
Improving Reputation Systems for Wireless Sensor
Networks using Genetic Algorithms

Zorana Banković, David Fraga, Juan Carlos Vallejo, José Manuel Moya
Department of Electronic Engineering, Technical University of Madrid

Av. Complutense 30, 28040 Madrid, Spain,(+34) 915495700, ext. 4223, 4227, 4224
{zorana, dfraga, jcvallejo, josem}@die.upm.es

ABSTRACT
In this article we propose to couple reputation systems for wireless
sensor networks with a genetic algorithm in order to improve their
time of response to adversarial activities. The reputation of each node
is assigned by an unsupervised genetic algorithm trained for detecting
outliers in the data. The response of the system consists in assigning
low reputation values to the compromised nodes cutting them off
from the rest of the network. The genetic algorithm uses the feature
extraction process that does not capture the properties of the attacks,
but rather relies on the existing temporal and spatial redundancy in
sensor networks and tries to detect temporal and spatial
inconsistencies in the sequences of sensed values and the routing
paths used to forward these values to the base station. This solution
offers many benefits: scalable solution, fast response to thwart
activities, ability to detect unknown attacks, high adaptability, and
high ability in detecting and confining attacks. Comparing to the
standard clustering algorithms, the benefit of this one is that it is not
necessary to assign the number of clusters from the beginning. The
solution is also robust to both parameter changes and the presence of
large amounts of malicious data in the training and testing datasets.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General – Security
and Protection; C.2.1 [Computer Communication Networks]:
Network Communication and Design – Wireless Communication;
I.2.6 [Artificial Intelligence]: Learning; I.5.3 [Pattern
Recognition]: Clustering

General Terms
Algorithms, Performance, Design, Reliability, Experimentation,
Security.

Keywords
Wireless sensor networks; reputation system; unsupervised genetic
algorithm.

1. INTRODUCTION
Technological advances achieved in the previous decade have paved
the way for the development and deployment of wireless sensor

networks (WSN). Their development was mainly motivated by
military applications, but over the years their deployment has been
introduced to other areas, i.e. control and monitoring in industry,
environment, health, etc.

WSNs consist of a huge number of sensor nodes. For this reason,
the nodes have to be very cheap, so they exhibit very limited power
and computational resources, small memory size and low bandwidth
usage. The nodes within a WSN are densely deployed in the area or
the phenomenon to be observed, thus providing high level of
redundancy, which can serve as a way to discriminate the erroneous
nodes. Furthermore, WSNs are often deployed in unattended or
even hostile environments, making their securing even more
challenging. However, due to the limited resource, the
implementation of complicated security techniques is impossible.
For all these reasons, the security of these networks is very weak.

The usage of reputation systems has been proposed as a feedback
mechanism in order to take advantage of the existing spatial and
temporal redundancy and thus discard faulty or manipulated data
[1]. Since the collective opinion in a community determines an
object's reputation score, reputation systems represent a form of
collaborative sanctioning and praising. A low score represents the
collaborative sanctioning of an object that the community perceives
as having or providing low quality, and vice versa. Reputation
scores change dynamically as a function of incoming ratings. A high
score can quickly be lost if rating entities start providing negative
ratings, just as it is possible for an object with a low score to recover
and regain a high score.

Extensive research has been done on modeling and managing
trust and reputation. It has been demonstrated that rating trust and
reputation of individual nodes is an effective approach in
distributed environments to improve security, support decision-
making and promote node collaboration. To enhance the security
of reputation systems, a set of unsupervised learning algorithms
[2] has been proposed to detect statistical anomalies in the
environment, and to feed refined trust information back to the
reputation systems [3]. The main idea is to detect attacks in their
early stages, and in this way enhance the response time of
reputation systems. In this work we present in more detail
unsupervised genetic algorithm (GA) used to this end. Previous
solutions, such as SOM [3], have an important drawback, which is
the need to set the number of clusters from the beginning, when
we do not know its optimal value. SOMs are also highly sensitive
to both parameter changing and the level of presence of malicious
data during the training. In order to overcome these issues, we
propose a GA that in essence searches for an optimal clustering,
thus the number of clusters does not have to be set from the
beginning. GAs are also known for their robustness.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07...$10.00.
.

1643

The rest of the work is organized as follows. Section 2 provides an
overview on the existing solutions. Section 3 details the proposed
solution, while Section 4 presents developed GA. The approach is
evaluated in Section 5, and conclusions are drawn in Section 6.

2. DECISION FRAMEWORK BASED ON
TRUST AND REPUTATION
Trust and reputation have recently been suggested as an effective
security mechanism for open and distributed environments (Ad Hoc
networks [4], WSNs [3, 4], P2P networks [5], etc.). In essence, the
nodes that do not behave properly (according to the established
policy of “proper” behavior) will have low reputation, so the rest of
the nodes will avoid any collaboration with them, which is
equivalent to its isolation from the network. There are many
different definitions of trust and reputation, but in essence trust is a
belief about future behavior that one node holds in others and it is
based on its own experience, thus its main characteristic is
subjectivity. On the other hand, reputation is considered to be the
global perception of the behavior of a node based on the trust that
others hold in it, thus considered to be objective [4]. Alternatives to
reputation systems can be incentive systems [6], where it is
advantageous for the nodes to act in a way that the resulting global
welfare is optimal.

Regarding the detection and protection from attacks, our idea is to
avoid cryptography [7], as due to open environment in WSNs side-
channel attacks [8] that can be used to guess the secret keys become
an important threat. We also want to avoid detection using
information such as location [9] that can easily be forged.

On the other hand, machine learning is very convenient in the
situations where we have to deal with noisy and incomplete
information, and when the requirements are often fuzzy and
incomplete, such as in security. Furthermore, its advantages when
used in network security [10, 11] are already proven. However,
instead of learning typical behavior of attacks [13], which can help
us only in detecting known attacks, or learning signatures of normal
data [12] whose number if huge, we base our approach on the
detection of outliers and characterize sensor outputs and routing
paths using their temporal and spatial sequences. Furthermore, we
do not have to label clusters [10] as normal or anomalous. This
permits us to avoid pre-processing the training data, and also
provides the possibility to detect unknown attacks.

We further propose to couple a reputation system with a genetic
algorithm for detecting intrusions, where the reputation values are
based upon the decision made by GA without using second-hand
information. Reputation takes values from 0 to 1, 0 standing for no
trust in the entity and 1 for the absolute trust. In essence, GA
examines temporal and spatial coherence of the nodes, i.e. detects
sharp changes that should not occur during the normal processing,
and decreases the reputation values of nodes that exhibit suspicious
behavior. In this way, the reaction of the intrusion detection system
consists in assigning low reputation to suspicious nodes which cuts
them off from the rest of the network, as rest of the nodes will avoid
any kind of interaction with low-reputation nodes. Regarding
redemption and secondary response, we adopt the following idea: as
soon as a node exhibits suspicious behavior, its reputation is rapidly
decreased; on the other hand, if a malicious node starts behaving
properly, its reputation increases for small amounts until it has been
behaving properly for sufficient period of time. This serves as a sort
of protection from selective behavior, since the nodes have to
behave properly most of the time in order to be considered as good.

Our approach offers many advantages. Since it does not use
reputation information from other nodes, it is resilient to bad-
mouthing attack which is one of the main vulnerabilities of standard
reputation systems. Furthermore, it confines attacked nodes faster
while relying on much lower node redundancy than standard
reputation systems [3].

3. PROPOSED SOLUTION
3.1 Envisioned WSN Model
We envision WSNs (Fig.1) where most of the sensors exhibit
limited resources, but there are also a number of PDA-like sensors
with more resources (comparable to the resources of a PDA). Their
number is significantly smaller than the number of the “normal”
sensors, at least an order of magnitude smaller. There is at least one
base station. The nodes can organize themselves either in a
hierarchical or flat manner. Nodes can be fixed or mobile, although
it is assumed that the majority of the nodes are fixed.

Figure 1. WSN Model

3.2 Attack Assumptions
In order to provide uninterrupted network operation, core network
protocols (aggregation, routing and time synchronization) have to be
secured. Regarding the attacks on the aggregation protocol [14], we
assume that they demonstrate themselves in skewed aggregated
values, which can be the result of either a number of skewed sensed
values, or a compromised aggregated node. The assumption is very
reasonable, having in mind that the main objective of these attacks
is to provide wrong picture of the observed phenomenon.

On the other hand, in time critical systems it is mandatory to receive
information within certain time window. If the attacker manages to
introduce delays or desynchronize clock signal in various nodes, the
received critical information will not be up to date, which can
destabilize the system. Also, if the received information is not up to
date, the aggregated value will be skewed, as it will also be out of
date. For these reasons, and given the existing redundancy in WSNs,
we believe that these attacks can be detected as temporal and/or
spatial inconsistencies of sensed values.

Regarding attacks on routing protocols [14], we assume that they
will introduce new and different paths than those that have been
seen before. Here we have attacks whose main objective is to
compromise the routing protocol, and they usually do it by spoofing
or altering the data stored in the routing tables of the nodes. In this
way, the resulting routing paths will be different from those used in
a normal situation. In the case of wormhole for example, two nodes
that are not within each other’s radio range result in consecutive
routing hops in routing paths, which is not possible in a normal

1644

situation. Thus, the assumption about the attacks resulting in routing
paths different from those that appear in normal situation is
reasonable. In this case we want to detect temporal inconsistencies
in paths used by each node.

3.3 Feature Extraction and Formation of
Model
The main idea of our work is to find temporal and/or spatial
inconsistencies in the sequences of sensed values and routing paths,
as it is very probable that it will be the result of an attack on the core
network protocols. Thus, we want to provide the model of the data
that would capture these properties and map it to a vector space,
which would allow us to deploy machine learning.

For the case of sensed values, we follow the idea of n-grams [15].
We will illustrate this with a short example for a sensor that detects
presence. Let the sensor give the following output during the time
window of size 20: 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0. If we fix
the n-gram size on 3, we extract all the sequences of size 3 each
time moving one position forward. In this way we can observe the
following sequences and the number of their occurrences within the
time window: 111 – occurs 6 times, 110 – 2, 100 – 2, 000 – 6, 001 –
1, 011 – 1. Thus, we can assign them the following sequences: 111 –
0.33, 110 – 0.11, 100 – 0.11, 000 – 0.33, 001 – 0.06, 011 – 0.06. In
our model, the sequences are the features and their frequencies are
the corresponding feature values. Thus, the sum of the feature
values is always equal to 1. In our algorithm this characterization is
performed in predefined moments of time and takes the established
amount of previous data, e.g. we can perform the characterization
after every 20 time periods based on previous 40 values.

In a similar fashion, we form features for spatial characterization.
The first step is to establish vicinities of nodes that historically have
been giving consistent information. Furthermore, since an agent
resides on a node, all the nodes from its vicinity lie in its radio
range. In this way, an n-gram for spatial characterization in a
moment of time is made of the sensor outputs from that very
moment. For example, if sensors S1, S2, S3 that belong to the same
group each give the following output: 1 1 1 0 during four time
epochs, we characterize them with the following set of n-grams
(each n-gram contains at the first position the value of S1, the value
of S2 at the second and the value of S3 at the third at a certain time
epoch): 111 – occurs 3 times, 000 – occurs once, thus the feature
value of each n-gram is: 111 – 0.75, 000 – 0.25, i.e. the frequencies
within the observed period of time.

The same principle is followed for characterizing routes that a node
has been using to send its sensed data to the sink. Each routing hop
adds its ID to the message that is further forwarded, so the sink has
the information about the routing path together with the message.
Each sensor has its own model and each feature, i.e. n-gram in the
model consists of a predefined number of successive hops used in
routing information coming from the node. For example, if during
the characterization time, the node has used the following paths for
routing its data to the sink: A-B-C-S – 3 times, A-D-E-F-S – 2
times, A-B-E-F-S – 1 time (A – the node that is sending the data, B,
C, … - other nodes in the network, S- sink), we can characterize the
routing with the following n-grams (n=3): ABC, BCS, ADE, DEF,
EFS, ABE and BEF. In all of the routes, the n-gram ABC occurs 3
times, BCS – 3, ADE – 2, DEF - 2, EFS – 3, ABE – 1, BEF – 1. The
total number of n-grams is 15, so dividing the values given above
with 15, we get the frequencies of each n-gram which are the values
that we assign to our features, i.e. n-grams.

3.3.1 Deployed Distance Function
Since some of the n-grams can appear more than once, it is obvious
that the extracted vectors will not be of constant size. Thus, we
cannot use standard distance functions. The distance between the
instances of the presented model is taken from [15]. It is designed to
calculate the distance between two sequences. We have elected this
one (among all given in [15]) since it is proven to be the most
efficient in the terms of the absolute execution time.

The deployed distance function is actually equivalent to Manhattan
distance after making the following assumption: the feature that
does not exist in the first vector while exists in the second (and vice
versa) actually exists with the value equal to 0, since we can say that
it occurs with 0 frequency. In this way, we get two vectors of the
same size and the distance between the centre and an input is
between 0 (the vectors have the same features with the same feature
values) and 2 (the vectors have different features with the values
greater than 0). In the same way, if the set of the features of one is
the subset of the feature set of the other, the distance will be
between 0 and 1.

3.4 Scope of the Attacks Possible to Detect with
the Approach
As previously mentioned we treat attacks as data outliers and deploy
clustering techniques for attack detection. In this work we will
present the unsupervised GA designed to this end. There are two
possible approaches for detecting outliers using clustering
techniques [16] depending on the following two possibilities:
detecting outlying clusters or detecting outlying data that belong to
non-outlying clusters. For the first case, we calculate the average
distance of each node to the rest of the nodes (or its closest
neighborhood) (MD). In the latter case, we calculate quantization
error (QE) of each input as the distance from its group center.

The attacks that can be detected with the proposed approach are
those that introduce changes into either the sensed value that is
forwarded to the base station or the routing paths. These changes
will result in different distribution of the extracted n-grams.
However, if we take frequencies as feature values, the sum of the
feature values remain the same, i.e. 1, so the following is valid:

 



N

i
if

0

0 (1)

where N is the total number of the extracted n-grams and Δfi is the
change of the feature value of the n-gram i. On the other hand,
according to the distance function, the introduced change in distance
between the attacked instance and any other is:

 



N

i
ifD

1

 (2)

In essence, this is the change introduced in the above defined QE
or/and MD values. Thus, the following inequality defines the
changes introduced by the attacks:

th

N

i
i ff 

1

 (3)

where fth is the threshold value used to distinguish attacks from
normal situations.

Now we will see how the changes introduced by the attacker affect
on the feature values. Having in mind that each sensed value or a
routing hop participates in n features, where n is the size of the n-
gram, if the attacker changes one value, the values of 2n (at most)
features will be changed, as the values of n new n-grams created

1645

with the change will increase, while the values of those that existed
before the change will decrease.

For these reasons, if the attacker introduces Nerr change in the
sample of the size Nsample, the value of ΔD will range between 0 (in
the case the changes are symmetric, so the effect of one change
cancels the effect of another and the distribution does not change at
the end), and the value that corresponds to the case when the effects
of each change sum given with the following formula:

sample

err
err N

nN
fn

2
*2  (4)

Having in mind the correlation of the n-grams, this value has to be
pondered with  e1 , where  11 and ρ is the coefficient of

total correlation between the n-grams. Finally, we get the following
formula:
   th

sample

err f
N

nN
e 

2
1  (5)

We take fth to be 1 for the following reasons. Having in mind that
the attacks will often result in creating new n-grams, it is reasonable
to assume that the extracted vector in the presence of attackers will
not be a subset of any vector extracted in normal situation, thus the
distance will never be lower than 1.

Finally, this gives us the minimal number of changes the attacker
has to introduce in order to be detected by the approach:

 en

N
N sample

err 


12min

 (6)

From this equation we can conclude that smaller characterization
period (Nsample) and the higher n gives us the opportunity to detect
the attacker even if he introduces small number of changes. On the
other hand, this can also result in higher number of false positives,
so a tradeoff between higher detection and lower false positive rate
has to be established. In essence, this depends on many factors, such
as the application of the deployed WSN or the existing redundancy.

3.5 Recovery from Attacks
In this work the reputation is calculated in the following way. We
define two reputation values, repQE and repMD based on the
previously defined QE and MD values and afterwards joint
reputation rep used for updating overall reputation based on these
two values:
if (QE<1) repQE = 1; if (MD<1) repMD = 1;
else repQE=1-QE/2; else repMD=1-MD/2;

For the reasons explained in the previous chapter, the value (rep) for
updating overall reputation is calculated in the following way:

if (QE>1)rep=repQE;
else rep=repMD;

There are two functions for updating the overall reputation of the
node, depending whether the current reputation is below or above
the established threshold that distinguishes normal and anomalous
behavior. If the current reputation is above the threshold and the
node starts behaving suspiciously, its reputation will fall quickly.
On the other hand, if the reputation is lower than the established
threshold, and the node starts behaving properly, it will need to
behave properly for some time until it reaches the threshold in order
to “redeem” itself. In order to achieve this, we use the function
x+log(1.2*x) because it provides what we want to accomplish: if x
is higher than 0.5, the output rises quickly, so the reputation rises; if
x is around 0.5, the output is around 0, so the reputation will not
change its value significantly; if x is smaller than 0.4, the output

falls below 0. Finally, the reputation is updated in the following
way:
if (last_reputation[node]>threshold)
new_reputation[node]=last_reputation[node]+rep+log(
1.2*rep);
else
new_reputation[node]=last_reputation[node]+0.05*(re
p+log(1.2*rep));

If the final value falls out from the [0, 1] range, it is rounded to 0 if
it is lower than 0 or to 1 in the opposite case.

The coefficient 0.05 in the second case is added with the idea of
limiting the reputation increase of malicious nodes. In this way we
provide a protection from selective behavior, i.e. the node has to
behave correctly during the majority of time, in this case 95% of the
time. In general, the value of this coefficient is a tradeoff between
the false alarm rate and the amount of the time the nodes have to
behave correctly, and should be adapted according to the
specificities of each situation.

If during the testing of temporal coherence, we get normal data
different from those that the clustering algorithms saw during the
training, it is possible to get high QE value as well. On the other
hand, the spatial coherence should not detect any anomalies. Thus,
the final reputation will fall only if both spatial and temporal
algorithms detect anomalies. In this way we also decrease the
number of false positives. This is implemented in the following
way:
if (value_rep < threshold)
{ if (space_rep < threshold)
 result = value_rep;
 else result = 1 - value_rep; }
 else result = value_rep;

where value_rep is the reputation assigned by the algorithms for
temporal characterization and space_rep is the reputation assigned
by the algorithms for spatial characterization.

Concerning the detection of routing protocol anomalies, the
explained approach can tell us if there is something suspicious in
routing paths of a certain node. Yet, in order to find out the nodes
that are the origin of the attack, we need to add one more step. In
this step, if the reputation of the routes calculated in the previous
step is lower then the established threshold, the hops that
participated in the bad routes will be added to the global list of bad
nodes, or if they already exist, the number of their appearance in
bad routes is increased. The similar principle is performed for the
correct nodes. For each node, let the number of its appearances in
bad routes be nBad and the number of its appearances in good
routes be nGood. Finally, if nGood is greater than nBad, the node
keeps its reputation value, and in the opposite case, it is assigned the
following reputation value: nGood / (nGood + nBad). In this way,
as the bad node spreads its malicious behavior, its reputation will
gradually decrease.

3.6 Distributed Organization of Detectors
Distributed system is organized as a group of detectors, i.e. agents
that execute clustering algorithms and assign reputation to sensors.
Considering that there is a possibility that the attacker that has taken
over a node can disable or compromise the agent that resides on that
node, we introduce agent redundancy: at least three different agents
will examine the behavior of each node and all will affect on its
reputation. The final reputation and the final decision on a node can
be implemented in various ways, such as majority voting, average
reputation, weighted average reputation, etc.

1646

The distributed approach offers numerous advantages over the base-
station implementation: it provides better scalability and it does not
suffer from the single point of failure problem. The detector
redundancy is beneficial for two reasons. On the one hand, learning
algorithms have many parameters that should be set from the
beginning, e.g. number of clusters, duration of training, etc. On the
other hand, this protects us in the cases when an agent resides on a
compromised node, when it is possible for the attacker to
compromise the agent as well, or to launch attacks against the
learning system itself, such as poisoning the training data. The
detector redundancy increases the efforts of the attacker necessary
to compromise the detection process, as for each node the attacker
first has to discover which detectors examine each node, which is
something that only the base station knows, and compromise the
majority of them at the same time, as in the opposite case each of
the compromised agents would be discarded.

3.7 Incorporation of the Proposed Model into
Envisioned WSN Model
There are various possibilities of incorporation of our detection
system in the proposed WSN model (Sec. 3.1): to train the agents in
either the base station or the PDA-like sensors and already trained
agents that do not consume many resources are further distributed to
all the nodes. Another possibility is to perform both training and
detection of intrusions in the entities that are supposed to have
enough resources to carry out these operations, i.e. PDA-like
sensors and the base station. In this way the rest of the sensors are
not affected by the incorporation of our system.

4. GENETIC ALGORITHM AS DEPLOYED
In this work an unsupervised version of genetic algorithm [17] is
designed. The principal idea is to find optimal clustering, so the
chromosome and the genetic operators are designed for efficient
solving of this problem. In the following we will present the
problem-specific GA aspects of our solution.

4.1 Chromosome Codification
A chromosome is a potential solution to clustering problem, so each
gene represents a group centre. Since the optimal number of groups
in a clustering problem is not known a priori, the chromosomes are
implemented as lists of variable size. Each centre is presented as a
collection of also variable size whose elements are the vectors of n-
grams defined above with their corresponding feature value.

For example, if we are dealing with the sensor network for detecting
binary events, the output of each sensor will have the following
temporal form: 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 ..., where 1 means
that the event has occurred and 0 that it has not occurred. Thus, we
can extract the following set of n-grams: 000, 001, 011, 111, 110,
100. Since each gene represents a cluster, i.e. its centre, it is
composed of a set of the n-grams with their corresponding
frequencies. Some gene examples are given in Fig. 2. A set of the
genes makes a chromosome.

4.2 Initialization Process
The input to the algorithm is the set of n-grams extracted as defined
in the previous chapter. Their frequencies, i.e. feature values, are
extracted within a predefined period of time.

All the n-grams extracted in the same time window with their
corresponding frequencies form a collection. These collections will

Figure 2. Chromosome Example

be the initial genes of the chromosomes. In this way, from the
training set we get LCin number of collections. In the initialization
process, we define the length of each chromosome as a random
number Lch less or equal to LCin/k, where k is a number bigger than 5
for large training sets and less than 5 for small datasets. Each gene is
one of the initial collections and all genes are different (if there are
at least Lch different collections).

Figure 3. Crossover operator

4.3 Deployed Genetic Operators
Standard one-point crossover is deployed in this work. In this case
the chromosomes are the lists of different lengths, so one-point
crossover consists in selecting random crossover points in both
individuals that do not necessarily have to be same, in the way
depicted in Fig.3.

For the purpose of this work, we design custom mutation operator.
Each gene in a chromosome is changed with a fixed low probability
pmut in the following way: each feature value v becomes either
v*(1+2*d) or v*(1-2*d) with the same probability, where d is a
random number from the range [0; 0.05]. Since v is the frequency, it
can take only the values between 0 and 1, so new values will be
rounded to 0 or 1 if the limits get exceeded.

4.4 Fitness Function
Bearing in mind that optimal clustering is not known a priori, it
imposes the usage of a clustering validation coefficient as fitness
function. The Davies-Bouldin (DB) index [18] is selected because
of the following advantages over other measures:

1. Stability of results: this index is less sensitive to the position of a
small group of data set members (i.e. outliers) than other measures,
such as for example, the Dunn’s index [18].

2. In the case of more than 2 clusters and the need to rank them,
some measures (for example the Silhouette index [18]) behave
unpredictably, whereas the expected behavior of the DB index in
these cases is appropriate.

DB index is a function of the ratio of the sum of within-cluster
scatter to between-cluster separation. The scatter within the ith
cluster is computed as:

“000” 0.5 “001” 0.4 “110” 0.1Gene 1

“001” 0.4 “011” 0.4 “110” 0.1Gene 2 “000” 0.1

“000” 0.9 “001” 0.1Gene 3

Chromosome

Crossover
point

Individual 1

Individual 2

Child 1

Child 2

1647





iCx

i
i

i cx
C

S
21 (8)

where Ci and | Ci | represent the ith cluster and the number of the
elements that belong to the ith cluster respectively. ||x-ci||2 is the
distance between the centre and an element from the same cluster.
Then, we define:











 




ij

ji

ijj
i d

SS
R

,
max

 (9)

where dij is the distance between the corresponding cluster centres
calculated according to the same distance function. The Davies-
Bouldin DB index is then computed as:





K

i
iR

K
DB

1

1 (10)

where K is the number of different clusters. From the formula (9)
we can conclude that minimal Ri values are in the cases with the
lowest within-cluster scatter and the highest between-cluster
separation, which is considered as good clustering. Thus, the idea is
to minimize the maximal Ri values. Consequently, the final
objective is to minimize the DB index in order to achieve optimal
clustering since small DB values correspond to the groups that are
compact (low within-cluster scatter) and whose distances between
the centers are high (high between-cluster separation). Therefore,
the fitness of chromosome j is defined as (1/DBj), where DBj is the
Davies-Bouldin index computed for this chromosome. The
maximization of the fitness function will ensure minimization of the
DB index.

5. EXPERIMENTAL EVALUATION
5.1 Detection of Attacks
The proposed algorithm has been tested on a simulator of sensor
networks developed by our research group and designed using the
C++ programming language. GA uses overlapping populations,
where the worst 40% of individuals are exchanged in each
generation. In the following experiments GA has 20 individuals,
evolved during 50 generations, with respective crossover and
mutation probabilities 0.6 and 0.05. Selection is performed using
standard roulette wheel approach. The computational time of GA
under these settings is measured in minutes.

In the following experiments we will present the performance of the
approach in the presence of a representative attack on each of the
core protocols. The presented results are average cases. There will
be two typical situations: in the first case the attack will start after
the end of training, so the training will be performed with “clean”
data, while in the second case we will have the situations where the
training data contains the traces of attacks as well. The aim of these
experiments is to show that no constraints on training data exist.

In the first experiment we have a Sybil attack, which is one of the
most aggressive and elusive attacks. In this attack, a malicious node
possesses a number of valid IDs, either fabricated or stolen ones,
which can be used to compromise various aspects of network
functioning. In the first case, the attack starts at tick 650, while the
training ends at tick 600. The reputation evolution in time is
presented in Fig. 4, while the corresponding detection evolution is
given in Fig. 5. We can observe in Fig.5 that both the malicious
node situated at position 1247, as well as the nodes whose IDs have
been stolen have their reputation lowered to 0. The false negative
line that lowered to 0 demonstrates that the attack has been
completely confined, i.e. that all the nodes whose IDs have been
stolen are isolated from the network.

Figure 4. Reputation Evolution – Sybil attack starts at 650

Figure 5. Detection Evolution – Sybil attack starts at 650

In the second experiment the Sybil attack starts at tick 100, while
the training ends at tick 460, which means that the normal data
makes 22% of the training data. This is the minimal observed rate
that still permits detection and confinement of the attack. The results
are presented in Figs. 6 and 7. Again, we can clearly distinguish low
reputation of the malicious nodes and the nodes whose IDs have
been stolen. False negative rate equal to 0 proves that the attack is
detected and completely confined. Although the nodes whose ID
has been stolen by the malicious nodes are not necessarily
malicious, they have been compromised, and thus have to be
isolated. The base station can deploy further measures, such as
assign new secret keys and change their reputation.

In the following experiments we will present the results in the
presence of wormhole attack, which is an attack on the routing
protocol. This attack results in a connection between the nodes that
are more than one hop away from each other. In the first experiment
the attack starts at tick 650, while the training ends at 600. The
reputation evolution is given in Fig. 8. The wormhole was launched
from the position 12, and we can see that its reputation is lowered to
0. Thus, the attack is detected and completely confined. However,
we can also observe that there are two more nodes with their
reputation lowered, one to 21 and the other to 23. The decision
whether they are compromised or not will depend on the elected
threshold value. If this value is 20 or lower, we will have 0% false
positive rate, but if the threshold is higher, we will have the false
positive rate of 2%.

Figure 6. Reputation Evolution – Sybil attack starts at 100

1648

Figure 7. Detection Evolution – Sybil attack starts at 100

Figure 8. Reputation Evolution – Wormhole starts at 650

In the following experiment the wormhole starts at tick 250, while
the training ends at 600. The results are presented in Fig. 9. We can
see that the node of the approximate position 1000 (the exact
position is 954) is lowered to 0. This node is the origin of the attack.
Few nodes around position 280 have also low reputation. This is
probably due to the proximity to the link node in the wormhole
which is at position 283 (its reputation is lowered to 10). The rest of
the nodes with lowered reputation and their reputations are the
following: nodes at positions 279, 278, 275 with their respective
reputations 7, 18 and 16. Due to their low reputation, in most of the
cases they would be reported as compromised. The node at the
position 219 also has lowered reputation up to 47, but its possibility
to be reported as compromised is lower than for the previous nodes.

Figure 9. Reputation Evolution – Wormhole starts at 250

Finally, we present the performance in the presence of a pulse-delay
attack, which introduces latencies. The result of this can be that the
received critical information is not up to date. In the first experiment
the attack starts at tick 650, while the training ends at 560. The
attacked node is situated at position 1598. The results are presented
in Fig. 10. As we can observe, the only node with lowered
reputation is the compromised one. Thus, the attack is detected and
confined with no false positives.

Figure 10. Reputation Evolution – Pulse-delay starts at 650

In the next experiment the attack starts at tick 400, while the end of
the training remains the same. The attacked node is situated at
position 793. As we can observe in Fig.11, the only node with
lowered reputation is the compromised one. Thus, one more time
the attack is detected and confined with no false positives.

Figure 11. Reputation Evolution – Pulse-delay starts at 400

5.2 Network Survivability
We say the correct operation is maintained while the network
provides the correct picture of the observed phenomenon during the
whole time, although the attack has not been completely isolated. In
the most general case, the attacker has to compromise at least

 2N sensors, where N is the number of sensors in the given

network. In the following experiment the isolated nodes do not
participate in the process of making decision, thus the final decision
is made based on majority decision of the rest of the nodes.

The next experiment is performed in the same surrounding as the
previous ones, in the presence of two attacks, the Sybil attack and
the chain attack, which consists of n compromised nodes, where the
first (n-1) always forward the data to the next one in the chain, while
the last one performs misrouting. The attacks compromise random
nodes and it is assumed that the nodes from the whole network can
be compromised. In Fig. 12 the dependence of the total amount of
compromised nodes (as % of total number of nodes) on the amount
of clean data (i.e. the data without traces of attacks) during the
training is presented. We observe that in the presence of a detection
mechanism the attacker has to introduce more effort in order to
compromise the network, where the maximal percentage of
compromised nodes that permits network survivability is 83.5%in
the case of the Sybil, and 90% in the case of the chain attack, when
the attack in both cases starts after the end of training. As the
percentage of clean data decreases, it is harder to detect all the
malicious nodes, for which the attacker needs to introduce less effort
in order to compromise the network. However, in the case of the
chain attack the effort is always much higher than in the case there
is no detection mechanism. On the other hand, in the case of the
Sybil for the situations the training data contains at least 10% of the
clean data, the presence of a detection mechanism increases the
effort of the attacker necessary to compromise the network.

Figure 12. Max. % of compromised nodes

1649

5.3 Resource Consumption
With the aim of proving the viability of performing the training in a
PDA-like device, we have carried out the evaluation of the resource
consumption using a SONY Ericsson XPERIA X10 Mini with
Qualcomm MSM7227 600MHz CPU and Android OS 1.6. This is
an average PDA.

Figure 13. GA Memory Consumption vs. Number of Nodes

Regarding memory consumption, we have performed the
experiments varying the number of nodes that are being examined
by one PDA. The results are presented in Fig. 13 varying the
number of nodes from 2 to 200. The corresponding memory
consumption spans from 336kB to 3670kB, which is viable for a
PDA implementation. However, it is still too high to be
implemented in ordinary sensor nodes. Regarding the energy
consumption, in the case of 40 nodes the full battery provides
enough energy for executing around 1 million training periods.

6. CONCLUSIONS
In this work we have presented an enhancement of reputation
systems for WSNs that consists in adding an unsupervised GA, with
the aim of detecting early traces of attacks and thus providing fast
reaction to thwart activities. It has been demonstrated that the
approach is capable of detecting and confining representative
attacks on core network protocols with low false positive rate,
without any constraint on the training data. Furthermore, it has been
demonstrated that the presence of detection algorithms increases the
efforts the attacker has to introduce in order to compromise the
network. The viability of the approach using PDA-like devices is
also proven.

7. ACKNOWLEDGMENTS
This work was funded by the Spanish Ministry of Industry, Tourism
and Trade, under Research Grant TSI-020301-2009-18 (eCID), the
Spanish Ministry of Science and Innovation, under Research Grant
TEC2009-14595-C02-01, and the CENIT Project Segur@.

8. REFERENCES
[1] Mármol, F. and Pérez, G. Security threats scenarios in trust and

reputation models for distributed systems, Computers &
Security 28 (2009) 545-556.

[2] Aliguliyev, R. M. Performance evaluation of density-based
clustering methods, Inf. Sciences 179 (2009) 3583 - 3602.

[3] Moya, J. M. et al. Improving security for SCADA sensor
networks with reputation systems and Self-Organizing maps,
Sensors 9 (2009) 9380-9397.

[4] Boukerch, A.; Xu, L.; EL-Khatib, K. Trust-based Security for
Wireless Ad Hoc and Sensor Networks. Comput. Commun.
2007, 30, 2413–2427.

[5] Papaioannou, T.G.; Stamoulis, G.D. Effective use of
reputation of peer-to-peer environments. In Proc. of
IEEE/ACM CCGRID 2004, GP2PC workshop. IEEE Comp.
Soc: Chicago, IL, USA, April 19-22, 2004; pp. 259-268.

[6] Antoniadis, P.; Courcoubetis, C.; Efstathiou, E.; Polyzos, G.;
Strulo, B. Peer-to-Peer wireless LAN consortia: Economic
modeling and architecture. In Proc. of the Third IEEE Int.l
Conf. on Peer-to-Peer Comp., IEEE Comp. Soc.: Linköping,
Sweeden, Sept. 1-3, 2003; pp. 198-199.

[7] Hu Y, Perrig A, Johnson D. Packet leashes: a defense against
wormhole attacks in wireless networks. Proc. of 22nd annual
joint conference of the IEEE computer and communications
societies (INFOCOM 2003). vol. 3, 2003. pp. 1976–86.

[8] Bar El, H. Introduction to Side Channel Attacks. Discretix
Technologies Ltd., 2003.

[9] Mukhopadhyay D, Saha I. Location verification based defense
against sybil attack in sensor networks. In: Distr. comp. and
networking. Springer, 2006. p. 509–521.

[10] Liu, Y.G., Chen, K.F., Liao, X.F., Zhang ,W. A genetic
clustering method for intrusion detection. Pattern Recognition,
37(5), 927-942. (2004)

[11] Renjit, J. A. and K. L. Shunmuganathan, Distributed and
cooperative multi-agent based intrusion detection system,
Indian Journal of Science and Technology 3(10): 1070-1074.
(2010).

[12] Hortos, W. S. Unsupervised algorithms for intrusion detection
and identification in wireless ad hoc sensor networks, Proc.
SPIE 7352, pp. 73520J, 2009.

[13] Renjit, J. A. and K. L. Shunmuganathan. Distributed and
cooperative multi-agent based intrusion detection system,
Indian Journal of Science and Technology 3(10): 1070-1074.
(2010).

[14] Roosta, T. G. Attacks and Defenses on Ubiquitous Sensor
Networks, Ph. D. Dissertation, Univ.of California at Berkeley,
2008

[15] Rieck, K.; Laskov, P. Linear Time Computation of Similarity
for Sequential Data. J. Mach. Learn. Res. 2008, 9, 23-48.

[16] Muñoz, A.; Muruzábal. J. Self-Organizing Maps for Outlier
Detection. Neurocomputing 18(1-3), 1998, 33-60

[17] Goldberg, D. E. Genetic algorithms for search, optimization,
and machine learning. 1st Ed. Addison-Wesley Longman
Publishing Co., Inc.: Boston, MA, USA, 1989.

[18] Mitra, S.; Acharya, T. Data Mining: Multimedia, Soft
Computing, and Bioinformatics; John Wiley & Sons, Inc.:
Hoboken, New Jersey, USA, 2003; pp. 257-269

1650

