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ABSTRACT

Bin Packing problems are NP-hard problems with many prac-
tical applications. A variant of a Bin Packing Problem was
proposed in the GECCO 2008 competition session. The best
results were achieved by a mono-objective Memetic Algo-
rithm (MA). In order to reduce the execution time, it was
parallelised using an island-based model. High quality re-
sults were obtained for the proposed instance. However,
subsequent studies concluded that stagnation may occur
for other instances. The term multiobjectivisation refers to
the transformation of originally mono-objective problems as
multi-objective ones. Its main aim is to avoid local optima.
In this work, a multiobjectivised MA has been applied to the
GECCO 2008 Bin Packing Problem. Several multiobjectivi-
sation schemes, which use problem-dependent and problem-
independent information have been tested. Also, a paral-
lelisation of the multiobjectivised MA has been developed.
Results have been compared with the best up to date mono-
objective approaches. Computational results have demon-
strated the validity of the proposals. They have provided
benefits in terms of solution quality, and in terms of time
saving.
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1. INTRODUCTION

Bin Packing problems are combinatorial NP-hard prob-
lems in which items with different shapes, volumes and/or
areas must be packed into a finite number of bins. They
are closely related to cutting problems, whose main goal is
to cut large stock sheets into a set of smaller pieces. In
many cases, both problems are analysed together, referring
them as cutting and packing problems. Cutting and packing
problems have many applications and are widely used inside
more complex systems, e.g., filling up containers and trucks,
pallet loading, optimisation of the layout of electrical cir-
cuits, multiprocessor scheduling, etc. Cutting and packing
problems can be classified according to several character-
istics: the number of dimensions, the number of available
patterns, the shape of the patterns (regular or irregular),
the orientation, the objective that must be optimised, etc.
Some popular variants are: 2D strip packing, constrained
2D cutting stock, knapsack problems, packing with cost, and
online packing. In the GEcco 2008 competition session® a
variant of a 2D bin packing problem (2DPP) was proposed.

Some exact approaches have been analysed [16] for the res-
olution of cutting and packing problems. In order to reduce
the execution time, some parallel exact approaches have
been designed. However, since exact approaches are prac-
tically unaffordable for many real-world instances, a wide
variety of approximated algorithms have also been devel-
oped. Among them, meta-heuristics are a family of tech-
niques which have become very popular. Memetic Algo-
rithms (MAs) [19] are a synergy of Evolutionary Algorithms
(EAs) or any population-based approach with separate in-
dividual learning. They are of great value because they
perform some orders of magnitude faster than traditional
genetic algorithms for some problem domains.

In order to reduce the computational time, several studies
have considered the parallelisation of EAs [1]. Parallel evolu-
tionary algorithms (pEAs) can be classified [4] in three major
computational paradigms: master-slave, island-based, and
diffusion. When compared to the other parallel proposals,
the island-based approach brings two benefits: it maps eas-
ily onto the parallel architectures (thanks to its distributed
and coarse-grained structure), and it extends the search area
(due to multiplicity of islands) preventing from sticking in
local optima. Island-based models, also known as multi-
deme models, have shown good performance and scalability
in many areas [1]. Island-based models conceptually divide
the overall pEA population into a number of independent
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and separate populations, i.e., there are separate and simul-
taneously executing EAs (one per processor or island). Each
island evolves in isolation for the majority of the pEA exe-
cution, but occasionally, some individuals can be migrated
between neighbour islands. Such paradigms can be extended
to MAs parallelisation (pMAs) substituting EAs by MAs.

The best results for the instance proposed in the compe-
tition were achieved by a mono-objective MA. In [14] an
island-based model in which each island executes a configu-
ration based in this MA was proposed. Although high quality
results were obtained for the proposed competition instance,
subsequent studies concluded that stagnation may occur for
other ones. In order to deal with stagnation, several meth-
ods have been designed [7]. Some of the simplest techniques
rely on performing a restart of the approach when stagna-
tion is detected. In other cases, a component which inserts
randomness or noise in the search is used. Maintaining some
memory, in order to avoid exploring the same zones several
times, is also a typical approach. Finally, population-based
strategies try to maintain the solutions set diversity. By re-
combining such a set of solutions, more areas of the decision
space can be explored.

The term multiobjectivisation was introduced in [12] to
refer to the reformulation of originally mono-objective prob-
lems as multi-objective ones. Multiobjectivisation changes
the fitness landscape, so it can be useful to avoid local op-
tima [8], and consequently, to make easier the resolution of
the problem. However, it can also produce a harder prob-
lem [2]. There are two different ways of multiobjectivising
a problem. The first one is based on a decomposition of the
original objective, while the second one is based on aggre-
gating new objective functions. The aggregation of alter-
native functions can be performed by considering problem-
dependent or problem-independent information.

The first objective of this work has been the analysis of
the 2DPP multiobjectivisation. Several multiobjectivisations
which take into account problem-dependent and problem-
independent information have been used. The applied opti-
misation methods have been compared with the best sequen-
tial approach published in [14]. Depending on the tested in-
stance, multiobjectivisation methods could behave better or
worse than the mono-objective strategies. Given that, the
possibility of applying higher-level resolution methods such
as hyper-heuristics to automate the selection of the proper
approach seems very promising. In many cases, island-based
models have been hybridised with hyper-heuristics [20]. Con-
sequently, the second objective of this work has been the val-
idation of island-based models together with the proposed
multiobjectivisation methods. For this second study, two
island-based models have been taken into account. These
models make use of the mono-objective approach and the
best behaved multiobjectivisation method detected in the
first aforementioned study. The validity of the proposals
have been demonstrated in the experimental evaluation.

The rest of the paper is structured as follows: the math-
ematical formulation for the 2DPP is given in Section 2.
Section 3 is devoted to describe the applied optimisation
scheme. MAs with its learning process and the employed
genetic operators are presented. Also, the multiobjectivisa-
tion methods are detailed. The main features of island-based
models are depicted in Section 4. Then, the experimental
evaluation is described in Section 5. Finally, the conclusions
and some lines of future work are given in Section 6.
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2. FORMAL DEFINITION OF 2DPP

The proposed problem in the competition session is a two-
dimensional variant of a bin packing problem. Problem in-
stances are described by the following data:

e The sizes of a rectangular grid: X, Y.

e The maximum number which can be assigned to a grid
position: N. The value assigned to each grid location
is an integer in the range [0, N].

e The score or value associated to the appearance of each
pair (a,b) where a,b € [0, N]: v(a,b). Note that v(a,b)
is not necessarily equal to v(b,a).

A candidate solution is obtained by assigning a number
to each grid position. Thus, the search space is constituted
by (N +1)*?" candidate solutions. The objective of the
proposed problem is to best pack a grid so that the sum
of the point scores for every pair of adjacent numbers is
maximised. It is considered that two positions are adjacent
if they are neighbours in the same row, column, or diagonal
of the grid. Once that a particular pair is collected, it cannot
be collected a second time in the same grid.

Mathematically, the problem objective is to find the grid
G which maximises the fitness function f:

= Zng(a,b)

a=0 b=0
where
(a,b) = 0 if (a,b) are not adjacent in G
V24, 5) = v(a,b) if (a,b) are adjacent in G

3. OPTIMISATION SCHEME
3.1 Memetic Algorithms

Memetic algorithms [13, 19] are a synergy of a population-
based approach with separate individual learning or local
improvement procedures. These algorithms are also referred
to in the literature as Cultural Algorithms, Baldwinian Evo-
lutionary Algorithms, Lamarckian Evolutionary Algorithms,
or Genetic Local Search. They are of great value because
they perform some orders of magnitude faster than tra-
ditional genetic algorithms for some problem domains [6].
These algorithms have been applied in the mono-objective
field [18] and also in the multi-objective one [22].

Algorithm 1 shows a general pseudocode of a memetic
strategy. The main difference with respect to the corre-
sponding original algorithm is the addition of a learning
process step (line 5). There are two different ways to in-
corporate the individual learning [24]. On the one hand,
the Lamarckian learning forces the genotype to reflect the
result of improvement in the learning by placing the lo-
cally improved individual back into the population to com-
pete for reproduction. On the other hand, the Baldwinian
learning modifies the fitness of the individuals to reflect the
improvement after the learning process. However, the im-
proved genotype is not encoded back into the population.
Both kinds of approaches have been successfully applied [15].
Learning processes usually make use of problem domain in-
formation. Nevertheless, some general methods have also
been used.



Algorithm 1 MA Pseudocode

1: Generate an initial population
2: while (not stopping criterion) do
3: Evaluate all individuals in the population
: Variation phase
Perform individual learning process in the population with
a probability p;
Select the individuals which survive to the next generation
end while

4
5
6:
7

The learning process step is usually applied with a prob-
ability p;. In [10] the effect of the probability p; is analysed
for a set of multi-objective benchmark problems. Authors
concluded that the performance of MAs can be improved by
dynamically changing the probability p;. However, in the
considered approach the individuals obtained after the vari-
ation phase may not have high enough quality components.
Moreover, they can be easily improved by the individual
learning process. Thus, the best results were obtained by
applying the learning process in each generation. An ef-
fort to highly reduce the computational requirements of the
learning process has been performed.

In the present work, two different MAs have been com-
pared. They belong to the first generation of Mas [17]. The
first one (VarPopEA) is the mono-objective approach pre-
sented in [14]. It is a MA which combines a modified evo-
lutionary algorithm with a (1 + 1) selection operator and a
learning process specifically designed to face the 2DPp. The
algorithm has the ability to perform as a trajectory-based
algorithm when no stagnation is detected. However, it in-
creases the population size in order to avoid strong local op-
tima when necessary, behaving then as a population-based
algorithm. Nevertheless, the method may not escape from
local optima for some instances. The second one is a mod-
ified version of the well-known multi-objective evolutionary
algorithm NSGA-11. This version incorporates the learning
process after the variation stage of the original algorithm.
For both MAs, individuals are encoded as a bidimensional
array of integer values, G, where G(z,y) is the number as-
signed to the grid position (z,y).

3.2 Learning Process for the 2DPP

Usually, multi-objective MAs make use of a multi-objective
learning process [11]. However, since in the current paper
the 2DPP has been multiobjectivised, the learning process
has only taken into account the original objective. The ap-
plied process can be classified as a Lamarckian learning, i.e.,
the genotype reflects the learning process improvements. It
is based on a mono-objective stochastic hill-climbing local
search. The application of a local search allows admissible
solutions to be achieved in relatively short times. The ap-
plied local search strategy [14] has the following features.
For each pair of adjacent grid positions (4,5) and (k,1), a
neighbour is considered. Each neighbour is constituted by
assigning the best possible values to the positions (i, ) and
(k,1), leaving intact the assignments in any other grid loca-
tion. In order to assign the best values to both locations,
the trivial solution consists in enumerating all possible pairs,
for a later selection of the best one. As such approach is
computationally too expensive, a mechanism to prune the
explored values has been used. First, all the possible assign-
ments n € [0, N] to the grid position (4,j) are considered,
and the fitness contribution of each assignment v;;(n), as-
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suming position (k,!) unassigned, is calculated. The same
process is performed for the position (k,1), assuming the
position (7, ) unassigned, and thus calculating vy;(n). The
fitness contribution obtained by assigning a value a to the
position (4,7), and a value b to the position (k,1), is given
by:

vij(a) + vkt (b) +v'(a, b) — vrep

where v'(a,b) = v(a,b) + v(b,a) if the pair (a,b) was not
already in the grid, or 0 if it was, and v,.¢p is the value asso-
ciated to pairs that are constituted by both, the assignment
of the value a to (i,7) and the assignment of the value b to
(k, 1), which must be considered only once. An upper bound
of such fitness contribution is given by:

vij(a) + vk (b) + min(bestV (a), bestV (b))

where bestV(n) is the maximum value associated to any
pair (n, m), m € [0, N], i.e., max{(v(n, m)+v(m,n)}. Being
best F'it the best fitness currently achieved for an assignment
of the positions (,5) and (k,1), the only values a’, b" that
must be considered are the ones in which v;;(a’) 4+ v (b') +
min(bestV (a’), bestV (b')) > best Fit holds. By omitting the
values in which the previous inequality does not hold, the
neighbourhood to be considered is highly reduced.

The order in which neighbours are analysed is determined
in a random way. The local search moves to the first new
generated neighbour that improves the current solution. The
local search stops when none of the neighbours improves the
current solution.

3.3 Genetic Operators

A mutation and a crossover operator are applied on each
generation (line 4 of the algorithm). Several variation op-
erators were tested in [14]. The best behaved ones have
been selected. The crossover operator consists in a two-
dimensional sub-string crossover (ssx) [9]. First, a grid po-
sition is selected as the division point. Then, it randomly
decides to do a vertical or horizontal crossover. ssX is illus-
trated in Figure 1. H1 and H2 are generated by means of an
horizontal crossover, while V1 and V2 are generated by the
application of the vertical one. In both cases, the position
(3,2) is selected as the division point.

Parentl Parent2
13|98 416 |11] 8
5417 ]2 1w|115])3
6 |12|11]10 2 |12|7

H1 H2
1|3 |9|8 416 (f11] 9
54|53 wmi1r]7 |2
2112|718 6 |12f11 )10

Wl V2
113 g @ 416|118
5] 4 5 3 mj1]7{z2
6 |12 7 8 2 121110

Figure 1: Sub-string Crossover (SSX)

The applied mutation operator was the Uniform Mutation
with Domain Information (UMD). Each gene is mutated
with a probability between min_p,, and max_p,,. In order
to perform the new assignment to the gene, a random value
is selected among the ones that produce a non-zero increase
in the fitness value.



3.4 Multiobjectivisations

Several multiobjectivisation schemes have been explored
for the 2DPP. Multiobjectivisation usually decreases the se-
lection pressure of the original approach. Therefore, some
low quality individuals could survive in the population with
a higher probability. However, in the long term these indi-
viduals could help to avoid stagnation in local optima, so
higher quality solutions might be obtained.

Most of the applied multiobjectivisation strategies have
considered problem-independent information, in which an
artificial objective function has been added to multiobjec-
tivise the 2DPP. The first objective has been selected as the
fitness function of the 2DPP, while for the second one, an
artificial function which tries to maximise the diversity has
been used. One of the main challenges has been the selection
of this artificial function. In fact, it has been demonstrated
that the proper artificial function depends on the considered
problem and even instance [21]. A comparison of a set of
well-known schemes has been carried out. Moreover, a novel
artificial objective has also been tested.

Several options have been proposed to define the artificial
objective [3]. Some schemes based on the usage of the Eu-
clidean distance on the decision space have been analysed:

e DCN: Distance to the closest population neighbour.
e ADI: Average distance to all population individuals.

e DBI: Distance to the best population individual, i.e.,
the one with the highest 2DPP fitness.

Also, the following ones have been taken into account:

e Random: A random value is assigned as the second ob-
jective to be minimised. Smaller random values may be
assigned to some low quality individuals which would
get a chance to survive.

e Reverse: In this case, the optimisation direction of the
original objective function is inverted and it is used as
the artificial objective. This approach highly decreases
the selection pressure, so a large number of Pareto-
optimal solutions could be included at each generation.

Finally, a novel variant of the DBI scheme has also been
considered. It is based on the addition of a threshold which
penalises those solutions that may have a very poor quality.
In DBI_THR a threshold is established over the 2DPP objective
function. Thus, individuals that are not capable to achieve
the fixed threshold are penalised by assigning a zero value
to the second objective function.

A novel multiobjectivisation by aggregation which con-
siders problem-dependent information (Dependent) has also
been tested. It makes use of two objectives. The first one is
the original fitness function. For the second objective, the
original 2DPP fitness function is decomposed in two inde-
pendent fitness functions fo and fi. The decomposition is
performed in the following way. First, a table containing all
possible pairs whose score is not equal to zero is constituted.
Then, this table is sorted based on the score of the appear-
ance of each pair p. The resultant position of each p, after
the sort, is denoted as i,. The fitness associated to each
p is taken into account to calculate the function f, where
n = i, mod 2. Finally, fo is used as the second objective.
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4. ISLAND-BASED MODELS

In island-based models, the population is divided into a
number of independent subpopulations or demes. Each sub-
population is associated to an island and a MA configuration
is executed over each subpopulation. Usually, each available
processor constitutes an island which evolves in isolation
for the majority of the parallel run. However, collabora-
tive schemes could lead to a better behaviour. Therefore,
a migration stage which enables the transfer of individuals
among islands is generally incorporated.

Four basic island-based models are seen to exist [4]: all is-
lands execute identical configurations (homogeneous), all is-
lands execute different configurations (heterogeneous), each
island evaluates different objective function subsets, and
each island represents a different region of the genotype or
phenotype domains. In the first two variants, the population
of each island represents solutions to the same problem. In
the third variant, each island searches a reduced problem do-
main space. The last variant isolates each processor to solve
specific, non-overlapping regions of genotype/phenotype do-
main space. The parallel strategy presented in this paper is
based on the homogeneous island-based model.

Migrations are an essential operation on these parallel
schemes, so that they allow the collaboration among islands.
A well designed migration stage could provide a successful
collaboration. Thus, the solution search space could be bet-
ter explored and higher quality solutions could be obtained.
However, if an unsuitable migration stage is introduced in
the model, the effect could be similar, or even worse, than
having separate MAs simultaneously executing on several
processors with no communication among them. Therefore,
the migration stage must be carefully defined. In order to
configure the migration stage, it is necessary to establish the
migration topology (where to migrate the individuals) and
the migration rate (how many individuals are migrated and
how often). Also, individuals which are going to be migrated
and those which are going to be replaced must be selected.
Such a selection is performed by the use of the migration
scheme and the replacement scheme, respectively.

Applying island-based models, landscapes may be com-
pletely different from those produced by its corresponding
sequential MA. As such the pMA may find better or equiva-
lent solution in a lower amount of time. Depending on the
selected migration stage the landscape is affected on differ-
ent ways [23]. In [14], an island-based model is successfully
applied to the 2DPP. In such a case, every island configu-
ration is based on VarPopEA. The migration stage has the
following characteristics. An all to all connected migration
topology is used. An elitist migration scheme is performed.
Specifically, a subpopulation individual is migrated when it
is better than any member of its previous generation. Re-
placements are also performed following an elitist scheme.
They only take place when the migrated individual is better
than any of the individuals in the destination island.

For the island-based multiobjectivised approach here pre-
sented, a similar migration stage has been used. The only
one difference with the aforementioned migration phase re-
sides on the replacement scheme. In this case, the elitist
ranking scheme [23] has been applied. It ranks all Pareto
fronts and replaces an individual from the worst ranked front
with the immigrant. This scheme also provides high selec-
tion pressure, but it has been specifically designed for the
multi-objective field.



S. EXPERIMENTAL EVALUATION

This section is devoted to describe the experiments per-
formed with the multiobjectivised memetic algorithm ex-
posed in Section 3 and with the island-based multiobjec-
tivised memetic algorithm detailed in Section 4. The ob-
tained results are compared with the corresponding mono-
objective versions of both approaches. These mono-objective
versions are based on the VarPopEA algorithm, which is the
algorithm that up to date has reported the highest qual-
ity results for 2DPpP. Tests have been run on a Debian
GNU/Linux computer with four AMD ® Opteron ™ 6164
HE at 1.7 GHz and 64 Gb RAM. The compiler which has
been used is gcc 4.4.5. Comparisons have been performed
considering two instances. The first one is characterised by
the following parameters: X = 10, Y = 10, N = 99, and
9032 possible pair scores. The second one is the one which
was proposed in the competition session. Its parameters
are the following: X = 20, Y = 20, N = 399, and 15962
possible pair scores. Since we are dealing with stochastic
algorithms, each execution has been repeated 30 times. In
order to provide the results with confidence, comparisons
have been performed applying the following statistical anal-
ysis [5]. First, a Shapiro-Wilk test is performed in order
to check whether the values of the results follow a normal
distribution or not. If so, the Levene test checks for the ho-
mogeneity of the variances. If samples have equal variance,
an ANOVA test is done. Otherwise, a Welch test is per-
formed. For non-gaussian distributions, the non-parametric
Kruskal-Wallis test is used to compare the medians of the
algorithms. A confidence level of 95% has been considered.

The first experiment is devoted to analyse the behaviour
of multiobjectivisation when applied to 2DPP. An analy-
sis of the solutions quality of seven different configurations
of the sequential multiobjectivised memetic algorithm has
been performed. Each configuration has applied one of the
seven multiobjectivisation schemes proposed in Section 3.4.
A threshold value equal to 0.99 has been fixed for DBI_THR.
Results have been compared with the ones obtained by Var-
PopEA. In every case, the stopping criterion has been fixed
to 24 hours. In the case of the multiobjectivised memetic
algorithm, a population size equal to 10 individuals has
been fixed. The same parameters used in [14] have been
applied in the case of VarPopEA. For both memetic algo-
rithms, the UMD operator and the SSX operator have been
applied. The UMD operator has used the next parameterisa-
tion: min_p, = 0.1 and maz_p, = 0.15. The SSX operator
was applied for each offspring, i.e., p. = 1.

Figure 2 shows, for the first instance, the evolution of the
fitness function average value for the different schemes. Four
multiobjectivised models obtain a higher value than Var-
PopEA. The Dependent multiobjectivisation was not able
to obtain high quality results. Table 1 shows, for 24 hours
of execution, whether the row configuration is statistically
better (1), not different (+»), or worse(]), than the corre-
sponding column configuration. The differences among the
three best multiobjectivised approaches and VarPopEA are
significant, showing the benefits of multiobjectivisation for
the analysed instance. Similar information is given for the
second instance in Figure 3 and Table 2. In this instance
VarPopEA average value is higher than the ones obtained
by the multiobjectivised approaches. Moreover, differences
among VarPopEA and the multiobjectivised approaches are
significant. Thus, with the considered parameterisation, the
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Figure 3: Fitness Evolution for the Second Instance

most adequate algorithm depends on the instance. Multiob-
jectivisation has been useful only for small instances because
it requires the evolution of a large amount of generations.
In the 2DPP first instance note that about 17 times more
generations than in the second instance have been evolved.

The main aim of the second experiment is to study the be-
haviour of island-based models. T'wo homogeneous island-
based models configured as explained in Section 4, have
been executed. The first one (Mono-Island) makes use of
VarPopEA. The second one (Multi-Island) uses, for each in-
stance, the best behaved multiobjectivised approach of the
first experiment. Both models have been executed using four
islands and a stopping criterion of 12 hours. Figure 4 shows,
for the first instance, the boxplots obtained by the sequential
and parallel models in a fixed time of 12 hours. Both parallel
models have clearly improved the results obtained by their
corresponding sequential versions. In this case, both multi-
objectivised approaches have improved the mono-objective
ones. In fact, the best results have been achieved by Multi-
Island. For the sequential schemes, differences have been
more noticeable than for the parallel models. For the sec-
ond instance, the same information is shown in Figure 5. In
this case, both parallel models have also improved their cor-
responding sequential schemes. Solutions obtained by Var-
PopEA have clearly improved the ones obtained by DBI_THR.
Moreover, Multi-Island has not been able to achieve the high



Table 1: Statistical Comparison of Configurations for the First Instance
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Figure 4: First Instance Boxplots in 12 Hours

quality solutions achieved by VarPopEA. Therefore, for this
instance, multiobjectivisation has not reported benefits.

The previous analysis has shown that parallel approaches
have obtained higher quality solutions than their correspond-
ing sequential models when the same stopping criterion is
considered. In order to check which model has made a bet-
ter usage of the computational resources, Figure 6 shows,
for the first instance, the boxplots of each model when a
similar amount of computational resources is used. The
same information is shown in Figure 8 for the second in-
stance. Since four islands have been considered for the par-
allel models, results of sequential schemes are shown taking
into consideration a stopping criterion of 24 hours, while for
the parallel schemes the stopping criterion has been fixed
to 6 hours. The memetic island-based models have made
a similar usage of computational resources than their cor-
responding sequential approaches for both instances. Even
for the first instance, Mono-Island has made a better usage
of computational resources than VarPopEA. Since computa-
tional resources are used in a parallel way with the memetic
island-based models, the validity of the here presented par-
allel approaches has been demonstrated.

Run-length distributions are a useful tool to quantify the
improvement of the parallel models. They show the relation
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Figure 5: Second Instance Boxplots in 12 Hours

between success ratios and time. Success ratio is defined
as the probability of achieving a certain quality level. Run-
length distributions have been calculated for the best mono-
objective and multiobjectivised approaches, as well as their
parallelisations. In order to establish a high enough qual-
ity level for each instance, it has been fixed as the average
fitness obtained in 6 hours of execution by the worst of the
aforementioned models.

Figure 7 shows the run-length distribution for the first
instance. It shows the superiority of the parallel schemes.
Considering the times required to achieve a 50% of success
ratio, superlinear speedups have been obtained, compar-
ing each sequential algorithm with its corresponding par-
allel scheme. The main reason has been that the popula-
tion increment in the parallel approaches has allowed avoid-
ing stagnation. Since VarPopEA behaves essentially as a
trajectory-based algorithm, its parallelisation had a higher
impact over the performance. In fact, for the same compu-
tational effort, parallel schemes have obtained higher quality
levels (Figure 6).

The run-length distributions for the second instance are
shown in Figure 9. In this case, the parallel schemes ben-
efits can also be appreciated. Considering times to achieve
a 50% of success ratio, the speedup value for Mono-Island
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has been 1.95, when it has been compared with VarPopEA.
The speedup value for Multi-Island has been 2.42, when it
has been compared with DBI_THR. When success ratios from
25% to 75% have been taken into account, the speedup fac-
tors have changed. In the case of the mono-objective ap-
proaches, the speedup values have ranged from 1.95 to 2.13.
The speedup values have ranged from 1.89 to 3.58 for the
multiobjectivised schemes.

6. CONCLUSIONS AND FUTURE WORK

Bin Packing problems are Np-hard problems with many
practical applications. A variant of a Bin Packing Prob-
lem (2DPP) was proposed in the GECCO 2008 competition
session. VarPopEA is a memetic approach which has pro-
vided the best known results for the 2DPP. However, it suf-
fers of stagnation with some instances. This paper anal-
yses the usage of multiobjectivisation as a technique that
facilitates the escaping of local optima. Multiobjectivised
configurations of a memetic algorithm which have consid-
ered problem-dependent and problem-independent informa-
tion have been applied. The memetic approach is based on
NSGA-II. Results obtained for two different instances have
been compared. The Dependent multiobjectivisation has
not been able to obtain high quality results. However, three
multiobjectivised models have obtained better results than
VarPopEA, for the first instance. By contrast, in the case
of the second instance, VarPopEA has been the best be-
haved approach. Therefore, the most adequate algorithm
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depends on the instance.  Given that, the possibility of
applying hyper-heuristics to automate the selection of the
proper approach seems very promising. Models which hy-
bridise hyper-heuristics and island-based models have been
previously applied in many fields with success. Thus, island-
based models have also been analysed in this work. Mono-
objective and multiobjectivised homogeneous island-based
models have been tested. For both analysed instances the
proper behaviour of island-based models has been demon-
strated. They have provided benefits in terms of solution
quality, and in terms of time saving. In the first instance,
superlinear speedups have been obtained. The main reason
has been that the population increment in the parallel ap-
proaches has allowed avoiding stagnation. In the second in-
stance, satisfactory speedup ratios have also been obtained.
Future work will focus on the application of parallel multi-
objectivised hyper-heuristics to solve the 2DPP. A scalability
study should be performed, in order to analyse the limita-
tions of the proposed island-based models. Moreover, since
the appropriate optimisation method depends on the in-
stance that is being solved, the application of hyper-heuristics
seems a promising approach. Thus, the selection of which
optimisation method must be used, could be performed in
an automatic way. Also, it would be interesting to analyse
the usage of multiobjectivisation with other 2DPP instances.
That could help to identify the kind of instances in which
multiobjectivisation is a valid approach.
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