
Many-threaded Implementation of Differential
Evolution for the CUDA Platform

Pavel Krömer
VŠB - Technical University of

Ostrava
17.listopadu 15

Ostrava, Czech Republic
pavel.kromer@vsb.cz

Václav Snášel
VŠB - Technical University of

Ostrava
17.listopadu 15

Ostrava, Czech Republic
vaclav.snasel@vsb.cz

Jan Platoš
VŠB - Technical University of

Ostrava
17.listopadu 15

Ostrava, Czech Republic
jan.platos@vsb.cz

Ajith Abraham
VŠB - Technical University of

Ostrava
17.listopadu 15

Ostrava, Czech Republic
ajith.abraham@ieee.org

ABSTRACT

Differential evolution is an efficient populational meta – heu-
ristic optimization algorithm successful in solving difficult
real world problems. Due to the simplicity of its operations
and data structures, it is suitable for a parallel implementa-
tion on multicore systems and on the GPU. In this paper,
we design a simple yet highly parallel implementation of
the differential evolution using the CUDA architecture. We
demonstrate the speedup obtained by the proposed paral-
lelization of the differential evolution on an NP hard combi-
natorial optimization problem and on a benchmark function
of many variables.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms

Algorithms, Experimentation, Performance

Keywords

Differential Evolution, Parallelization, CUDA, Scheduling

1. INTRODUCTION
Many methods and algorithms are nowadays redesigned

for the Graphics Processing Units (GPUs) because many
modern GPUs offer massive parallelism for a budget price

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

whereas new APIs simplify the development of parallel ap-
plications. Among others, many evolutionary algorithms in-
cluding genetic algorithms, genetic programming, and dif-
ferential evolution, were implemented for the GPU. Such
GPU implementations were already shown to improve the
performance of the algorithms dramatically. However, the
advances in both, hardware resources and software tools for
the GPU application development, motivate further devel-
opment of the algorithms and their re-designing to utilize
the latest features of the GPU computation. The speedup
of evolutionary processing obtained by efficient use of the
GPUs can contribute to the deployment of evolutionary com-
putation for use cases that require short response times, e.g.
on-line evolutionary optimization.

In this paper we propose a novel many-threaded imple-
mentation of the differential evolution (DE) for the nVidia
Compute Unified Device Architecture (CUDA) platform.
We demonstrate its performance and quality of obtained
solutions on a real world combinatorial optimization prob-
lem, the scheduling of independent tasks in heterogeneous
computing environments, and on a search for optimum of a
benchmark function of many variables. The scheduling of
independent tasks is an appealing combinatorial optimiza-
tion problem consisting of a search for optimal mapping of
a set of tasks to a set of available resources. This work com-
pares the GPU implementation of DE for independent task
scheduling to a simple and optimized single-thread CPU im-
plementation of the same algorithm. The search for a mini-
mum of a benchmark function of many variables is utilized
to provide rough comparison of the proposed DE to existing
GPU implementations. The CUDA implementation of the
differential evolution uses the CUDA-C language and the
recent nVidia CUDA Software Development Kit (SDK) 3.2.

This paper is organized as follows: in Section 2 we intro-
duce the GPU computing, nVidia CUDA architecture and
the nVidia CUDA SDK 3.2. In Section 3 are outlined the
basic principles of the differential evolution and state of the
art of the DE on GPUs. Next, the new DE implementation
for the CUDA architecture is proposed. Finally, Section 4
provides a complex use case demonstrating the performance

1595



and quality of the proposed algorithm on a combinatorial
optimization problem and when seeking for minimum of a
test function of many variables.

2. GPU COMPUTING
Modern graphics hardware has gained an important role

in the area of parallel computing. Graphic cards have been
used to power gaming and 3D graphics applications, but
recently, they have been used to accelerate general com-
putations as well. The new area of general purpose GPU
(GPGPU) programming has been flourishing since then.
Complex architecture of the GPUs is suitable for vector

and matrix algebra operations, which leads to the wide use
of GPUs in the area of scientific computing with applica-
tions in information retrieval, data mining, image process-
ing, data compression and so on. Nowadays, the developer
does not have to be an expert in graphics hardware because
of the existence of various Application Programming Inter-
faces (APIs) that help to implement parallel applications
rapidly. Nevertheless, it is still crucial to follow elementary
rules of GPGPU programming to write efficient code. The
main advantage of the GPU is its structure. Standard CPUs
(central processing units) contain usually 1-4 complex com-
putational cores, memory registers and large cache memory.
The GPUs contain up to several hundreds of simplified ex-
ecution cores grouped into so-called multiprocessors. Ev-
ery SIMD (Single Instruction Multiple Data) multiproces-
sor drives eight arithmetic logic units (ALU) which process
data, thus each ALU of a multiprocessor executes the same
operations on different data, stored in the registers or de-
vice memory. In contrast to standard CPUs which can re-
schedule operations (out-of-order execution), current GPUs
are an example of an in-order architecture. This drawback
is overcome by their massive parallelism as described by
Hager et al. [8]. Current general-purpose CPUs with clock
rates of 3 GHz outperform a single ALU of the multipro-
cessors with its rather slow 1.3 GHz. The huge number of
parallel processors on a single GPU chip compensates this
drawback.
The GPUs were used to accelerate the implementation

of many applications. Andrecut [2] described CUDA-based
computing for two variants of Principal Component Anal-
ysis (PCA). The usage of parallel computing improved ef-
ficiency of the algorithm more than 12 times in compari-
son with CPU. Preis et al. [18] applied GPU on methods of
fluctuation analysis, which includes determination of scaling
behavior of a particular stochastic process and equilibrium
autocorrelation function in financial markets. The calcula-
tion was more than 80 times faster than the previous version
running on CPU. Patnaik et al. [16] used GPU in the area of
temporal data mining in neuroscience. They analyzed spike
train data with the aid of a novel frequent episode discovery
algorithm, achieving a more than 430× speedup.
The GPGPU programming has offered a new platform

for evolutionary computation [6]. The majority of the evo-
lutionary algorithms including genetic algorithms [17], ge-
netic programming [21, 11], and differential evolution [23,
5, 24] were implemented on the GPU. Most of the current
implementations of said algorithms have two things in com-
mon: they struggle with random number generation and
they map each candidate solution in the population to one
GPU thread.
The nVidia CUDA-C language is an extension to C that

allows development of GPU routines called kernels. Each
kernel defines instructions that are executed on the GPU by
many threads at the same time following the SIMD model.
The threads can be organized into so called thread groups
that can benefit from GPU features such as fast shared mem-
ory, atomic data manipulation, and synchronization. The
CUDA runtime takes care of the scheduling and execution of
the thread groups on available hardware. The set of thread
groups requested to execute a kernel is called in CUDA ter-
minology a grid. A kernel program can use several types
of memory: fast local and shared memory, large but slow
global memory, and fast read-only constant memory and
texture memory.

The structure of CUDA program and the relation of threads
and thread groups to device memory is illustrated in Figure 1.

Figure 1: CUDA program structure and memory hierar-
chy [13].

The nVidia CUDA SDK 3.2 was released in November
2010 and one of its main features is the cuRAND library
for generation of pseudorandom and quasirandom numbers
on the GPU. The library can generate around 12 millions
random floats per second and its methods can be easily used
from within CUDA kernels and host programs [14].

3. DIFFERENTIAL EVOLUTION
Differential evolution (DE) is a versatile and easy to use

stochastic evolutionary optimization algorithm [19]. DE is

1596



a population-based optimizer that evolves real encoded vec-
tors representing the solutions to given problem. The DE
starts with an initial population of N real-valued vectors.
The vectors are initialized with real values either randomly
or so, that they are evenly spread over the problem domain.
The latter initialization leads to better results of the opti-
mization process [19].
During the optimization, DE generates new vectors that

are perturbations of existing population vectors. The algo-
rithm perturbs vectors with the scaled difference of two (or
more) randomly selected population vectors and adds the
scaled random vector difference to a third randomly selected
population vector to produce so called trial vector. The trial
vector competes with a member of the current population
with the same index. If the trial vector represents a better
solution than the population vector, it takes its place in the
population [19].
Differential evolution is parametrized by two parameters

[19]. Scale factor F ∈ (0, 1+) controls the rate at which the
population evolves and the crossover probability C ∈ [0, 1]
determines the ratio of coordinates that are transferred to
the trial vector from its opponent. The number of vectors in
the population is also an important parameter of the pop-
ulation. The outline of the classical DE is illustrated in
Algorithm 1.

Algorithm 1: A summary of Differential Evolution

Initialize the population P consisting of M vectors;1

Evaluate an objective function ranking the vectors in2

the population;
while Termination criteria not satisfied do3

for i ∈ {1, . . . ,M} do4

Create trial vector vit = v1r + F (v2r − v3r), where5

F ∈ [0, 1] is a parameter and v1r , v
2
r and v3r are

three random vectors from the population P .
This step is in DE called mutation;

Validate the range of coordinates of vit.6

Optionally adjust coordinates of vit so, that vit is
valid solution to given problem;

Perform uniform crossover. Select randomly one7

point (coordinate) l in vit. Let v
i
t[l] = vi[l]. Let

vit[m] = vi[m] with probability 1− C for each
m ∈ {1, . . . , N} such that m 6= l;

Evaluate the trial vector. If the trial vector vit8

represent a better solution than population
vector vi, replace vi in P by vit;

end9

end10

Differential evolution represents an alternative to the con-
cept of genetic algorithms (GA). As well as genetic algo-
rithms, it represents a highly parallel population based sto-
chastic search meta – heuristic. In contrast to GA, differ-
ential evolution uses real encoding of chromosomes and dif-
ferent operations to evolve the population. It results in dif-
ferent search strategy and different directions found by DE
when crawling a fitness landscape of the problem domain.

3.1 Differential Evolution on GPUs
Due to the simplicity of its operations and fixed encod-

ing of candidate solutions, DE is suitable for parallel imple-
mentation on the GPUs. In DE, each candidate solution is

represented by a vector of real numbers and the population
as a whole can be seen as a real matrix. Moreover, both
mutation and crossover can be in DE implemented easily.

The first implementation of DE on the CUDA platform
was introduced in the early 2010 by de Veronese and Krohling
[5]. The DE algorithm was implemented using the CUDA-C
language and it achieved on a set of benchmarking func-
tions speedup between 19 and 34 times comparing to the
CPU implementation. The generation of random numbers
was implemented using the Mersenne Twister from CUDA
SDK and the selection of random trial vectors for mutation
was done on the CPU.

Zhu [23], and Zhu and Li [24] implemented the DE on
CUDA as part of differential evolution-pattern search algo-
rithm for bound constrained optimization problems and as
a part of a differential evolutionary Markov chain Monte
Carlo method (DE-MCMC) respectively. In both papers,
performance of the algorithms was demonstrated on a set of
continuous benchmarking functions.

The common properties of the above DE implementations
are:

i. One GPU thread is used to process one candidate solu-
tion.

ii. The generation of random numbers is an issue. The
Mersenne Twister from the CUDA SDK was used in
both applications and some parts of the random number
generation process were in the first case done on the
CPU.

In this paper, we present a new implementation of DE for
the CUDA architecture that uses many threads for each can-
didate solution and the efficient cuRAND library for random
number generation on the GPU. Moreover, we demonstrate
the performance of the algorithm on a combinatorial opti-
mization problem and on a benchmark function.

3.2 Many-threaded Implementation of DE on
the CUDA Platform

The goal of the implementation of differential evolution
on the CUDA platform was achieving high parallelism while
keeping the simplicity of the algorithm. The implementa-
tion consists of a set of CUDA-C kernels for generation of
initial population, generation of batches of random numbers
for the decision making, DE processing including generation
of trial vectors, mutation and crossover, verification of the
generated vectors, and the merger of parent and offspring
populations. Besides these generic kernels implementing the
DE, an implementation of the fitness function evaluation was
done in a separate kernel. The overview of the presented DE
implementation is shown in Figure 2.

The kernels were implemented using the following princi-
ples:

i. Each DE vector (i.e. candidate solution) is processed by
a thread block (thread group). The number of thread
groups is in CUDA currently limited to (216 − 1)2 and
hence the maximum population size is in this case the
same.

ii. Each vector coordinate is processed by a thread. The
limit of threads per block depends in CUDA on the
hardware compute capability and it is 512 for compute
capability 1.x and 1024 for compute capability 2.x [13].

1597



This limit enforces the maximum vector length. For the
first use case considered in this paper, candidate vectors
with length 512 are needed. The mapping of CUDA
threads and thread blocks to DE candidate vectors is
illustrated in Figure 3.

iii. Each kernel call aims to process the whole population
in one step, e.g. it asks the CUDA runtime to launch
M blocks with 512 threads in parallel. The runtime
executes the kernel with respect to available resources.

Such an implementation brings several advantages. First,
all the generic DE operations can be considered done in par-
allel and thus their complexity reduces from M × N (pop-
ulation size multiplied by vector length) to c (constant, du-
ration of the operation plus CUDA overhead). Second, this
DE operates in a highly parallel way also on logical level. A
population of offspring vectors of the same size as the parent
population is created in a single step and later merged with
the parent population. Third, the evaluation of vectors is
accelerated by the implementation of the fitness function on
GPU.

Figure 2: The flowchart of the DE implementation on
CUDA.

4. EXAMPLES OF DIFFERENTIAL EVO-

LUTION ON CUDA
This section consists of two examples of the proposed DE

on CUDA. First, a complex NP-hard combinatorial opti-
mization problem is solved by the DE on CUDA and the
performance and quality of obtained results is compared to
the results of DE run on the CPU. Next, the proposed DE
implementation is used to find minimum of a benchmark

Figure 3: The mapping of CUDA threads and thread blocks
to DE population elements.

function and by that indirectly compared to a previous DE
model for the CUDA architecture.

4.1 Differential Evolution for Task Scheduling
Optimization

In grid and distributed computing, mixed-machine hetero-
geneous computing (HC) environments utilize a distributed
suite of different machines to perform different computation-
ally intensive applications that have diverse requirements [1,
3]. Task scheduling, i.e. mapping of a set of tasks to a set
of resources, is required to exploit the different capabilities
of a set of heterogeneous resources. It is known, that an
optimal mapping of computational tasks to available ma-
chines in a HC suite is a NP-complete problem [7] and as
such, it is a subject to various heuristic [3, 12, 9] and meta –
heuristic [20, 22, 15, 4] algorithms including the differential
evolution [10].

An HC environment is a composite of computing resources
(PCs, clusters, or supercomputers). Let T = {T1, T2, . . . , Tn}
denote the set of tasks that is in a specific time interval sub-
mitted to a resource management system (RMS). Assume
the tasks are independent of each other with no inter-task
data dependencies and preemption is not allowed (the tasks
cannot change the resource they have been assigned to).
Also assume at the time of receiving these tasks by RMS,
m machines M = {M1,M2, . . . ,Mm} are within the HC en-
vironment. For our purpose, scheduling is done on machine
level and it is assumed that each machine uses First-Come,
First-Served (FCFS) method for performing the received
tasks. We assume that each machine in HC environment
can estimate how much time is required to perform each
task. In [3] Expected Time to Compute (ETC) matrix is
used to estimate the required time for executing a task in a
machine. An ETC matrix is a n×m matrix in which n is the
number of tasks and m is the number of machines. One row
of the ETC matrix contains the estimated execution time
for a given task on each machine. Similarly one column of
the ETC matrix consists of the estimated execution time of
a given machine for each task. Thus, for an arbitrary task
Tj and an arbitrary machine Mi , [ETC]j,i is the estimated
execution time of Tj on Mi. In the ETC model we take the

1598



usual assumption that we know the computing capacity of
each resource, an estimation or prediction of the computa-
tional needs of each job, and the load of prior work of each
resource.
The two objectives to optimize during the task mapping

are makespan and flowtime. Optimum makespan (meta-task
execution time) and flowtime of a set of jobs can be defined
as:

makespan = min
S∈Sched

{ max
j∈Jobs

Fj} (1)

flowtime = min
S∈Sched

{
∑

j∈Jobs

Fj} (2)

where Sched is the set of all possible schedules, Jobs stands
for the set of all jobs to be scheduled, and Fj represents
the time in which job j finalizes. Assume that Cij (j =
1, 2, . . . , n, i = 1, 2, . . . ,m) is the completion time for per-
forming j-th task in i-th machine and Wi (i = 1, 2, . . . ,m)
is the previous workload of Mi, then

∑

j∈S(i) Cij +Wi is
the time required for Mi to complete the tasks included in
it (S(i) is the set of jobs scheduled for execution on Mi in
schedule S). According to the aforementioned definition,
makespan and flowtime can be evaluated using:

makespan = max
i∈{1,2,...,m}

{
∑

j∈S(i)

Cij +Wi} (3)

flowtime =
m
∑

i=1

∑

j∈S(i)

Cij (4)

Minimizing makespan aims to execute the whole meta-task
as fast as possible while minimizing flowtime aims to utilize
the computing environment efficiently.
A schedule of n independent tasks executed on m ma-

chines can be naturally expressed as a string of n integers
S = (s1, s2, . . . , sn) that are subject to si ∈ 1, . . . ,m. The
value at i-the position in S represents the machine on which
is the i-the job scheduled in schedule S. Since the differ-
ential evolution uses for problem encoding real vectors, real
coordinates must be used instead of discrete machine num-
bers. The real-encoded DE vector is translated to schedule
representation by simple truncation of its coordinates (e.g.
3.6 → 3, 1.2 → 1). Assume schedule S from the set of
all possible schedules Sched. For the purpose of differential
evolution, we define a fitness function fit(S) : Sched → R

that evaluates each schedule:

fit(S) = λ ·makespan(S) + (1− λ) ·
flowtime(S)

m
(5)

The function fit(S) is a sum of two objectives, the makespan
of schedule S and flowtime of schedule S divided by number
of machines m to keep both objectives in approximately the
same magnitude. The influence of makespan and flowtime
in fit(S) is parameterized by the variable λ. The same
schedule evaluation was used also in [4].

4.1.1 Scheduling Experiments

We have implemented the DE for scheduling of indepen-
dent tasks on the CUDA platform to evaluate the perfor-
mance and quality of proposed solution. The GPU imple-
mentation was compared to a simple CPU implementation
(high level object oriented C++ code) and optimized CPU
implementation (low level C code to achieve maximum per-
formance). The optimized CPU implementation was cre-

ated to provide a fair comparison of performance oriented
implementations on the GPU and on the CPU. Optimized
CPU and GPU implementations of the DE for scheduling
optimization were identical with the exception of CUDA-C
language constructions.

First, the time needed to compute fitness for the pop-
ulation of DE vectors was measured for all three DE im-
plementations. The experiment was conducted on a com-
puting node with 2 dual core AMD Opteron processors at
2.6GHz and nVidia Tesla C2050 with 448 cores at 1.15GHz.
The comparison of fitness computation times on for different
population sizes is illustrated in 4 (note the log scale of the
y-axis).

The GPU implementation was 25.2 - 216.5 times faster
than CPU implementation and 2.2 - 12.5 times faster than
optimized CPU implementation of the same algorithm. This,
along with the speedup achieved by the parallel implemen-
tation of the DE process contributes to the overall improve-
ment of the optimization results. To compare the perfor-

Figure 4: Comparison of schedule evaluation time on CPU
and GPU.

mance of the DE for minimizing the makespan and flowtime
of a schedule of independent tasks was used the benchmark
proposed in [3]. The benchmarking model is based on the
ETC matrix for 512 jobs and 16 machines. The instances of
the benchmark are classified into 12 different types of ETC
matrices according to the following properties [3]:

• task heterogeneity – Vtask represents the amount of
variance among the execution times of tasks for a given
machine

• machine heterogeneity – Vmachine represents the varia-
tion among the execution times for a given task across
all the machines

• consistency – an ETC matrix is said to be consistent
whenever a machine Mj executes any task Ti faster
than machine Mk; in this case, machine Mj executes
all tasks faster than machine Mk

• inconsistency – machine Mj may be faster than ma-
chine Mk for some tasks and slower for others

Each ETC matrix was named using the pattern TxMyCz,
where x describes task heterogeneity (high or low), y de-
scribes machine heterogeneity (high or low) and z describes

1599



the type of consistency (incosnsistent, consistent or semi-
consistent).
We have investigated speed and quality of the results ob-

tained by the proposed DE implementation and compared
it to the results obtained by CPU implementations. Aver-
age fitness value of the best schedules found by different DE
variants after 30 seconds are listed in Table 1. The best re-
sults for each ETC matrix are shown in bold. We can see
that the GPU implementation delivered the best results for
population sizes 1024 and 512. However, the most success-
ful population size was 64. Apparently, such a population
size seems to be suitable for investigated scheduling prob-
lem with given dimensions (i.e. number of jobs and num-
ber of machines). When executing the differential evolution
with population size 64, the optimized CPU implementation
delivered best results for the consistent ETC matrices, i.e.
ThMhCc, ThMlCc, TlMhCc and TlMlCc. In all other cases,
the best result was found by the GPU powered differential
evolution.
The progress of the DE with the most successful popula-

tion size 64 for different ETC matrices is shown in Figure 5.
The figure clearly illustrates the big difference in the DE
on CPU and GPU. The DE executed on the GPU achieves
the most significant fitness improvement during the first few
seconds (roughly 5s) while the CPU implementations require
much more time to deliver solution with similar quality, if
they manage to do it at all. Needless to say, the optimized
CPU implementation has always found better solution than
the simple CPU optimization because it managed to process
more candidate vectors in the same time frame.

4.2 Search for Function Minima
Previous GPU based DE implementations were most of-

ten benchmarked using a set of continuous benchmarking
functions. To provide a rough comparison of the proposed
approach with another DE implementation, we have imple-
mented a DE searching for minimum of the test function f2
from [5].

f2(x) =

n
∑

i−1

(

x
2
i − 10cos(2πxi) + 10

)

(6)

We note that the comparison is indirect and rather illustra-
tive since the two algorithms were executed for the same test
function but with different dimensions, on different hard-
ware, and with different settings.
The purpose of this comparison is to show whether the

proposed DE can find similar, better, or worse solution of
a previously used benchmark function of many variables.
From Table 2 can be seen that the proposed DE has found

Table 2: Comparison of proposed DE with CUDA-C imple-
mentation by de Veronese and Krohling.

f2 DE from [5] Proposed DE
variables value time value time
100/128 278.18 0.64 232.8668 0.6604656
100/128 98.53 27.47 32.98331 27.00045
256 N/A N/A 91.10914 27.00054
512 N/A N/A 295.6335 27.00055

in a very similar time frame a solution to f2 with better
(i.e. lower) value. The proposed algorithm was executed
on a more powerful GPU than the DE in [5], but it had

to browse a search solution space with 1.28 times higher
dimension. In 0.64 seconds, it delivered approx. 1.19 times
better (in terms of fitness value) solution and in 27 seconds,
it has found approximately 3 times better solution than the
previous implementation. Moreover, the proposed DE has
found in 27 seconds better solution even for the benchmark
function of 256 variables.

This leads us to the conclusion that the proposed DE is
able to find good minima of continuous functions and it ap-
pears to be at least competitive with previous CUDA-C im-
plementations.

5. CONCLUSIONS
This paper introduces a new GPU implementation of the

differential evolution. The algorithm was designed for the
nVidia CUDA platform and in contrast to previous GPU
implementations of the DE, it processes each candidate so-
lution with many threads. It implements all DE related op-
erations including random number generation on the GPU
and it uses the latest features of the nVidia CUDA SDK 3.2.

The GPU implementation of differential evolution was
used to find good schedules mapping a set of independent
tasks to multiple machines. With the help of the GPU,
the fitness of the schedules was evaluated 2.2 - 12.5 faster
than on the CPU using C code and 25.2 - 216.5 times faster
than on the CPU using object oriented C++ code. The im-
plementation uses many threads to process each candidate
solution and so a further performance increase is expected
with more advanced GPUs.

In a direct comparison with CPU based implementations
was shown that the differential evolution implemented on
the CUDA platform can in most cases find schedules with
better average fitness in long time (30 seconds). More im-
portantly, the CUDA based DE can find significantly better
solutions in a short time (below 5 seconds), which makes the
algorithm and implementation prospective for real world us-
age.

In an indirect comparison with previously published GPU
based DE implementation, the proposed DE delivered com-
petitive results when seeking for an optimum of a test func-
tion, which suggests that the presented DE implementation
on the CUDA platform can deliver good results also for prob-
lems with continuous solution spaces.

Acknowledgement

This work was supported by the Czech Science Foundation,
under the grant no. GA102/09/1494, and by the Ministry of
Industry and Trade of the Czech Republic, under the grant
no. FR-TI1/420.

6. REFERENCES

[1] S. Ali, T. Braun, H. Siegel, and A. Maciejewski.
Heterogeneous computing. In J. Urbana and
P. Dasgupta, editors, Encyclopedia of Distributed
Computing. Kluwer Academic Publishers, Norwell,
MA, 2002.

[2] M. Andrecut. Fast gpu implementation of sparse
signal recovery from random projections. Engineering
Letters, 17(3):151–158, 2009.

[3] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni,
M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D.

1600



Table 1: The fitness of best schedule found in 30 sec using different population sizes (lower is better).

ETC Population size = 64 Population size = 512 Population size = 1024
matrix CPU CPU opt. GPU CPU CPU opt. GPU CPU CPU opt. GPU
ThMhCc 1.07E+7 9.03E+6 9.57E+6 2.08E+7 1.69E+7 9.46E+6 2.42E+7 1.92E+7 9.35E+6

ThMhCi 6.60E+6 3.72E+6 3.18E+6 1.92E+7 1.77E+7 3.19E+6 2.18E+7 1.96E+7 3.29E+6

ThMhCs 7.48E+6 4.89E+6 4.27E+6 2.02E+7 1.73E+7 4.24E+6 2.37E+7 1.99E+7 4.43E+6

ThMlCc 194841 180070 186913 240260 206585 188508 269340 233054 187939

ThMlCi 118491 88383.6 78645.4 233159 213770 78905.1 251670 235113 80649.6

ThMlCs 141940 111729 104012 233885 205696 104898 257279 228244 108694

TlMhCc 361021 322400 334667 693637 564866 328479 787541 666462 325734

TlMhCi 219874 123442 104475 683699 579198 104597 728971 670957 107532

TlMhCs 243946 158307 142704 644251 567544 143857 769772 638295 149150

TlMlCc 6387.09 5908.12 6185.68 7647.84 6896.78 6148.65 9035.75 7804.94 6155.41

TlMlCi 3883.62 2813.56 2540.56 7882.03 7070.03 2549.5 8349 7685.84 2619.71

TlMlCs 4640.97 3697.94 3388.26 7657.22 6726.06 3418.79 8471.38 7669.97 3581.62

Theys, B. Yao, D. Hensgen, and R. F. Freund. A
comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous
distributed computing systems. J. Parallel Distrib.
Comput., 61:810–837, June 2001.

[4] J. Carretero, F. Xhafa, and A. Abraham. Genetic
algorithm based schedulers for grid computing
systems. International Journal of Innovative
Computing, Information and Control, 3(7), 2007.

[5] L. de Veronese and R. Krohling. Differential evolution
algorithm on the gpu with c-cuda. In Evolutionary
Computation (CEC), 2010 IEEE Congress on, pages 1
–7, 2010.

[6] T. J. Desell, D. P. Anderson, M. Magdon-Ismail, H. J.
Newberg, B. K. Szymanski, and C. A. Varela. An
analysis of massively distributed evolutionary
algorithms. In IEEE Congress on Evolutionary
Computation, pages 1–8. IEEE, 2010.

[7] D. Fernandez-Baca. Allocating modules to processors
in a distributed system. IEEE Trans. Softw. Eng.,
15(11):1427–1436, 1989.

[8] G. Hager, T. Zeiser, and G. Wellein. Data access
optimizations for highly threaded multi-core cpus with
multiple memory controllers. In Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pages 1 –7, 2008.

[9] H. Izakian, A. Abraham, and V. Snasel. Comparison
of heuristics for scheduling independent tasks on
heterogeneous distributed environments. In
Computational Sciences and Optimization, 2009. CSO
2009. International Joint Conference on, volume 1,
pages 8 –12, april 2009.

[10] P. Kromer, V. Snasel, J. Platos, A. Abraham, and
H. Ezakian. Evolving schedules of independent tasks
by differential evolution. In S. Caballé, F. Xhafa, and
A. Abraham, editors, Intelligent Networking,
Collaborative Systems and Applications, volume 329 of
Studies in Computational Intelligence, pages 79–94.
Springer Berlin / Heidelberg, 2011.

[11] W. Langdon and W. Banzhaf. A simd interpreter for
genetic programming on gpu graphics cards. In
M. O’Neill, L. Vanneschi, S. Gustafson,
A. Esparcia Alcázar, I. De Falco, A. Della Cioppa, and
E. Tarantino, editors, Genetic Programming, volume
4971 of Lecture Notes in Computer Science, pages
73–85. Springer Berlin / Heidelberg, 2008.

[12] E. Munir, J.-Z. Li, S.-F. Shi, and Q. Rasool.
Performance analysis of task scheduling heuristics in
grid. In Machine Learning and Cybernetics, 2007
International Conference on, volume 6, pages
3093–3098, aug. 2007.

[13] NVIDIA. NVIDIA CUDA Programming Guide 3.2.
2010.

[14] NVIDIA. CUDA Toolkit 3.2 Math Library
Performance. 2011.

[15] A. J. Page and T. J. Naughton. Framework for task
scheduling in heterogeneous distributed computing
using genetic algorithms. Artificial Intelligence
Review, 24:137–146, 2004.

[16] D. Patnaik, S. P. Ponce, Y. Cao, and
N. Ramakrishnan. Accelerator-oriented algorithm
transformation for temporal data mining. Network and
Parallel Computing Workshops, IFIP International
Conference on, 0:93–100, 2009.

[17] P. Posṕıchal, J. Jaroš, and J. Schwarz. Parallel genetic
algorithm on the cuda architecture. In Applications of
Evolutionary Computation, LNCS 6024, pages
442–451. Springer Verlag, 2010.

[18] T. Preis, P. Virnau, W. Paul, and J. J. Schneider.
Accelerated fluctuation analysis by graphic cards and
complex pattern formation in Econophysics. New J.
Phys., 11:093024, 2009.

[19] K. V. Price, R. M. Storn, and J. A. Lampinen.
Differential Evolution A Practical Approach to Global
Optimization. Natural Computing Series.
Springer-Verlag, Berlin, Germany, 2005.

[20] G. Ritchie and J. Levine. A hybrid ant algorithm for
scheduling independent jobs in heterogeneous
computing environments. In Proceedings of the 23rd
Workshop of the UK Planning and Scheduling Special
Interest Group, December 2004.

[21] D. Robilliard, V. Marion, and C. Fonlupt. High
performance genetic programming on gpu. In
Proceedings of the 2009 workshop on Bio-inspired
algorithms for distributed systems, BADS ’09, pages
85–94, New York, NY, USA, 2009. ACM.

[22] A. YarKhan and J. Dongarra. Experiments with
scheduling using simulated annealing in a grid
environment. In GRID ’02: Proceedings of the Third
International Workshop on Grid Computing, pages
232–242, London, UK, 2002. Springer-Verlag.

[23] W. Zhu. Massively parallel differential evolution -

1601



(a) ThMhCc (b) ThMhCi (c) ThMhCs

(d) ThMlCc (e) ThMlCi (f) ThMlCs

(g) TlMhCc (h) TlMhCi (i) TlMhCs

(j) TlMlCc (k) TlMlCi (l) TlMlCs

Figure 5: DE fitness improvement in time for different algorithms and different ETC matrices.

pattern search optimization with graphics hardware
acceleration: an investigation on bound constrained
optimization problems. Journal of Global
Optimization, pages 1–21, 2010.
10.1007/s10898-010-9590-0.

[24] W. Zhu and Y. Li. Gpu-accelerated differential
evolutionary markov chain monte carlo method for
multi-objective optimization over continuous space. In
Proceeding of the 2nd workshop on Bio-inspired
algorithms for distributed systems, BADS ’10, pages
1–8, New York, NY, USA, 2010. ACM.

1602


	Introduction
	GPU Computing
	Differential Evolution
	Differential Evolution on GPUs
	Many-threaded Implementation of DE on the CUDA Platform

	Examples of Differential Evolution on CUDA
	Differential Evolution for Task Scheduling Optimization
	Scheduling Experiments

	Search for Function Minima

	Conclusions
	References



