Using Free Cloud Storage Services For Distributed
Evolutionary Algorithms

Maribel G. Arenas, Juan-Julian Merelo, Pedro Castillo
Juan-Luis J. Laredo, Gustavo Romero, Antonio M. Mora
University of Granada
Department of Computer Architecture and Technology, ETSIIT
. 18071 - Granada
maribel,pedro,gustavo@atc.ugr.es jmerelo,juaniu,amorag@geneura.ugr.es

ABSTRACT

Cloud computing, in general, is becoming part of the toolset
that the scientist uses to perform compute-intensive tasks.
In particular, cloud storage is an easy and convenient way of
storing files that will be accessible over the Internet, but also
a way of distributing those files and performing distributed
computation using them. In this paper we describe how such
a service commercialized by Dropbox is used for pool-based
evolutionary algorithms. A prototype system is described
and its peformance measured over a deceptive combinatorial
optimization problem, finding that, for some type of prob-
lems and using commodity hardware, cloud storage systems
can profitably be used as a platform for distributed evolu-
tionary algorithms. Preliminary results show that Dropbox
is indeed a viable alternative for execution of pool-based
distributed evolutionary algorithms, showing a good scaling
behavior with up to 4 computers.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;

G.1.6 [Mathematics of Computing]: NUMERICAL ANAL-

YSIS—Optimization

General Terms
Algorithms

Keywords

Cloud Computing, Cloud Storage, Evolutionary Algorithms,
Distributed Algorithms

1. INTRODUCTION

The main problem in scientific computing nowadays is not
to get computing power, but to aggregate it to solve prob-
lems. A typical department or lab (or, for that matter, a
typical home) features half a dozen, or even more, CPUs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’11, July 12-16, 2011, Dublin, Ireland.

Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

1603

that, if tapped, can be linked to perform computing ex-
periments. In general, joining several different computers
voluntarily in a metacomputer to perform an experiment is
called volunteer computing [1, 2]. In this kind of computing,
through the use of a downloaded client [3] or the browser [4]
people (or the CPUs they own) participate in an experiment
by letting these clients run (or by just visiting a web page).

Most volunteer computing environments work in a star
configuration, by having a server with which all clients reg-
ister, and letting this server send tasks to them periodically;
clients then return results, which are logged and, if needed,
checked. However, this implies that whoever is managing
the experiment needs to run a server which, in occasions,
can take a heavy load and be overwhelmed by it.

This server is mainly used for scheduling and balancing
the tasks among the different clients; the network itself is
used for communication, but all the interchange of informa-
tion among clients must be cleared by the central server.
However, one of the objectives of the work presented in this
paper was to create an infrastructure that would get rid of
this, by using the network itself to store and forward infor-
mation.

The approach that we propose is to use storage in the
cloud for providing information interchange [5]. Cloud stor-
age outsources the repository of information by keeping it
online, usually posing as a local resource (for instance, lo-
cally mounted filesystem) or via web services (whose use,
anyways, can be wrapped to look like a local filesystem); a
cloud storage service such as S3 [6], an offering from Ama-
zon, can be used to interchange files between different clients
without the person managing it having to operate a central
server; in fact, there is such a central server, but it is a com-
modity which is paid by the user, instead of hosted by him
or her.

This cloud storage service has other advantages: it is
scalable, paid only when needed (and only as much as it
is needed), and can be used by any device with a connec-
tion to the net. In fact, it can even be free, since there are
several cloud storage services that, at an entry level, have
no cost (and in that case usually called simply file hosting
services, since that is its main function): Dropbox, Ubuntu
One, Box.net, Sugarsync, Mozy and ZumoDrive, are some
examples.

One of the most popular among them is Dropbox [7].
This service monitors designated local folders, and copies
their content into central servers; then this content is repli-
cated into the folders of whoever the folder owner shares the

Archivo Editar Ver Ir Marcadores Ayuda

e nss v soR BE= v
Lugaresv b 4 ‘TH jmerelo || Dropbox ||;‘

jmerelo

Escritorio

[sisterna de arch...
I Red

Papelera

3 proxima-novela
B3 Novela

[proyecto-investi...

a4 88888
5, & @& &8

AGDropBox jar

12 elementos, espacio libre: 272,4 GiB

Figure 1: A folder monitorized by Dropbox in Nau-
tilus, the Linux file navigator.

content with, or with other computers owned by the same
person running the Dropbox client; an example of how the
appearance of this folder is shown in Figure 1.

Dropbox can be seen as a file/folder synchronization ser-
vice: folders shared among different clients, after a certain
time has elapsed (which depends on the file size and band-
width), will have the same contents. All the contents (files
and folders) are either already synchronized or being syn-
chronized, and the tick that is shown on the lower right
corner of the icon reflects that fact by changing its appear-
ance (either white tick on green, or rotating arrows on blue).
The underlying architecture it uses is, besides plugins for
integrating with local file navigators, a daemon or service
that runs on the background and monitorizes when a file is
being created or changed, and uploads it to the server; the
same daemon receives requests from the Dropbox server and
copies the information from the central server to the local
folder. At any rate, Dropbox (like any other cloud storage
or file hosting service) does have a central server, but from
the client point of view the files are synchronized seamlessly
from one client to the rest. This synchronization is not in-
stantaneous (and is not effectively under the control of the
user), but it takes at most 30 seconds and usually much less
than that.

The fact that Dropbox runs on the background means
that, from the client standpoint, writing to a shared folder
is as fast as writing to the local filesystem (in fact, it is
nothing more than that). File replication (or updating) is
the slow operation, but that is seamless for the client. An-
other advantage is that, for a certain level of operation, it is

1604

free: up to 2 GB of storage (with some size bonuses obtained
via inviting other users); other levels are also inexpensive.
There is no upper bound on bandwidth, if used reasonably,
on the server side; however, the clients can set it so as not
to hog the home/office Internet connections.

That is why we set to use Dropbox as commodity file
hosting service to perform distributed evolutionary comput-
ing experiments. Following the island-based model [8], the
basic idea is to use a dropbox-monitored folder to drop the
immigrants that will move to other islands, that is, other
computers monitorizing this folder. Each computer will run
independently, and will use that folder as a pool to drop
and pick up individuals coming from other nodes. The main
idea of this paper, which is basically a proof of concept, is
to see what are the possibilities of this setup as a multi-
computer by implementing an evolutionary algorithm using
it, and then, measuring the speedup when several computers
are used at the same time. In the spirit of the research, these
will be off the shelf personal desktop or laptop computers,
with different CPU, storage and possibly network capabili-
ties and running different operating systems or versions of
it. The problem we will attempt to solve is a hard combi-
natorial problem, so that it takes time enough to get some
improvement from parallelization. For the time being, we
will only try to measure how running time scales when new
(heterogeneous) nodes are added to the system, being the
main objective to test if this kind of file hosting systems are
suitable for using them for scientific distributed computing.

The rest of the paper is organized as follows: next we
will introduce the state of the art related to the research
presented here, to be followed by a description of the al-
gorithm, the experimental setup and the implementation in
Section 3. The results will be presented in Section 4, to be
followed by the discussion and future lines of work in Section
5.

2. STATE OF THE ART

Cloud computing [9, 10] is an emergent technology, and
as such research related to it is just recently emerging. Re-
search addressing cloud storage is mainly related to content
delivery [11] or designing data redundancy schemes to ensure
information integrity [12]. However, its use in distributed
computing has not been addressed in such depth. Even if it
is related to data grids [13], in this paper we address the use
of free cloud storage as a medium for doing distributed evo-
lutionary computation, in a more or less parasitic way [14],
since we use the infrastructure laid by the provider as part
of an immigration scheme in an island-based evolutionary
algorithm [8].

Thus we will have to look at pool-based distributed evo-
lutionary algorithms for the closest methods to the one pre-
sented here. In these methods, several nodes or ¢slands share
a pool where the common information is written and read.
To work against a single pool of solutions is an idea that has
been considered almost from the beginning of research in dis-
tributed evolutionary algorithms. Asynchronous Teams or
A-Teams [15, 16, 17] were proposed in the early nineties as a
cooperative scheme for autonomous agents. The basic idea is
to create a work-flow on a set of solutions and apply several
heuristic techniques to improve them, possibly including hu-
mans working on them. This technique is not constrained
to evolutionary algorithms, since it can be applied to any
population based technique, but in the context of EAs, it

would mean creating different single-generation algorithms,
with possibly several techniques, that would create a new
generation from the existing pool.

The A-Team method does not rely on a single implemen-
tation, focusing on the algorithmic and data-flow aspects, in
the same way as the Meandre [18] system, which creates a
data flow framework, with its own language (called ZigZag),
which can be applied, in particular, to evolutionary algo-
rithms.

While algorithm design is extremely important, imple-
mentation issues always matter, and some recent papers
have concentrated on dealing with pool architectures in a
single environment: G. Roy et al. [19] propose a shared
memory multi-threaded architecture, in which several threads
work independently on a single shared memory, having read
access to the whole pool, but write access to just a part of
it. That way, interlock problems can be avoided, and, taking
advantage of the multiple thread-optimized architecture of
today’s processors, they can obtain very efficient, running
time-wise, solutions, with the added algorithmic advantage
of working on a distributed environment. Although they
do not publish scaling results, they discuss the trade off of
working with a pool whose size will have a bigger effect on
performance than the population size on single-processor or
distributed EAs. The same issues are considered by Bollini
and Piastra in [20], who present a design pattern for per-
sistent and distributed evolutionary algorithms; although
their emphasis is on persistence, and not performance, they
try to present several alternatives to decouple population
storage from evolution itself (traditional evolutionary algo-
rithms are applied directly on storage) and achieve that kind
of persistence, for which they propose an object-oriented
database management system accessed from a Java client.
In this sense, our former take on browser-based evolution-
ary computation [4] is also similar, using for persistence a
small database accessed through a web interface, but only
for the purpose of interchanging individuals among the dif-
ferent nodes, not as storage for the whole population.

In fact, the efforts mentioned above have not had much
continuity, probably due to the fact that there have been,
until now, few (if any) publicly accessible online databases.
However, given the rise of cloud computing platforms over
the last few years, interest in this kind of algorithms has
bounced back, with implementations using the public Flu-
idDB platform [21] having been recently published.

3. DESCRIPTION OF THE ALGORITHM
AND IMPLEMENTATION

We will divide this section in several parts: firstly, it is
commented the description of the algorithm itself; then the
problems to be solved as tests are presented. Finally, we
describe the decisions needed to implement it efficiently over
the cloud storage service in the last subsection.

3.1 A distributed pool-based evolutionary al-
gorithm over Dropbox

A pool based evolutionary algorithm can be described as
an island model [22] without topology; in fact, it is closer
to the island metaphor since migrants are sent to the sea
(pool), and come also from it, that is, the evolutionary al-
gorithm is a classic one with binary codification, except for
two steps within the cycle that (conditionally) emit or re-

1605

ceive immigrants. A maximum number of evaluations for
the whole algorithm is set from the beginning; we will see
later on how to control when this maximum number of eval-
uations is reached.

During the evolutionary loop, new individuals are selected
using 3-tournament selection and generated using bit-flip
mutation and uniform crossover Operator rates are set ini-
tially to 0.9 and 0.1, but if 500 generations without a change
are reached, crossover is decreased and mutation increased
by 0.1; both values are bound by 0.5 (minimum for crossover
and maximum for mutation). This change to the baseline
algorithm has to be applied in the hard (deceptive) combi-
natorial problems that have been used in this paper.

Migration is introduced in the algorithm as follows: af-
ter the population has been evaluated, migration might take
place if the number of generations selected to do it is reached.
The best individual is sent to the pool, and the best individ-
ual in the pool (chosen among those emitted by the other
nodes) is incorporated into the population; if there has been
no change in the best individual since the last migration, a
random individual is added to the pool. Migrants, if any, are
incorporated into the population along with the offspring of
the previous generation using generational replacement with
a 1-elite. Population was set to 1000 individuals for all prob-
lems, and the minimum number of evaluations has been four
million, which is enough to find the solution to the problems.
Migration was performed after every 250 generations.

The partial results are updated at the end of the loop
to check if the algorithm has finished. Since all the nodes
act asynchronously due to their different capabilities, the
number of local evaluations might vary; the condition for
finishing is reaching a certain number of global evaluations.
In fact, due to the conditions of the method, this number is
a minimum, since the fact that it has been reached is not
propagated instantaneously to all nodes.

One of the advantages of this topology-less arrangement
is the independence from the number of computers partic-
ipating in the experiment, and also the lack of need from
a central server, although it can be arranged so that one of
the computers starts first, and the others start running when
some file is present. Adding a new computer, then, does not
imply to arrange new connections to present computers; the
only thing it needs to do is to locate the directory that is
shared through Dropbox.

3.2 Fitness functions: Trap and MMDP

Two representative functions have been chosen to perform
the tests. The main idea is to chose them to be difficult, and
thus taxing for a distributed evolutionary algorithm. Be-
sides, these functions are usually considered as a benchmark
for evaluating the quality of algorithms, making then easy
to compare our results with others (or even our own).

A trap function [23] is a piecewise-linear function defined
on unitation (the number of ones in a binary string). There
are two distinct regions in the search space, one leading to a
global optimum and the other leading to the local optimum
(see Figure 2). In general, a trap function is defined by the
following equation:

(2 — (7)),
L (W(T) —),

where u(?) is the unitation function, a is the local optimum,

if w(@)<z

otherwise

(1)

trap(u() = {

b is the global optimum, [is the problem size and z is a
slope-change location separating the attraction basin of the
two optima.

b

Figure 2: Generalized [-trap function.

For the experiments, 4-trap functions were designed with
the following parameter values: a =1—1,b =1, and z = [—1.
Unlike 2 and 3-trap, 4-trap is fully deceptive. This function
has been used in other papers [24] to measure scalability;
in this case it has been chosen mainly for its difficulty and
the fact that, for the number of evaluations we have set, it
is not usually able to find the solution (which would skew
scalability results). The number of ¢raps we have used in
these experiments is 30, once again, rather a high number
to avoid convergence.

On the other hand, the MMDP [25] is a deceptive problem
composed of k subproblems of 6 bits each one (s;). Depend-
ing of the number of ones (unitation) s; takes the values
depicted next:

fitnesss, (0) = 1.0 fitnesss, (1) = 0.0
fitnesss; (2) = 0.360384 fitnesss, (3) = 0.640576
fitnesss, (4) = 0.360384 fitnesss, (5) = 0.0
fitnesss, (6) = 1.0

k3

0.8
]
s
—

value
0.6
_—

04
T
—_—

0.2

0.0
L

ones

Figure 3: Representation of one of the variables of
the MMDP problem.

The fitness value is defined as the sum of the s; subprob-
lems with an optimum of k (equation 2). Figure 3 represents

1606

Archivo Editar Ver Ir Marcadores Ayuda

@ atras v adelante ~ 4) = g 100 @ v
Lugaresv % | <||B3 imerelo || Dropbox HAGH 10|
e o o g
3 Escritorio | ‘ | ‘
[sistema de arch... 77, 77.
& Red 02 0.
= 00000CO000D0AED... 00000CO20000AC
papelera
N prasacnovela (V] <
B Novela =] =
E proyecto-investi... 78. 80
0:0200000C000000A 33333333333334:02
E00BO00000OOFOD... 0O0OOCOO0000AED...
=l =
0. 20.
4:02 4:02
00000C020000AC... 0000060000000B0. ..
= =
80 80 B
4:17 4:82
804816431600550... 04200E1AQ000A7L...
= =
ev_121000.- ev_1381000.-
256769764 256765090

ev_2691000.-
256765928 =

207 elementos, espacio libre: 272.3 GiB

Figure 4: Immigrants in a Dropbox folder, with fit-
ness, chromosome and original node codified as file
names. At the bottom, the three files which are
used to show the number of evaluations per node
are pictured.

one of the variables of the function. The number of local
optima is quite large (22%), while there are only 2* global
solutions.

k
faiaipp(5) =) fitnesss, 2

i=1

3.3 Cloud storage implementation

The experimental result will be aimed at reducing the
overhead of using the filesystem for communication among
nodes, and taking into account that all such communica-
tion must be done using that kind of files. There will be a
single folder per experiment, which is kept or removed for
performing other experiments on it. The folder has to be
shared among all the participants in the experiment, either
by using a single user or by applying the share mechanism
in Dropbox folders, which allows sharing of folders among
different users. In fact, this was what we used in these ex-
periments; there was a single AG folder (shown in Figure 1)
shared among the participants, and different subdirectories
were used to perform each experiment.

One of the main implementation decisions was to use file-
names, instead of file contents, to codify the individuals that
are migrated. Each individual is codified in a file with size
0 whose name includes the fitness, the binary chromosome
in hexadecimal and the random seed used to start the al-
gorithm (and which is used as an unique ID); this is shown
in figure 4. This means, in fact, that what is being read
and written among the different nodes is the directory file,
not the files themselves, making the algorithm faster, sav-

ing bandwith and obviously, avoiding storage limit within
the free option we are using. The file itself does not have
to be read, saving also time and reducing overhead. This
implies a limitation on the chromosome size and also the
precision of the fitness, but for binary problems like this one
does not really mean much. Besides, it is very easy to over-
come that limitation by just including information within
the file using some suitable codification. The codification
has an added advantage: it is unique per node, which avoids
re-immigrating those individuals that have been sent to the
pool, increasing diversity for the low price of including an
unique ID per node.

A mechanism was created to start execution more or less
synchronously. There is one computer that starts the exper-
iment, and the others follow by monitoring the existence of
a file in the folder; when that file is created, the execution
starts. This means a small delay (the delay in synchronizing
both computers and the small delay from the detection of
the existence and the start of the new algorithm). Although
that mechanism might be needed for many computers, or
just unattended operation, in these experiments we started
all nodes more or less at the same time by pressing the start
key simultaneously.

Since all nodes are heterogeneous, each one runs the evo-
lutionary algorithm on its own schedule. After every gener-
ation, a file is written including in the filename the random
seed and the number of evaluations performed. It also checks
for all files of the same kind in the folder or directory, checks
for the highest number of evaluations in all of them, adds
them up and finishes if the minimum number of evaluations
has been reached; if it has, it stops. These files are shown,
among the rest of the files representing immigrants, in figure
4; the three files show that the three nodes have performed
0.122, 1.38 and 2.69 millions of evaluations each.

Please note that except for the beginning and the end,
which happen more or less synchronously, the algorithms are
carried out asynchronously; depending on capacity, one node
might carry out twice or three times as many generations as
the other (or others). This leads to interesting algorithmic
effects [26], but they have not been studied in this paper,
that concentrates in running time, and will be addressed in
future works.

4. EXPERIMENTS AND RESULTS

First we will describe how the evolutionary algorithm was
adapted to using Dropbox as a pool, and then we will show
the results obtained with it.

4.1 Experimental setup

The experiments were performed with 4 machines of the
following characteristics:

e Two of the computers were Sony VAIO VGN-SR29VN
with a Intel Core2Duo at 2.4 GHz, running Ubuntu
10.04 and Java version 1.6.0_20. These were used as
the first and third computer in the set.

e The second computer added to the set was VAIO with
an Intel Core i7 with Ubuntu 10.04.

e The fourth computer was also a VAIO, running Win-
dows 7 and with an Intel core i5.

The computers were connected to the Internet using WiFi,
the cviugr-v2 Campus-wide wireless connection, which uses

1607

WPA /Enterprise encryption. This probably could have some
influence in the bandwith used, but in particular in this case
we think that we used it well under capacity. In any case,
the idea was to use all the computers with the same type
of connection, to avoid to introduce another variable in the
final analysis of results.

The version of Dropbox running was updated to the lat-
est by Feb 5th, 2011 (0.7.110, Linux version). We used the
default configuration for all of them, which does not have
any limitation on upload or download rate, chooses auto-
matically the best upload rate and does not use the proxy.
The network was a mixture of wired and wireless network in
the University of Granada; both are different sub-networks,
so there is at least one switch among them.

The time shown in the results is wallclock time (as op-
posed to CPU time, the actual time the program has been
running in the CPU), as measured by the difference among
the end and starting time in the timestamps attached to the
files.

4.2 Results

The experiments were performed first on a single com-
puter, then on two, three and finally, four computers, or-
ganized as said above. The first thing considered was that,
effectively, the evolutionary algorithm was working by check-
ing the evolution of the fitness, as reflected by the immi-
grants in the pool; remember that the best individual in the
current generation is deposited in the Dropbox folder. Tak-
ing into account that the file has a timestamp, no other log-
ging is needed; the filesystem metadata reflects the time at
which that file has come into existence, and thus the state
of the evolution at that point in time. Times were taken
over the “original” computer, that is, the first that initiated
the experiment; although there is nothing special with that
machine. The timestamps for the files originated in that
computer are original, the others will have some delay over
its creation, and can also be synchronized out of order. To
smooth over these differences, we did a bandplot, with the
resulting line shown in figure 5. This figure, which plots
fitness versus time for 10 runs, reflects the fact that when
there is no improvement over the previous generation, a ran-
dom immigrant is sent to the pool. At the beginning, the
average fitness is rather high since only the bests are sent to
the pool, after that, random individuals are sent to it, and
thus, the average fitness goes down. Maximum fitness does
have a different behavior, increasing (on average) until the
30th second, and then staying more or less at the same level.
From this graph several conclusions can be drawn: first, that
most executions end after 60 seconds (more sparse dots af-
ter that point); second, most improvement happens at the
beginning of the run, with improvements happening much
more slowly after the first third, and finally the population
in the two machines becomes very much alike after a few
generations, since the bands come close together.

The most important result, however, is the scaling that
can be obtained when several computers are trying to solve
the same problem and interchanging solutions through the
pool. In figures 6 and 7 we plot the average duration of a sin-
gle evaluation, computed by dividing the time taken for ev-
ery run by the total number of evaluations performed in the
run, and then averaging over all runs. The plot shows that
the average time needed for a single evaluation decreases
almost fourfold for Trap, that is, close to a linear speedup,

trap.2m$fitness

trap.2m$segundos

Figure 5: Bandplot Fitness vs. Time (in seconds)
graph; z axis reflects the time in seconds since the
start of the simulation, y axis the fitness for the Trap
function and the 2-machines experiment. Bands
show the locally smoothed mean and standard de-
viation (using the bandplot function from the gplots
R package).

EvaluationtimescalingD

Seconds/eval
0.020 0.025 0.030

0.015

0.010

of Machines

Figure 6: Scaling of the time needed to perform a
single evaluation, as a boxplot against the number
of machines, for the MMDP function.

1608

EvaluationtimescalingA

0.04

0.03

Seconds/eval

0.02

of Machines

Figure 7: Scaling of the time needed to perform a
single evaluation, as a boxplot against the number
of machines. Top: Scaling for MMDP; bottom for
the Trap Function.

while the decrease is of around 60% for the MMDP function.
These results are quite good, considering that the comput-
ers are different, and the network is not exclusive. It would
be taken into account that the total number of evaluations
in each case is bigger than the maximum, and becomes big-
ger when the number of machines is increased; while with a
single computer the number of evaluations is exactly equal
to the maximum, with four computers it goes up to around
25% more, since the fact that the minimum number of eval-
uations has been reached takes some time to reach them,
during which, of course, they have performed more evalua-
tions.

The scaling graph also points to the fact that load bal-
ancing is done automatically by the simple device of letting
every computer run until the files that show the number of
evaluations done add up to the minimum. That does not
mean that every new node joining the evolution at any mo-
ment really has an influence on the final result, as shown
n [26], but at least from the point of view of adding raw
evaluations to the experiment, they are giving as many as
they can, without any gaps due to synchronization. In fact,
this is common to all asynchronous distributed evolutionary
algorithms [27].

5. CONCLUSIONS AND FUTURE WORK

By performing some experiments using laptop computers
and the free service level of the Dropbox file-storage and
sharing system, in this paper we have proved that these
kind of cloud storage systems can be used profitably for
distributed evolutionary algorithms, without the need to ac-
quire or set up complicated cloud or grid infrastructure. Us-
ing tools available in every classroom, lab, office or home and
freely available over the internet, a multicomputer running
an evolutionary algorithm that has a good scaling behavior

can be set up to perform heavy-duty evolutionary computa-
tion experiments.

To demonstrate it, an island-based pool evolutionary algo-
rithm has been implemented over the Dropbox system, and
two well-know test problems (such as some Trap Functions
and MMDP) have been addressed. The gain obtained in the
two instances of the problem considered lies between 3 and
4 for 4 computers, which is indeed promising.

The code and datasets used to perform these experiments
will be made available as open source software, so that re-
sults can be easily reproduced and/or extended to perform
other types of experiments, or to adapt to other file sharing
services (free or premium).

On the other hand, a lot of work remains to be done. The
first is to study the algorithmic effect of this kind of pool
architecture, and to check the best policies for migration to
and from this pool; migration rates and other evolutionary
algorithm parameters will have to be tuned so as to ob-
tain the best number of average evaluations to solution. An
extensive comparison with other types of distributed evolu-
tionary frameworks is in order, either from the algorithmic
or the implementation point of view.

Finally, the upper bounds to this scaling will have to be
measured too. These will probably arise from the free nature
of the file sharing service used, but this one as well as more
structural ones (like the limitations of using directories as
store for individuals and the locking effects due to that) will
have to be measured.

Acknowledgements

This work has been supported in part by the CEI BioTIC
GENIL (CEB09-0010) MICINN CEI Program (PYR-2010-
13) project and the Andalusian Regional Government TIC-
03903 and P08-TIC-03928 projects.

6. REFERENCES

[1] David P. Anderson, Eric Korpela, and Rom Walton.
High-performance task distribution for volunteer
computing. In E-SCIENCE ’05: Proceedings of the
First International Conference on e-Science and Grid
Computing, pages 196-203, Washington, DC, USA,
2005. IEEE Computer Society.

[2] Daniel Lombrana Gonzalez, Francisco Ferndndez
de Vega, Leonardo Trujillo, Gustavo Olague,

F. Chavez de la O, M. Cardenas, Lourdes Araujo,
Pedro A. Castillo, and Ken Sharman. Increasing gp
computing power via volunteer computing. CoRR,
abs/0801.1210, 2008.

[3] D.L. Gonzalez, F.F. de Vega, L. Trujillo, G. Olague,
L. Araujo, P. Castillo, J.J. Merelo, and K. Sharman.
Increasing GP computing power for free via desktop
GRID computing and virtualization. In Parallel,
Distributed and Network-based Processing, 2009 17th
Euromicro International Conference on, pages
419-423, Feb. 2009.

[4] J.J. Merelo, P.A. Castillo, J.L.J. Laredo, A. Mora, and
A. Prieto. Asynchronous distributed genetic
algorithms with Javascript and JSON. In WCCI 2008
Proceedings, pages 1372-1379. IEEE Press, 2008.

[6] Wikipedia. Cloud storage — Wikipedia, The Free
Encyclopedia, 2011. [Online; accessed
5-February-2011].

[6] J. Varia. Cloud architectures. White Paper of
Amagzon, 2008.

[7] Wikipedia. Dropbox (service) — wikipedia, the free
encyclopedia, 2011. [Online; accessed
5-February-2011].

[8] E. Canti-Paz. Topologies, migration rates, and
multi-population parallel genetic algorithms. In
Genetic and Evolutionary Computation Conference,
GECCO-99, pages 13—17, 1999.

[9] Michael Armbrust, Armando Fox, Rean Griffith,
Anthony D. Joseph, Randy Katz, Andy Konwinski,
Gunho Lee, David Patterson, Ariel Rabkin, Ton
Stoica, and Matei Zaharia. A view of cloud
computing. Commun. ACM, 53:50-58, April 2010.

[10] Hai Jin, Shadi Ibrahim, Tim Bell, Wei Gao, Dachuan
Huang, and Song Wu. Cloud types and services. In
Borko Furht and Armando Escalante, editors,
Handbook of Cloud Computing, pages 335-355.
Springer US, 2010.

[11] James Broberg, Rajkumar Buyya, and Zahir Tari.
Metacdn: Harnessing [‘|storage clouds’ for high
performance content delivery. Journal of Network and
Computer Applications, 32(5):1012 — 1022, 2009. Next
Generation Content Networks.

[12] Lluis Pamies-Juarez, Pedro Garcia-Lépez, Marc
Sanchez-Artigas, and Blas Herrera. Towards the
design of optimal data redundancy schemes for
heterogeneous cloud storage infrastructures. Computer
Networks, In Press, Corrected Proof:—, 2010.

[13] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury,
and S. Tuecke. The data grid: Towards an architecture
for the distributed management and analysis of large
scientific datasets. Journal of Network and Computer
Applications, 23(3):187-200, 2000.

[14] Albert-Laszlo Barabdsi, Vincent W. Freeh, Hawoong
Jeong, and Jay B. Brockman. Parasitic computing.
Nature, 412(6850):894-897, August 2001.

[15] P.S. de Souza and S.N. Talukdar. Genetic algorithms
in asynchronous teams. In Proceedings of the Fourth
International Conference on Genetic Algorithms,
pages 392-399. Morgan Kaufmann Publishers, 1991.

[16] S. Talukdar, L. Baerentzen, A. Gove, and
P. De Souza. Asynchronous teams: Cooperation
schemes for autonomous agents. Journal of Heuristics,
4(4):295-321, 1998.

[17] S. Talukdar, S. Murthy, and R. Akkiraju.
Asynchronous teams. INTERNATIONAL SERIES IN
OPERATIONS RESEARCH AND MANAGEMENT
SCIENCE, pages 537-556, 2003.

[18] X. Llora, B. Acs, L.S. Auvil, B. Capitanu, M.E.
Welge, and D.E. Goldberg. Meandre: Semantic-driven
data-intensive flows in the clouds. Technical Report
2008103, Illinois Genetic Algorithms Laboratory, 2008.

[19] G. Roy, Hyunyoung Lee, J.L. Welch, Yuan Zhao,

V. Pandey, and D. Thurston. A distributed pool
architecture for genetic algorithms. In Evolutionary
Computation, 2009. CEC ’09. IEEE Congress on,
pages 1177-1184, May 2009.

[20] A. Bollini and M. Piastra. Distributed and persistent
evolutionary algorithms: a design pattern. In Genetic
Programming, Proceedings EuroGP “99, number 1598

in Lecture notes in computer science, pages 173—183.
Springer, 1999.

J.J. Merelo. Fluid evolutionary algorithms. In
Evolutionary Computation (CEC), 2010 IEEE
Congress on, pages 1-8. IEEE, 2010.

D. Whitley, S. Rana, and R. Heckendorn. Island model
genetic algorithms and linearly separable problems.
FEvolutionary Computing, pages 109-125, 1997.

David H. Ackley. A connectionist machine for genetic
hillclimbing. Kluwer Academic Publishers, Norwell,
MA, USA, 1987.

Juan Luis Jiménez Laredo, A. E. Eiben, Maarten van
Steen, and Juan Julidn Merelo Guervés. EvAg: a
scalable peer-to-peer evolutionary algorithm. Genetic
Programming and Evolvable Machines, 11(2):227-246,
2010.

David E. Goldberg, Kalyanmoy Deb, and Jeffrey
Horn. Massive multimodality, deception, and genetic
algorithms. In R. Ménner and B. Manderick, editors,
Parallel Problem Solving from Nature, 2, pages 37—48,
Amsterdam, 1992. Elsevier Science Publishers, B. V.

1610

(26]

Juan J. Merelo, Antonio M. Mora, Pedro A. Castillo,
Juan L. J. Laredo, Lourdes Araujo, Ken C. Sharman,
Anna I. Esparcia-Alcdzar, Eva Alfaro-Cid, and Carlos
Cotta. Testing the intermediate disturbance
hypothesis: Effect of asynchronous population
incorporation on multi-deme evolutionary algorithms.
In Gunter Rudolph, Thomas Jansen, Simon Lucas,
Carlo Poloni, and Nicola Beume, editors, Parallel
Problem Solving from Nature - PPSN X, volume 5199
of LNCS, pages 266-275, Dortmund, 13-17 September
2008. Springer.

B. Baran, E. Kaszkurewicz, and A. Bhaya. Parallel
asynchronous team algorithms: Convergence and
performance analysis. IEEFE transactions on parallel
and distributed systems, 7(7):677-688, 1996.

