 
For all these reasons, the security of these networks is very weak.  

The usage of reputation systems has been proposed as a feedback 
mechanism in order to take advantage of the existing spatial and 
temporal redundancy and thus discard faulty or manipulated data 
[1]. Since the collective opinion in a community determines an 
object's reputation score, reputation systems represent a form of 
collaborative sanctioning and praising. A low score represents the 
collaborative sanctioning of an object that the community perceives 
as having or providing low quality, and vice versa. Reputation 
scores change dynamically as a function of incoming ratings. A high 
score can quickly be lost if rating entities start providing negative 
ratings, just as it is possible for an object with a low score to recover 
and regain a high score.  

Extensive research has been done on modeling and managing 
trust and reputation. It has been demonstrated that rating trust and 
reputation of individual nodes is an effective approach in 
distributed environments to improve security, support decision-
making and promote node collaboration. To enhance the security 
of reputation systems, a set of unsupervised learning algorithms 
[2] has been proposed to detect statistical anomalies in the 
environment, and to feed refined trust information back to the 
reputation systems [3]. The main idea is to detect attacks in their 
early stages, and in this way enhance the response time of 
reputation systems. In this work we present in more detail 
unsupervised genetic algorithm (GA) used to this end. Previous 
solutions, such as SOM [3], have an important drawback, which is 
the need to set the number of clusters from the beginning, when 
we do not know its optimal value. SOMs are also highly sensitive 
to both parameter changing and the level of presence of malicious 
data during the training. In order to overcome these issues, we 
propose a GA that in essence searches for an optimal clustering, 
thus the number of clusters does not have to be set from the 
beginning. GAs are also known for their robustness. 
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The rest of the work is organized as follows. Section 2 provides an 
overview on the existing solutions. Section 3 details the proposed 
solution, while Section 4 presents developed GA. The approach is 
evaluated in Section 5, and conclusions are drawn in Section 6. 

2. DECISION FRAMEWORK BASED ON 
TRUST AND REPUTATION 
Trust and reputation have recently been suggested as an effective 
security mechanism for open and distributed environments (Ad Hoc 
networks [4], WSNs [3, 4], P2P networks [5], etc.). In essence, the 
nodes that do not behave properly (according to the established 
policy of “proper” behavior) will have low reputation, so the rest of 
the nodes will avoid any collaboration with them, which is 
equivalent to its isolation from the network. There are many 
different definitions of trust and reputation, but in essence trust is a 
belief about future behavior that one node holds in others and it is 
based on its own experience, thus its main characteristic is 
subjectivity. On the other hand, reputation is considered to be the 
global perception of the behavior of a node based on the trust that 
others hold in it, thus considered to be objective [4]. Alternatives to 
reputation systems can be incentive systems [6], where it is 
advantageous for the nodes to act in a way that the resulting global 
welfare is optimal.  

Regarding the detection and protection from attacks, our idea is to 
avoid cryptography [7], as due to open environment in WSNs side-
channel attacks [8] that can be used to guess the secret keys become 
an important threat. We also want to avoid detection using 
information such as location [9] that can easily be forged. 

On the other hand, machine learning is very convenient in the 
situations where we have to deal with noisy and incomplete 
information, and when the requirements are often fuzzy and 
incomplete, such as in security. Furthermore, its advantages when 
used in network security [10, 11] are already proven. However, 
instead of learning typical behavior of attacks [13], which can help 
us only in detecting known attacks, or learning signatures of normal 
data [12] whose number if huge, we base our approach on the 
detection of outliers and characterize sensor outputs and routing 
paths using their temporal and spatial sequences. Furthermore, we 
do not have to label clusters [10] as normal or anomalous. This 
permits us to avoid pre-processing the training data, and also 
provides the possibility to detect unknown attacks. 

We further propose to couple a reputation system with a genetic 
algorithm for detecting intrusions, where the reputation values are 
based upon the decision made by GA without using second-hand 
information. Reputation takes values from 0 to 1, 0 standing for no 
trust in the entity and 1 for the absolute trust. In essence, GA 
examines temporal and spatial coherence of the nodes, i.e. detects 
sharp changes that should not occur during the normal processing, 
and decreases the reputation values of nodes that exhibit suspicious 
behavior. In this way, the reaction of the intrusion detection system 
consists in assigning low reputation to suspicious nodes which cuts 
them off from the rest of the network, as rest of the nodes will avoid 
any kind of interaction with low-reputation nodes. Regarding 
redemption and secondary response, we adopt the following idea: as 
soon as a node exhibits suspicious behavior, its reputation is rapidly 
decreased; on the other hand, if a malicious node starts behaving 
properly, its reputation increases for small amounts until it has been 
behaving properly for sufficient period of time. This serves as a sort 
of protection from selective behavior, since the nodes have to 
behave properly most of the time in order to be considered as good. 

Our approach offers many advantages. Since it does not use 
reputation information from other nodes, it is resilient to bad-
mouthing attack which is one of the main vulnerabilities of standard 
reputation systems. Furthermore, it confines attacked nodes faster 
while relying on much lower node redundancy than standard 
reputation systems [3]. 

3. PROPOSED SOLUTION 
3.1 Envisioned WSN Model 
We envision WSNs (Fig.1) where most of the sensors exhibit 
limited resources, but there are also a number of PDA-like sensors 
with more resources (comparable to the resources of a PDA). Their 
number is significantly smaller than the number of the “normal” 
sensors, at least an order of magnitude smaller. There is at least one 
base station. The nodes can organize themselves either in a 
hierarchical or flat manner. Nodes can be fixed or mobile, although 
it is assumed that the majority of the nodes are fixed.  

 

Figure 1. WSN Model 

3.2 Attack Assumptions 
In order to provide uninterrupted network operation, core network 
protocols (aggregation, routing and time synchronization) have to be 
secured. Regarding the attacks on the aggregation protocol [14], we 
assume that they demonstrate themselves in skewed aggregated 
values, which can be the result of either a number of skewed sensed 
values, or a compromised aggregated node. The assumption is very 
reasonable, having in mind that the main objective of these attacks 
is to provide wrong picture of the observed phenomenon. 

On the other hand, in time critical systems it is mandatory to receive 
information within certain time window. If the attacker manages to 
introduce delays or desynchronize clock signal in various nodes, the 
received critical information will not be up to date, which can 
destabilize the system. Also, if the received information is not up to 
date, the aggregated value will be skewed, as it will also be out of 
date. For these reasons, and given the existing redundancy in WSNs, 
we believe that these attacks can be detected as temporal and/or 
spatial inconsistencies of sensed values. 

Regarding attacks on routing protocols [14], we assume that they 
will introduce new and different paths than those that have been 
seen before. Here we have attacks whose main objective is to 
compromise the routing protocol, and they usually do it by spoofing 
or altering the data stored in the routing tables of the nodes. In this 
way, the resulting routing paths will be different from those used in 
a normal situation. In the case of wormhole for example, two nodes 
that are not within each other’s radio range result in consecutive 
routing hops in routing paths, which is not possible in a normal 
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situation. Thus, the assumption about the attacks resulting in routing 
paths different from those that appear in normal situation is 
reasonable. In this case we want to detect temporal inconsistencies 
in paths used by each node. 

3.3 Feature Extraction and Formation of 
Model 
The main idea of our work is to find temporal and/or spatial 
inconsistencies in the sequences of sensed values and routing paths, 
as it is very probable that it will be the result of an attack on the core 
network protocols. Thus, we want to provide the model of the data 
that would capture these properties and map it to a vector space, 
which would allow us to deploy machine learning. 

For the case of sensed values, we follow the idea of n-grams [15]. 
We will illustrate this with a short example for a sensor that detects 
presence. Let the sensor give the following output during the time 
window of size 20: 1 1 1 1 0 0 0 0 0  0 1 1 1 1 1 1 0 0 0 0. If we fix 
the n-gram size on 3, we extract all the sequences of size 3 each 
time moving one position forward. In this way we can observe the 
following sequences and the number of their occurrences within the 
time window: 111 – occurs 6 times, 110 – 2, 100 – 2, 000 – 6, 001 – 
1, 011 – 1. Thus, we can assign them the following sequences: 111 – 
0.33, 110 – 0.11, 100 – 0.11, 000 – 0.33, 001 – 0.06, 011 – 0.06. In 
our model, the sequences are the features and their frequencies are 
the corresponding feature values. Thus, the sum of the feature 
values is always equal to 1. In our algorithm this characterization is 
performed in predefined moments of time and takes the established 
amount of previous data, e.g. we can perform the characterization 
after every 20 time periods based on previous 40 values.  

In a similar fashion, we form features for spatial characterization. 
The first step is to establish vicinities of nodes that historically have 
been giving consistent information. Furthermore, since an agent 
resides on a node, all the nodes from its vicinity lie in its radio 
range. In this way, an n-gram for spatial characterization in a 
moment of time is made of the sensor outputs from that very 
moment. For example, if sensors S1, S2, S3 that belong to the same 
group each give the following output: 1 1 1 0 during four time 
epochs, we characterize them with the following set of n-grams 
(each n-gram contains at the first position the value of S1, the value 
of S2 at the second and the value of S3 at the third at a certain time 
epoch): 111 – occurs 3 times, 000 – occurs once, thus the feature 
value of each n-gram is: 111 – 0.75, 000 – 0.25, i.e. the frequencies 
within the observed period of time. 

The same principle is followed for characterizing routes that a node 
has been using to send its sensed data to the sink. Each routing hop 
adds its ID to the message that is further forwarded, so the sink has 
the information about the routing path together with the message. 
Each sensor has its own model and each feature, i.e. n-gram in the 
model consists of a predefined number of successive hops used in 
routing information coming from the node. For example, if during 
the characterization time, the node has used the following paths for 
routing its data to the sink: A-B-C-S – 3 times, A-D-E-F-S – 2 
times, A-B-E-F-S – 1 time (A – the node that is sending the data, B, 
C, … - other nodes in the network, S- sink), we can characterize the 
routing with the following n-grams (n=3): ABC, BCS, ADE, DEF, 
EFS, ABE and BEF. In all of the routes, the n-gram ABC occurs 3 
times, BCS – 3, ADE – 2, DEF - 2, EFS – 3, ABE – 1, BEF – 1. The 
total number of n-grams is 15, so dividing the values given above 
with 15, we get the frequencies of each n-gram which are the values 
that we assign to our features, i.e. n-grams. 

3.3.1 Deployed Distance Function 
Since some of the n-grams can appear more than once, it is obvious 
that the extracted vectors will not be of constant size. Thus, we 
cannot use standard distance functions. The distance between the 
instances of the presented model is taken from [15]. It is designed to 
calculate the distance between two sequences. We have elected this 
one (among all given in [15]) since it is proven to be the most 
efficient in the terms of the absolute execution time.  

The deployed distance function is actually equivalent to Manhattan 
distance after making the following assumption: the feature that 
does not exist in the first vector while exists in the second (and vice 
versa) actually exists with the value equal to 0, since we can say that 
it occurs with 0 frequency. In this way, we get two vectors of the 
same size and the distance between the centre and an input is 
between 0 (the vectors have the same features with the same feature 
values) and 2 (the vectors have different features with the values 
greater than 0). In the same way, if the set of the features of one is 
the subset of the feature set of the other, the distance will be 
between 0 and 1. 

3.4 Scope of the Attacks Possible to Detect with 
the Approach 
As previously mentioned we treat attacks as data outliers and deploy 
clustering techniques for attack detection. In this work we will 
present the unsupervised GA designed to this end. There are two 
possible approaches for detecting outliers using clustering 
techniques [16] depending on the following two possibilities: 
detecting outlying clusters or detecting outlying data that belong to 
non-outlying clusters. For the first case, we calculate the average 
distance of each node to the rest of the nodes (or its closest 
neighborhood) (MD). In the latter case, we calculate quantization 
error (QE) of each input as the distance from its group center. 

The attacks that can be detected with the proposed approach are 
those that introduce changes into either the sensed value that is 
forwarded to the base station or the routing paths. These changes 
will result in different distribution of the extracted n-grams. 
However, if we take frequencies as feature values, the sum of the 
feature values remain the same, i.e. 1, so the following is valid: 

                                           



N

i
if

0

0         (1) 

where N is the total number of the extracted n-grams and Δfi is the 
change of the feature value of the n-gram i. On the other hand, 
according to the distance function, the introduced change in distance 
between the attacked instance and any other is: 

                                         



N

i
ifD

1

        (2) 

In essence, this is the change introduced in the above defined QE 
or/and MD values. Thus, the following inequality defines the 
changes introduced by the attacks: 

          
th

N

i
i ff 

1

        (3) 

where fth is the threshold value used to distinguish attacks from 
normal situations. 

Now we will see how the changes introduced by the attacker affect 
on the feature values. Having in mind that each sensed value or a 
routing hop participates in n features, where n is the size of the n-
gram, if the attacker changes one value, the values of 2n (at most) 
features will be changed, as the values of n new n-grams created 
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with the change will increase, while the values of those that existed 
before the change will decrease.  

For these reasons, if the attacker introduces Nerr change in the 
sample of the size Nsample, the value of ΔD will range between 0 (in 
the case the changes are symmetric, so the effect of one change 
cancels the effect of another and the distribution does not change at 
the end), and the value that corresponds to the case when the effects 
of each change sum given with the following formula:  

                                 

sample

err
err N

nN
fn

2
*2           (4) 

Having in mind the correlation of the n-grams, this value has to be 
pondered with  e1 , where  11  and ρ is the coefficient of 

total correlation between the n-grams. Finally, we get the following 
formula: 
                                   th

sample

err f
N

nN
e 

2
1           (5) 

We take fth to be 1 for the following reasons. Having in mind that 
the attacks will often result in creating new n-grams, it is reasonable 
to assume that the extracted vector in the presence of attackers will 
not be a subset of any vector extracted in normal situation, thus the 
distance will never be lower than 1. 

Finally, this gives us the minimal number of changes the attacker 
has to introduce in order to be detected by the approach: 

                                
 en

N
N sample

err 


12min

         (6) 

From this equation we can conclude that smaller characterization 
period (Nsample) and the higher n gives us the opportunity to detect 
the attacker even if he introduces small number of changes. On the 
other hand, this can also result in higher number of false positives, 
so a tradeoff between higher detection and lower false positive rate 
has to be established. In essence, this depends on many factors, such 
as the application of the deployed WSN or the existing redundancy. 

3.5 Recovery from Attacks 
In this work the reputation is calculated in the following way. We 
define two reputation values, repQE and repMD based on the 
previously defined QE and MD values and afterwards joint 
reputation rep used for updating overall reputation based on these 
two values: 
if (QE<1) repQE = 1;       if (MD<1) repMD = 1; 
else repQE=1-QE/2;           else repMD=1-MD/2; 

For the reasons explained in the previous chapter, the value (rep) for 
updating overall reputation is calculated in the following way: 

if (QE>1)rep=repQE; 
else rep=repMD; 

There are two functions for updating the overall reputation of the 
node, depending whether the current reputation is below or above 
the established threshold that distinguishes normal and anomalous 
behavior. If the current reputation is above the threshold and the 
node starts behaving suspiciously, its reputation will fall quickly. 
On the other hand, if the reputation is lower than the established 
threshold, and the node starts behaving properly, it will need to 
behave properly for some time until it reaches the threshold in order 
to “redeem” itself. In order to achieve this, we use the function 
x+log(1.2*x) because it provides what we want to accomplish: if x 
is higher than 0.5, the output rises quickly, so the reputation rises; if 
x is around 0.5, the output is around 0, so the reputation will not 
change its value significantly; if x is smaller than 0.4, the output 

falls below 0. Finally, the reputation is updated in the following 
way: 
if (last_reputation[node]>threshold)                 
new_reputation[node]=last_reputation[node]+rep+log(
1.2*rep); 
else 
new_reputation[node]=last_reputation[node]+0.05*(re
p+log(1.2*rep)); 

If the final value falls out from the [0, 1] range, it is rounded to 0 if 
it is lower than 0 or to 1 in the opposite case. 

The coefficient 0.05 in the second case is added with the idea of 
limiting the reputation increase of malicious nodes. In this way we 
provide a protection from selective behavior, i.e. the node has to 
behave correctly during the majority of time, in this case 95% of the 
time. In general, the value of this coefficient is a tradeoff between 
the false alarm rate and the amount of the time the nodes have to 
behave correctly, and should be adapted according to the 
specificities of each situation. 

If during the testing of temporal coherence, we get normal data 
different from those that the clustering algorithms saw during the 
training, it is possible to get high QE value as well. On the other 
hand, the spatial coherence should not detect any anomalies. Thus, 
the final reputation will fall only if both spatial and temporal 
algorithms detect anomalies. In this way we also decrease the 
number of false positives. This is implemented in the following 
way: 
if (value_rep <  threshold)  
{     if ( space_rep <  threshold) 
      result = value_rep; 
    else result = 1 - value_rep; } 
 else result = value_rep; 

where value_rep is the reputation assigned by the algorithms for 
temporal characterization and space_rep is the reputation assigned 
by the algorithms for spatial characterization.  

Concerning the detection of routing protocol anomalies, the 
explained approach can tell us if there is something suspicious in 
routing paths of a certain node. Yet, in order to find out the nodes 
that are the origin of the attack, we need to add one more step. In 
this step, if the reputation of the routes calculated in the previous 
step is lower then the established threshold, the hops that 
participated in the bad routes will be added to the global list of bad 
nodes, or if they already exist, the number of their appearance in 
bad routes is increased. The similar principle is performed for the 
correct nodes. For each node, let the number of its appearances in 
bad routes be nBad and the number of its appearances in good 
routes be nGood. Finally, if nGood is greater than nBad, the node 
keeps its reputation value, and in the opposite case, it is assigned the 
following reputation value: nGood / (nGood + nBad). In this way, 
as the bad node spreads its malicious behavior, its reputation will 
gradually decrease. 

3.6 Distributed Organization of Detectors 
Distributed system is organized as a group of detectors, i.e. agents 
that execute clustering algorithms and assign reputation to sensors. 
Considering that there is a possibility that the attacker that has taken 
over a node can disable or compromise the agent that resides on that 
node, we introduce agent redundancy: at least three different agents 
will examine the behavior of each node and all will affect on its 
reputation. The final reputation and the final decision on a node can 
be implemented in various ways, such as majority voting, average 
reputation, weighted average reputation, etc. 
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The distributed approach offers numerous advantages over the base-
station implementation: it provides better scalability and it does not 
suffer from the single point of failure problem. The detector 
redundancy is beneficial for two reasons. On the one hand, learning 
algorithms have many parameters that should be set from the 
beginning, e.g. number of clusters, duration of training, etc. On the 
other hand, this protects us in the cases when an agent resides on a 
compromised node, when it is possible for the attacker to 
compromise the agent as well, or to launch attacks against the 
learning system itself, such as poisoning the training data. The 
detector redundancy increases the efforts of the attacker necessary 
to compromise the detection process, as for each node the attacker 
first has to discover which detectors examine each node, which is 
something that only the base station knows, and compromise the 
majority of them at the same time, as in the opposite case each of 
the compromised agents would be discarded. 

3.7 Incorporation of the Proposed Model into 
Envisioned WSN Model 
There are various possibilities of incorporation of our detection 
system in the proposed WSN model (Sec. 3.1): to train the agents in 
either the base station or the PDA-like sensors and already trained 
agents that do not consume many resources are further distributed to 
all the nodes. Another possibility is to perform both training and 
detection of intrusions in the entities that are supposed to have 
enough resources to carry out these operations, i.e. PDA-like 
sensors and the base station. In this way the rest of the sensors are 
not affected by the incorporation of our system. 

4. GENETIC ALGORITHM AS DEPLOYED 
In this work an unsupervised version of genetic algorithm [17] is 
designed. The principal idea is to find optimal clustering, so the 
chromosome and the genetic operators are designed for efficient 
solving of this problem. In the following we will present the 
problem-specific GA aspects of our solution. 

4.1 Chromosome Codification 
A chromosome is a potential solution to clustering problem, so each 
gene represents a group centre. Since the optimal number of groups 
in a clustering problem is not known a priori, the chromosomes are 
implemented as lists of variable size. Each centre is presented as a 
collection of also variable size whose elements are the vectors of n-
grams defined above with their corresponding feature value.  

For example, if we are dealing with the sensor network for detecting 
binary events, the output of each sensor will have the following 
temporal form: 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 ..., where 1 means 
that the event has occurred and 0 that it has not occurred.  Thus, we 
can extract the following set of n-grams: 000, 001, 011, 111, 110, 
100. Since each gene represents a cluster, i.e. its centre, it is 
composed of a set of the n-grams with their corresponding 
frequencies. Some gene examples are given in Fig. 2. A set of the 
genes makes a chromosome.  

4.2 Initialization Process 
The input to the algorithm is the set of n-grams extracted as defined 
in the previous chapter. Their frequencies, i.e. feature values, are 
extracted within a predefined period of time. 

All the n-grams extracted in the same time window with their 
corresponding frequencies form a collection. These collections will  

 

Figure 2. Chromosome Example 
 

be the initial genes of the chromosomes. In this way, from the 
training set we get LCin number of collections. In the initialization 
process, we define the length of each chromosome as a random 
number Lch less or equal to LCin/k, where k is a number bigger than 5 
for large training sets and less than 5 for small datasets. Each gene is 
one of the initial collections and all genes are different (if there are 
at least Lch different collections). 

Figure 3. Crossover operator 

4.3 Deployed Genetic Operators 
Standard one-point crossover is deployed in this work. In this case 
the chromosomes are the lists of different lengths, so one-point 
crossover consists in selecting random crossover points in both 
individuals that do not necessarily have to be same, in the way 
depicted in Fig.3. 

For the purpose of this work, we design custom mutation operator. 
Each gene in a chromosome is changed with a fixed low probability 
pmut in the following way: each feature value v becomes either 
v*(1+2*d) or v*(1-2*d) with the same probability, where d is a 
random number from the range [0; 0.05]. Since v is the frequency, it 
can take only the values between 0 and 1, so new values will be 
rounded to 0 or 1 if the limits get exceeded. 

4.4 Fitness Function 
Bearing in mind that optimal clustering is not known a priori, it 
imposes the usage of a clustering validation coefficient as fitness 
function. The Davies-Bouldin (DB) index [18] is selected because 
of the following advantages over other measures: 

1. Stability of results: this index is less sensitive to the position of a 
small group of data set members (i.e. outliers) than other measures, 
such as for example, the Dunn’s index [18]. 

2. In the case of more than 2 clusters and the need to rank them, 
some measures (for example the Silhouette index [18]) behave 
unpredictably, whereas the expected behavior of the DB index in 
these cases is appropriate. 

DB index is a function of the ratio of the sum of within-cluster 
scatter to between-cluster separation. The scatter within the ith 
cluster is computed as: 

“000”   0.5 “001”   0.4 “110”   0.1Gene 1

“001”   0.4 “011”   0.4 “110”   0.1Gene 2 “000”   0.1

“000”   0.9 “001”   0.1Gene 3

Chromosome

Crossover 
point

Individual 1

Individual 2

Child 1

Child 2
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where Ci and | Ci | represent the ith cluster and the number of the 
elements that belong to the ith cluster respectively. ||x-ci||2 is the 
distance between the centre and an element from the same cluster. 
Then, we define: 
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where dij is the distance between the corresponding cluster centres 
calculated according to the same distance function. The Davies-
Bouldin DB index is then computed as: 
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where K is the number of different clusters. From the formula (9) 
we can conclude that minimal Ri values are in the cases with the 
lowest within-cluster scatter and the highest between-cluster 
separation, which is considered as good clustering. Thus, the idea is 
to minimize the maximal Ri values. Consequently, the final 
objective is to minimize the DB index in order to achieve optimal 
clustering since small DB values correspond to the groups that are 
compact (low within-cluster scatter) and whose distances between 
the centers are high (high between-cluster separation). Therefore, 
the fitness of chromosome j is defined as (1/DBj), where DBj is the 
Davies-Bouldin index computed for this chromosome. The 
maximization of the fitness function will ensure minimization of the 
DB index. 

5. EXPERIMENTAL EVALUATION  
5.1 Detection of Attacks 
The proposed algorithm has been tested on a simulator of sensor 
networks developed by our research group and designed using the 
C++ programming language. GA uses overlapping populations, 
where the worst 40% of individuals are exchanged in each 
generation. In the following experiments GA has 20 individuals, 
evolved during 50 generations, with respective crossover and 
mutation probabilities 0.6 and 0.05. Selection is performed using 
standard roulette wheel approach. The computational time of GA 
under these settings is measured in minutes. 

In the following experiments we will present the performance of the 
approach in the presence of a representative attack on each of the 
core protocols. The presented results are average cases. There will 
be two typical situations: in the first case the attack will start after 
the end of training, so the training will be performed with “clean” 
data, while in the second case we will have the situations where the 
training data contains the traces of attacks as well. The aim of these 
experiments is to show that no constraints on training data exist.  

In the first experiment we have a Sybil attack, which is one of the 
most aggressive and elusive attacks. In this attack, a malicious node 
possesses a number of valid IDs, either fabricated or stolen ones, 
which can be used to compromise various aspects of network 
functioning. In the first case, the attack starts at tick 650, while the 
training ends at tick 600. The reputation evolution in time is 
presented in Fig. 4, while the corresponding detection evolution is 
given in Fig. 5. We can observe in Fig.5 that both the malicious 
node situated at position 1247, as well as the nodes whose IDs have 
been stolen have their reputation lowered to 0. The false negative 
line that lowered to 0 demonstrates that the attack has been 
completely confined, i.e. that all the nodes whose IDs have been 
stolen are isolated from the network. 

 

Figure 4. Reputation Evolution – Sybil attack starts at 650 

 

Figure 5. Detection Evolution – Sybil attack starts at 650 

In the second experiment the Sybil attack starts at tick 100, while 
the training ends at tick 460, which means that the normal data 
makes 22% of the training data. This is the minimal observed rate 
that still permits detection and confinement of the attack. The results 
are presented in Figs. 6 and 7. Again, we can clearly distinguish low 
reputation of the malicious nodes and the nodes whose IDs have 
been stolen. False negative rate equal to 0 proves that the attack is 
detected and completely confined. Although the nodes whose ID 
has been stolen by the malicious nodes are not necessarily 
malicious, they have been compromised, and thus have to be 
isolated. The base station can deploy further measures, such as 
assign new secret keys and change their reputation. 

In the following experiments we will present the results in the 
presence of wormhole attack, which is an attack on the routing 
protocol. This attack results in a connection between the nodes that 
are more than one hop away from each other. In the first experiment 
the attack starts at tick 650, while the training ends at 600. The 
reputation evolution is given in Fig. 8. The wormhole was launched 
from the position 12, and we can see that its reputation is lowered to 
0. Thus, the attack is detected and completely confined. However, 
we can also observe that there are two more nodes with their 
reputation lowered, one to 21 and the other to 23. The decision 
whether they are compromised or not will depend on the elected 
threshold value. If this value is 20 or lower, we will have 0% false 
positive rate, but if the threshold is higher, we will have the false 
positive rate of 2%. 

 

Figure 6. Reputation Evolution – Sybil attack starts at 100 
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Figure 7. Detection Evolution – Sybil attack starts at 100 

 

Figure 8. Reputation Evolution – Wormhole starts at 650 

In the following experiment the wormhole starts at tick 250, while 
the training ends at 600. The results are presented in Fig. 9. We can 
see that the node of the approximate position 1000 (the exact 
position is 954) is lowered to 0. This node is the origin of the attack. 
Few nodes around position 280 have also low reputation. This is 
probably due to the proximity to the link node in the wormhole 
which is at position 283 (its reputation is lowered to 10). The rest of 
the nodes with lowered reputation and their reputations are the 
following: nodes at positions 279, 278, 275 with their respective 
reputations 7, 18 and 16. Due to their low reputation, in most of the 
cases they would be reported as compromised. The node at the 
position 219 also has lowered reputation up to 47, but its possibility 
to be reported as compromised is lower than for the previous nodes. 

 
Figure 9. Reputation Evolution – Wormhole starts at 250 

Finally, we present the performance in the presence of a pulse-delay 
attack, which introduces latencies. The result of this can be that the 
received critical information is not up to date. In the first experiment 
the attack starts at tick 650, while the training ends at 560. The 
attacked node is situated at position 1598. The results are presented 
in Fig. 10. As we can observe, the only node with lowered 
reputation is the compromised one. Thus, the attack is detected and 
confined with no false positives. 

 

Figure 10. Reputation Evolution – Pulse-delay starts at 650 

In the next experiment the attack starts at tick 400, while the end of 
the training remains the same. The attacked node is situated at 
position 793. As we can observe in Fig.11, the only node with 
lowered reputation is the compromised one. Thus, one more time 
the attack is detected and confined with no false positives. 

 
Figure 11. Reputation Evolution – Pulse-delay starts at 400 

5.2 Network Survivability 
We say the correct operation is maintained while the network 
provides the correct picture of the observed phenomenon during the 
whole time, although the attack has not been completely isolated. In 
the most general case, the attacker has to compromise at least 

 2N  sensors, where N is the number of sensors in the given 

network. In the following experiment the isolated nodes do not 
participate in the process of making decision, thus the final decision 
is made based on majority decision of the rest of the nodes.  

The next experiment is performed in the same surrounding as the 
previous ones, in the presence of two attacks, the Sybil attack and 
the chain attack, which consists of n compromised nodes, where the 
first (n-1) always forward the data to the next one in the chain, while 
the last one performs misrouting. The attacks compromise random 
nodes and it is assumed that the nodes from the whole network can 
be compromised. In Fig. 12 the dependence of the total amount of 
compromised nodes (as % of total number of nodes) on the amount 
of clean data (i.e. the data without traces of attacks) during the 
training is presented. We observe that in the presence of a detection 
mechanism the attacker has to introduce more effort in order to 
compromise the network, where the maximal percentage of 
compromised nodes that permits network survivability is 83.5%in 
the case of the Sybil, and 90% in the case of the chain attack, when 
the attack in both cases starts after the end of training. As the 
percentage of clean data decreases, it is harder to detect all the 
malicious nodes, for which the attacker needs to introduce less effort 
in order to compromise the network. However, in the case of the 
chain attack the effort is always much higher than in the case there 
is no detection mechanism. On the other hand, in the case of the 
Sybil for the situations the training data contains at least 10% of the 
clean data, the presence of a detection mechanism increases the 
effort of the attacker necessary to compromise the network. 

 

Figure 12. Max. % of compromised nodes  
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5.3 Resource Consumption 
With the aim of proving the viability of performing the training in a 
PDA-like device, we have carried out the evaluation of the resource 
consumption using a SONY Ericsson XPERIA X10 Mini with 
Qualcomm MSM7227 600MHz CPU and Android OS 1.6. This is 
an average PDA.  

 
Figure 13. GA Memory Consumption vs. Number of Nodes 

Regarding memory consumption, we have performed the 
experiments varying the number of nodes that are being examined 
by one PDA. The results are presented in Fig. 13 varying the 
number of nodes from 2 to 200. The corresponding memory 
consumption spans from 336kB to 3670kB, which is viable for a 
PDA implementation. However, it is still too high to be 
implemented in ordinary sensor nodes. Regarding the energy 
consumption, in the case of 40 nodes the full battery provides 
enough energy for executing around 1 million training periods.  

6. CONCLUSIONS 
In this work we have presented an enhancement of reputation 
systems for WSNs that consists in adding an unsupervised GA, with 
the aim of detecting early traces of attacks and thus providing fast 
reaction to thwart activities. It has been demonstrated that the 
approach is capable of detecting and confining representative 
attacks on core network protocols with low false positive rate, 
without any constraint on the training data. Furthermore, it has been 
demonstrated that the presence of detection algorithms increases the 
efforts the attacker has to introduce in order to compromise the 
network. The viability of the approach using PDA-like devices is 
also proven. 
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