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ABSTRACT 
The study of complex networks has received an enormous amount 
of attention from the scientific community in recent years. In this 
paper, we propose a multi-objective approach, named NNIA-Net, 
to discover communities in networks by employing Non-
dominated Neighbor Immune Algorithm (NNIA). Our algorithm 
optimizes two objectives to find communities in networks —
groups of vertices within which connections are dense, but 
between which connections are sparser. The method can produce a 
series of solutions which represent various divisions to the 
networks at different hierarchical levels. The number of 
subdivisions is automatically determined by the non-dominated 
individuals resulting from our algorithm. We demonstrate that our 
algorithm is highly efficient at discovering quality community 
structure in both synthetic and real-world network data. What’s 
more, a new initialization method is proposed to improve the 

traditional initialization method by about 30% in running time.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search-Heuristic Methods 

General Terms 
Algorithms, Performance, Experimentation.  

Keywords 
Multi-objective optimization, artificial immune system, non-
dominated solutions, community detection, complex networks.  

1. INTRODUCTION 
Recent research indicates that a large body of diverse systems in 
many different domains such as collaboration networks, the 
Internet, the World Wide Web, biological networks, 
communication and transport networks, social networks and so on 
can be represented as complex networks [2].  

In the continuing flurry of research activity within physics and 
mathematics on the properties of complex networks, a particular 

recent focus has been the analysis of communities within networks 
[11]. Real networks are not random graphs, and they reveal a high 
level of order and organization. The degree distribution is broad, 
with a tail that often follows a power law [12]: therefore, many 
vertices with low degree coexist with some vertices with large 
degree. Furthermore, the distribution of edges is not only globally, 
but also locally inhomogeneous, with high concentrations of edges 
within special groups of vertices, and low concentrations between 
these groups. This feature of real networks is called community 
structure, or clustering. Communities, also called clusters or 
modules probably share common properties and/or play similar 
roles within the graph [12]. They are groups of vertices having 
denser connections within them, and sparser connections between 
the groups. In protein-protein interaction networks, communities 
are likely to group proteins having the same specific function 
within the cells, in the graph of the World Wide Web, they may 
correspond to groups of pages dealing with the same or related 
topics, in metabolic networks, they may be related to functional 
modules such as cycles and pathways, in food webs, they may 
identify compartments, and so on.  

1.1 Related Work 
Community structure is an important network property and can 
reveal many hidden features of the given networks. Hence, 
community identification is a fundamental step for discovering 
what makes entities come together, but also for understanding the 
overall structural and functional properties of large network [13]. 
The capability of detecting the partitioning of a network in 
clusters can give important information and useful insights to 
understand how the structure of ties affects individuals and their 
relationships. The problem of community detection has been 
receiving a lot of attention and many different approaches have 
been proposed. 

GA-Net [3], a Genetic Algorithm for community detection in 
social networks proposed by Clara Pizzuti in 2008 introduces the 
concept of community score to measure the quality of a 
partitioning of a network in communities, and tries to optimize 
this quantity by running the Genetic Algorithm. All the dense 
communities present in the network structure are obtained at the 
end of the algorithm by selectively exploring the search space, 
without the need to know in advance the exact number of groups 
[3]. In GA-Net, only one objective function, community score is 
optimized, so that only a certain solution is obtained in one run. 
Unlike many existing methods, the algorithm does not require the 
number of communities to find. This number is automatically 
determined by the optimal value of the community score [3].  
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Despite all the advantages, the drawbacks of GA-Net can not be 
neglected. Only one objective function is not enough to determine 
whether a partitioning is the best one, and just one possible 
division to a network provided in one run is far away from the 
need of people. Because of that, Clara Pizzuti provided MOGA-
Net [4] employing Multi-Objective Genetic Algorithm to uncover 
community in complex networks. This algorithm introduces two 
objective functions. The first objective function employs the 
concept of community score to measure the quality of the division 
in communities of a network. The higher the community score, the 
denser the clustering obtained [4]. The second defines the concept 
of fitness of the nodes belonging to a module and iteratively find 
modules having the highest sum of node fitness, in the following 
referred as community fitness. When this sum reaches its 
maximum value, the number of external links in minimized. Both 
the objective functions have a positive real-valued parameter 
controlling the size of the communities. The higher the value of 
the parameter, the smaller the size of the communities found. 
MOGA-Net exploits the benefits of these two functions and 
obtains the communities present in the network by selectively 
exploring the search space, without the need to know in advance 
the exact number of groups [4]. This number is automatically 
determined by the optimal compromise values of the objectives. 
An interesting result of the multi-objective approach is that it 
returns not a single partitioning of the network, but a set of 
solutions [4]. Each of these solutions corresponds to a different 
trade off between the two objectives and thus to diverse 
partitioning of the network consisting of various number of 
clusters. This gives the readers a great chance to analyze several 
clustering at different hierarchical levels [4].  

Community score and community fitness are the two objective 
functions used in this paper. A fundamental measure criterion 
modularity Q which will be introduced in detail later used as an 
evaluation metrics in our paper has been also widely used recently 
[1, 2, 3]. Modularity Q was used in [14] which optimized network 
modularity using genetic algorithm to detect community. It is 
scalable to very large networks and does not need any priori 
knowledge about the number of communities or any threshold 
value.  

However, Fortunato and Barthélemy[7] showed mathematically 
that the optimization of modularity has a resolution limit, raising 
important concerns about the reliability of the modules detected so 
far using this technique, or eventually using any other quality 
function [17]. Recently, to conquer this drawback, series of 
algorithms has been proposed. In [10], the authors provided a 
method that allows the full screening of the topological structure 
at any resolution level using the original definition of Q. In [16], 
the authors presented a mathematical formulation of influence, 
defined an influence-based modularity metric, and used it to 
partition the network into communities. And this algorithm 
outperformed the edge-based modularity algorithm on the 
standard data sets used in literature. In [6], to deal with the 
community structure detection problem in directed networks, E 
.A. Leicht and M. E. J. Newman generalized the widely used 
benefit function known as modularity in a principled fashion to 
incorporate the information contained in edge directions.  

1.2 Our Main Contribution 
In this paper, we propose a multi-objective approach, named 
NNIA-Net, to uncover communities in networks by employing 
Non-dominated Neighbor Immune Algorithm (NNIA). Non-
dominated Neighbor Immune Algorithm (NNIA) proposed by 

Gong et al. in 2007 is an algorithm for multi-objective 
optimization by using a novel non-dominated neighbor-based 
selection technique, an immune inspired operator, two heuristic 
search operators, and elitism [15]. NNIA-Net optimizes two 
objective functions introduced in [3] and [1]. These two objective 
functions are also used in MOGA-Net [4] which is mentioned 
above. In NNIA-Net same as in NNIA, only partial non-
dominated individuals with greater crowding-distance values are 
selected to do proportional cloning, uniform crossover and 
mutation. Because of that, in a single generation, NNIA-Net only 
pays more attention to the less-crowded regions in the current 
trade-off front. The uniform crossover operator and mutation 
operator we used in this paper were described in [3, 4] and 
Normalized Mutual Information (NMI) and modularity Q are used 
as the evaluate metrics. 

The remainder of this paper is organized as follows: In the next 
section a description of the problem we deal with and two 
modularity measures, community score and community fitness 
designed to evaluate whether a particular partition of a network is 
good or not, and the multi-objective optimization algorithms with 
NNIA in detail are given. In section 3, we describe the outline of 
and each operation introduced in our algorithm in detail. In 
section 4, we give a number of applications of our algorithms to 
particular networks, both synthetic networks and real social 
networks compared with GN. In section 5, we give our 
conclusions. 

2. BACKGROUNDAND  

2.1 Problem Statement 
The problem we deal with is how to detect community structure in 
networks. As referred in [4], both synthetic networks and real life 
networks N can be modeled as a graph G =(V;E) where V is a set 
of objects, called nodes or vertices, and E is a set of links, called 
edges, that connect two elements of V. A community is generally 
thought of as a part of a network where internal connections are 
denser than external ones. This definition of community is rather 
vague and there is no general agreement on the concept of density 
[4]. To sharpen the use of detection algorithms a more precise 
definition is needed. Many possible definitions of communities 
exist in the literature [18]. A more formal definition has been 
introduced in [8].  

2.1.1 Related Terms and Definitions 
The adjacency matrix A, fully specifies the topology of the 
network. In the simplest case of an unweighted, undirected 
network, it is equal to 1 if i and j are directly connected; it is equal 
to zero otherwise. 

The degree ik  of a generic node i, defined as: i ijj
k A . 

Let S G  the sub-graph where node i belongs to, the degree of 

i with respect to S, defined as: ( ) ( ) ( )in out
i i ik S k S k S  . 

Where ( )in
i ijj S

k S A


  is the number of edges connecting 

i to the other nodes in S, and ( )out
i ijj S

k S A


 is the 

number of edges connecting i to the rest of the network. 
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2.2 Measures of a Partitioning to a Graph 
The two objective functions are introduced as follows: 

2.2.1 Community Score 
In [3, 4], the concept of community score of a graph is defined as:  

Let i  denote the fraction of edges connecting node i to the other 

nodes in S.  It is defined as: 

1
( )

| |
in

i ik S
S

                                 (1) 

where |S| is the cardinality of S. 

The power mean of S of order r, denoted as M(S) is defined: 

( )
( )

| |

r
ii SM S

S


                             (2) 

Notice that, in the computation of M(S), since 0 1  , the 

exponent r increases the weight of nodes having many 
connections with other nodes belonging to the same module, and 
diminishes the weight of those nodes having few connections 
inside S. 

The volume Sv  of a community S is defined as the number of 

edges connecting vertices inside S, i.e. the number of 1 entries in 

the adjacency sub-matrix of A corresponding to S, Sv  is defined 

as: 

,S iji j S
v A


                                (3) 

The score of S is defined as: 

 ( ) ( ) Sscore S M S v                       (4) 

The community score of a partitioning 1{ , }kS S    of a graph G 

is defined as: 

1

( )
k

i
i

CS score S


                           (5) 

The community score gives a global measure of the network 
division in communities by summing up the local score of each 

module ( ( )iscore S ) found. The problem of community 

identification has been formulated in [3] as the problem of 
maximizing CS. 

2.2.2 Community Fitness 
As referred in [1], communities are essentially local structures, 
involving the nodes belonging to the modules themselves plus at 
most an extended neighborhood of them. Social communities are 
local structures without any reference to the humankind as a 
whole. The authors of [1] firstly provided the concept of the 
community fitness of S.  

The community fitness of S is defined as: 

 
( )

( )
( ( ) ( ))

in

in out
i S

k S
CF S

k S k S 



                    (6) 

where ( )ink S  and ( )outk S are the internal and external degrees 

of the nodes belonging to the community S, and α is a positive 
real-valued parameter controlling the size of the communities. The 
problem of community identification has been formulated in [4] as 
the problem of maximizing CF. 

2.3 Non-dominated Neighbor Immune 
Algorithm (NNIA) 
In this part, we describe a novel multi-objective optimization 
algorithm, the NNIA[15]. NNIA stores non-dominated individuals 
found so far in an external population, called the dominant 
population. Only partial less-crowded non-dominated individuals, 
called active antibodies, are selected to do proportional cloning, 
uniform crossover and mutation. Furthermore, the population 
storing clones is called the clone population. The dominant 
population, active population, and clone population at time t are 

represented by time-dependent variable matrices tD , tA and tC , 

respectively. The main loop of NNIA is as follows [15].  

 

 

Algorithm 1: Nondominated Neighbor Immune Algorithm 
(NNIA) [15] 

Input:  

maxG      (maximum number of generations) 

Dn       (maximum size of dominant population) 

An       (maximum size of active population) 

Cn       (size of clone population)  

Step1: Initialization: Generate an initial antibody popula-

tion 0B  with size Dn . Create the initial 0D  , 0A  , 

and 0C  . Set 0t  . 

Step2: Update Dominant Population: Identify dominant 

antibodies in tB . Copy all the dominant antibodies to form the 

temporary dominant population (denoted by 1tDT  ). If the 

size of 1tDT   is not greater than Dn , let 1 1t tD DT  . 

Otherwise, calculate the crowding-distance values of all 

individuals in 1tDT  , sort them in descending order of 

crowding-distance, and choose the first Dn   individuals to 

form 1tD  . 

Step3: Termination: If maxt G is satisfied, export 1tD   as 

the output of the algorithm, Stop; Otherwise, 1t t  . 

1629



Step4: Non-dominated Neighbor−Based Selection: If the size 

of tD  is not greater than An , let t tA D . Otherwise, 

calculate the crowding-distance values of all individuals in tD , 

sort them in descending order of crowding-distance, and 

choose the first An  individuals to form tA . 

Step5: Proportional Cloning: Get the clone population tC  by 

applying proportional cloning to tA .  

Step6: Recombination and Hyper-mutation: Perform recombi-

netion and hyper-mutation on tC and set 
'

tC  to the resulting 

population.  

Step7: Get the antibody population tB  by combining the 

'
tC and tD ; go to Step2.  

Return: 
max 1GD


(final approximate Pareto-optimal set) 

When the number of dominant antibodies is greater than the 
maximum limitation and the size of dominant population is greater 
than the maximum size of active population, both the reduction of 
dominant population and the selection of active antibodies use the 
crowding-distance based truncation selection. The proportional 
cloning, uniform crossover, and mutation operators are described 
in detail in Section 4.  

3. ALGORITHM DESCRIPTION 
In this section we give a description of the multi-objective 
algorithm NNIA-Net, employing NNIA [15] to discover 
community structures in networks.  

Our algorithm uses the locus-based adjacency representation 
proposed in [19], employed by [9] for multi-objective clustering 
and also employed by [3, 4] for community structure detection in 
networks. In this representation, every individual of the population 

consists of N genes 1, Ng g……  and each genetic position can 

assume allele values j in the range {1,..., N} , where the N is the 
total number of nodes in this graph. If the value at ith genetic 
position is j, it means there is a link between ith node with the jth 
node. And an individual forms a sub-graph with every node 
connected to certain nodes. The decoding step of this method can 
been found in [9]. 

3.1 Initialization Methods 
Our initialization process takes in account the effective 
connections of the nodes in the network. A random generation of 
individuals could generate components that in the original graph 
are disconnected. In fact, a randomly generated individual could 
contain an allele value j in the ith position, but no connection 
exists between the two nodes i and j, i.e. the edge (i, j) is not 
present. In such a case it is obvious that grouping in the same 
cluster both nodes i and j is a wrong choice.  

3.1.1 The Traditional Initialization Method 
In order to overcome this drawback, referred in [3, 4], a “repair 
operation” is proposed, once an individual is generated, it is 
repaired, that is a check is executed to verify that an effective link 
exists between a gene at position i and the allele value j. This 

value is maintained only if the edge (i, j) exists. Otherwise, j is 
substituted with one of the neighbors of i. This guided 
initialization biases the algorithm towards a decomposition of the 
network in connected groups of nodes. We call an individual 
generating this kind of partitioning safe because it avoids 
uninteresting divisions containing unconnected nodes. Safe 
individuals improve the convergence of the method because the 
space of the possible solutions is restricted. 

3.1.2 Our New Initialization Method 
In this paper, we propose a new approach to generate safe 
individuals.  

3.1.2.1 Basic Concepts 
Our new approach introduces two concepts, the first is link table 
of a graph, second is degree of a node.  

The link table of a graph is the ith row of which is the nodes 
connected to the ith node. So, the link table has N rows, N is the 
total number of the nodes in a graph. Assume A is the adjacency 
matrix of a graph, so the ith row of the link table of it is the 
column number where A (i, :) is equal to 1. For example, if the ith 
row of A is [1 0 1 0 1 1 1 1 0 0], the ith row of the link table of 

this graph is [1 3 5 6 7 8 0 0 0 0]. The degree ik  of a generic node 

i, defined as i ijj
k A , where A (N*N) is the adjacency 

matrix of a graph G with N nodes.  

3.1.2.2 The Main Steps of Our Initialization Method 
Now, we introduce how to produce safe individuals employing the 
concepts of link table and degree. The nodes connected to the ith 
node is saved in the ith row of the link table, so when we produce 
an individual, at the position i, the allele value must be selected in 
the ith row of the link table of the graph. This method assures 
every link is effective, this means every link is existed in the 
origin graph. The safe individuals make sure that there is not 
uninteresting divisions containing unconnected nodes. 

The main steps to generate safe individuals in our new method are 
as follows: 

Algorithm 1: Generate safe individuals 
Input:    A                 (adjacency matrix of a graph) 

              num_nodes  (number of nodes)  

popsize         (size of initial population) 

Step1: Create the link table and degree of the node based on 
the adjacency matrix A of a graph: 

Procedure LinkTable 

function [link_table,degree] = LinkTable( A,num_nodes ) 

1. link_table = : zeros(num_nodes); 
2. degree = : zeros(num_nodes,1); 
3. for i = 1:num_nodes 
4.      k = 1; 
5.     for j = 1:num_nodes 
6.          if (A(i,j) == 1) 
7.             link_table (i,k) =: link_table (i,k) + j; 
8.             k = k + 1; 
9.          end 
10.     end 
11.     degree (i,1) = k - 1; 
12. end
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Step2: Create safe population based on link table and degree 
generated in Step 1: 

Procedure InitializePop 

function safe_population=InitializePop(popsize, num_nodes,  

link_table, degree) 

1. safe_population = zeros(popsize,num_nodes); 

2. for i = 1:popsize 

3.      for j = 1:num_nodes 

4.            safe_population(i,j)= 

                   link_table(j,ceil(rand*degree(j,1))); 

5.           end 
6.      end 

Return: safe_population 

3.1.2.3 The Advantages of Our New Method 
The main differences of these two methods are as follows: 

1) Traditional method generates a random individual firstly and 
then repairs it. Once an individual is generated, it is repaired, that 
is a check is executed to verify that an effective link exists 
between a gene at position i and the allele value j. This value is 
maintained only if the edge (i, j) exists. Otherwise, j is substituted 
with one of the neighbors of i. 

2) Our new method firstly finds the available values of each 
position, and save the values in the link table of this node. Then, 
when an individual is generated, the value in a certain position 
only can be chosen from the values in the link table. This 
operation makes sure every connection is existed in the graph. 

3) Without the repair operation, our new method needs less time 
to generate a population in the same size compared with the 
method in [5, 6].  

In order to compare our new method to generate safe individuals 
with the method used in [5, 6], simple experiment is operated in 
Section 5(1). We generate the same size population with the same 
adjacency matrix in these two different methods, then we compare 
the times they use separately. The experimental results show that 
our new method is much more efficient.  

3.2 Operators in Our Algorithm 
3.2.1 The Cloning Operator 
The cloning operator we used in our algorithm is proportional 
cloning which was introduced in [13] in detail. In immunology, 
cloning means asexual propagation so that a group of identical 
cells can be descended from a single common ancestor, such as a 
bacterial colony whose members arise from a single original cell 
as the result of mitosis. In this paper, the individual with greater 
crowding-distance value is reproduced more times. The crowding-

distance [19] of a dominant antibody  d D is given by 

   
max min

1

( , )
( , )

k
i

i i i

d D
d D

f f


                                (7) 

Where 
max

if and 
min

if  are the maximum and minimum 

value of the ith objective and 

' ''

, ( )
( , )

min{ ( ) ( )},

i

i

i i

if f d m or M
d D

f d f d others


  
          (8) 

Where
' '' '' ', : ( ) ( ) ( )i i id d D f d f d f d   ， 

' 'min{ ( ) | }im f d d D  , ' 'max{ ( ) | }iM f d d D  .  

Based on the crowding-distance ( , )d D , the density of 

dominant antibodies surrounding d in the population D can be 
estimated.  The individual with greater crowding-distance value 
has a larger cloning scale. After we select the active population 
from the dominated population, each active antibody has a cloning 
scale according to its crowding-distance. It is mentioned in [13] 
that how the crowding-distance values of boundary solutions are 
set.  The aim is that the greater the crowding-distance value of an 
individual, the more times the individual will be reproduced. So 
there exist more chances to search in less-crowded regions of the 
trade-off front.  

3.2.2 The Crossover Operator 
The crossover operator we used in our algorithm is uniform 
crossover which is suitable to use in the locus-based 
representation because it guarantees the maintenance of the 
effective connections of the nodes in the network in the child 
individual. In fact, because of the biased initialization, each 
individual in the population is safe, that is it has the property, that 
if a gene i contains a value j, the n the edge (i, j) exists [3]. Thus, 
given two safe parents, a random binary vector is created. 
Uniform crossover then selects the genes where the vector is all 
from the first parent, and the genes where the vector is a 0 from 
the second parent, and combines the genes to form the child. The 
child at each position i contains a value j coming from one of the 
two parents [4]. Thus the edge (i, j) exists. This implies that from 
two safe parents a safe child is generated. 

3.2.3 The Mutation Operator 
The mutation operator that randomly changes the value j of an ith 
gene causes a useless exploration of the search space, because of 
possible values an allele can assume are restricted to the neighbor 
of gene i. This repaired mutation guarantees the generation of a 
safe mutated child in which each node is linked only with one of 
its neighbors.  

4. EXPERIMENTAL REASULTS 
4.1 Our New Initialization Method 
In this part, we study the efficiency of our new approach to 
initialize population on a synthetic data set.  

4.1.1 The Benchmark 
The synthetic data set we used here is the benchmark proposed by 
M. Girvan et al. [12] which is a large set of artificial, computer-
generated graphs. Each graph is constructed with 128   

vertices, each of which is connected to exactly 16 other vertices. 
The vertices are divided into four separate communities with some 
number internal degree of each vertex's 16 connections made to 
randomly chosen members of its own community and the    
remaining external degree made to random members of other    
communities. This produces graphs which have known 
community structure, but which are essentially random in other 
respects.  
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Table 1. Running time of the two different methods and the improvement of our method when external degree of a node is 2 

popsize 200 400 600 800 1000 1200 1400 1600 1800 

Traditional Method(time1) 0.109 0.203 0.297 0.390 0.485 0.594 0.703 0.781 0.859 

Our New Method(time2) 0.063 0.125 0.203 0.266 0.344 0.421 0.485 0.547 0.625 

time1-time2 0.046 0.078 0.094 0.124 0.141 0.173 0.218 0.234 0.234 

(time1-time2)./time1 0.424 0.384 0.317 0.318 0.291 0.291 0.310 0.300 0.272 

Average Improvement 32.3% 

4.1.2 The Experimental Results on Our New 
Initialization Method 
Using these graphs, we tested the performance of our new 
initialization approach and the traditional approach referred in [3, 
4]. The running times to generate the same size of population 
employing the different methods are compared here. 
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Figure 1. The running time versus the increasing of popsize 
when we generate safe individuals by employing the two 
different methods.  

Figure 1 shows that in both methods, the running times are 
increasing with the popsize and our method is much more efficient 
than the traditional method. The running time of generating 10000 
individuals in our method is almost 3.25s and 4.75s in the 
traditional method. It is nearly improved by 30%. So, larger the 
size of population is, the more time our method saves. 

Table 2. Running time versus the external degree of a node 

External Degree 0 2 4 6 8 

t1(s) 48.14 48.03 47.98 47.87 48.12 

t2(s) 34.68 34.96 34.71 34.73 34.92 

Improvement(t1-t2) 13.46 13.07 13.27 13.14 13.20 

Table 1 clearly shows the good performance of our initialization 
method. Our method uses less time to generate the same size of 
population and it can save more than 30% time compared to the 
traditional method. 

It is shown in Table 2, the running time cost to generate 100000 
individuals by employing traditional method (t1) and our new 
method (t2). We can find that the running time is slightly changed 
with the external degree of a node.  

4.2 Experiments Results of NNIA-Net 
In this section we study the effectiveness of our approach on a 
synthetic data set. Then we compare the results obtained by 
NNIA-Net with the Girvan and Newman’s algorithm, in the 
following referred as GN, on some real-worlds networks for which 
the partitioning in communities is known. In both cases we show 
that our non-dominated neighbor immune algorithm successfully 
detects the network structure and is competitive with that of 
Girvan and Newman.  

4.2.1 Evaluation Metrics 
The evaluation metrics we use in this paper were also introduced 
in [3, 4]. 

An external measure, the Normalized Mutual Information(NMI) 
was adopted to estimate the similarity between the true partitions 
and the detected ones, and an internal one, the modularity 
introduced by Girvan and Newman. The Normalized Mutual 
Information is a similarity measure proved to be reliable by Danon 
et al. [1]. Given two partitions A and B of a network in 

communities, let C be the confusion matrix whose element ijC  is 

the number of nodes of community i of the partition A that are 
also in the community j of the partition B. The normalized mutual 

information ( , )I A B  is defined as: 
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. . . .1 1

2 log( / )
( , )

log( / ) log( / )

A B

A B
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C C N C C N
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 


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

 
 

     (9

) 

where ( )A Bc c is the number of groups in the partition A (B), 

. .( )i jC C is the sum of the elements of C in row i (column j), and 

N is the number of nodes.  If A B , ( , ) 1I A B  . If A  and 

B  are completely different, ( , ) 0I A B  .The larger value of 

NMI represents the greater similarity between A and B . 

The modularity of Newman and Girvan [18] is a well known 
quality function to evaluate the goodness of a partition. Let k be 
the number of modules found inside a network, the modularity is 
defined as:  

2

1

[ ( ) ]
2

k
s s

s

l d
Q

m m

                            (10) 

where sl  is the total number of edges joining vertices inside the 

module s , and sd is the sum of the degrees of the nodes of s .  
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4.2.2 Synthetic Data Set 
The synthetic data set we use here was the benchmark introduced 
in 4.1.1. Nine different networks for values of external degree of a 
node ranging from 0 to 8 were generated, and the NMI is used to 
measure the similarity between the detected ones and the true 
partitions.  
It is shown in Figure 2(a) that the NMI, averaged over the 20 runs, 
for values of the exponent r ranging from 1 to 1.5. 

It is pointed out that, independently the value of r, NNIA-Net is 
able to detect exact community structure for the external degree of 
a node ranging from 0 to 4 (NMI=1). 

With the increasing of the external degree of a node, each node 
has less links inside its community and more links with the rest of 
the network and it is more and more difficult to detect the 
structure within them (the values of NMI decrease).  

However, when the external degree of a node increases, higher 
values of r help in the retrieval of the true community structure.  

4.2.3 Real-life Data Set 
We now show the application of NNIA-Net on two real-world 
networks same as in [3, 4], the Zachary’s Karate Club, the 

Bottlenose Dolphins, and compare our results with those obtained 
by Girvan and Newman’s algorithm (GN).  

Figure 2(b) displays the Pareto front in one out of the 10 runs, the 
network corresponding to the best value of NMI=1 with the 
modularity=0.37147(solution (7)), the one with the NMI=0.82552 
and modularity=0.33908(solution (4)) and the one with the 
NMI=0.70714 and modularity=0.41511(solution (2)) . We can 
find that the solutions of the Pareto front have a hierarchical 
structure. Each of these solutions corresponds to a different trade 
off between the two objectives and thus to diverse partitioning of 
the network consisting of various number of clusters. The true 
partitioning which is displayed in Figure 2(d), consists of two 
modules obtained by the split of the two main groups.  It is shown 
in Figure 2(c) that the left sub-graph is divided into two smaller 
ones and in Figure 2(e) that both the sub-graphs are divided into 
two smaller ones respectively (solution (2)).  

The algorithm was executed 10 times on the two real-life data 
sets. At each run, the solutions having the best value of NMI and 
the best value of modularity have been selected. For each of them 
the corresponding modularity and NMI values, respectively, have 
been computed. 

 

Table 3. Best NMI results obtained by our method and Girvan and Newman’s algorithm for the real-life data sets 

 avg best NMI std best NM avg Mod std Mod GN NMI 

Zackary’s Karate Club 1 0 0.371 0 0.692 

Bottlenose Dolphins 1 0 0.373 0 0.573 
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Figure 2. (a) NMI obtained by NNIA-Net on the synthetic network for different values of the exponent r.(b) Pareto 
front of one run. (c) Network corresponding to solution (4). (d) Network corresponding to the exact solution (node 
number (7) on the Pareto front). (e) Network corresponding to solution (2).
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Table 4. Best modularity results obtained by our method and Girvan and Newman’s algorithm for the real-life data sets 

 avg best Mod std best Mod avg NMI std NMI GN Mod 

Zackary’s Karate Club 0.415 0.02e-16 0.606 0.005e-15 0.380 

Bottlenose Dolphins 0.505 0.017 0.528 0.018 0.495 

 

The values are shown in Table 3 and Table 4.  The tables clearly 
show the excellent performance of NNIA-Net with respect to 
Girvan and Newman’s approach. At each run, the true partitioning 
to the two real-world data sets are obtained employing our 
algorithm NNIA-Net. 

5. CONCLUSIONS  
The paper presents a community detection algorithm based on 
NNIA, whose main idea is to optimize two objective functions 
which can evaluate a partitioning to a network. What’s more, a 
new initialization method to generate safe individuals is firstly 
proposed in our paper. The experimental results show that our new 
initialization method is able to save as much as 30% time 
compared with the traditional initialization method and NNIA-Net 
has the capability to provide reasonable solutions to community 
detection problem. 
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