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ABSTRACT
The aim of this work is an investigation on the effects of
networks topology to spatially-structured evolutionary al-
gorithms’ dynamics. We applied the algorithm on a multi-
modal optimization problem and we focused our study on
convergence time and diversity of the solutions. Using as
algorithms’ underlying structure different network models
we studied the relationship between algorithm dynamic, i.e.
convergence time, first hitting time and number of distinct
optima found during the evolution, and networks’ charac-
teristics. A comparison with a panmictic evolutionary algo-
rithm is made to study the effects of the introduction of a
structure in the mating dynamics, resulting in an enhance-
ment of diversity and containing the convergence time and
first hitting time overhead. The results on the proposed
multi-modal combinatorial optimization problem using reg-
ular graphs and Watts-Strogatz networks show that the un-
derlying network characteristics clearly influences algorithm
dynamics and diversity of the solutions found.

Categories and Subject Descriptors
I.2.8 [Genetic algorithms]: Multiple solutions / Niching—
Working principles of evolutionary computing

General Terms
Algorithms, Design, Experimentation

Keywords
Evolutionary Computation, Complex Networks, Spatially-
Structured Evolutionary Algorithms
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1. INTRODUCTION
Spatially-Structured Evolutionary Algorithms (ssEAs) are

defined as EAs where the mating between individuals is
based on a graph (or network). Cellular Evolutionary Algo-
rithms (cEAs) are a class of this kind of algorithms with the
characteristic of performing selection and mutation accord-
ing to an interaction graph, commonly a regular graph such
as lattices (1D or 2D). This kind of algorithms, introduced in
[16, 13], permits to decentralize the population partitioning
it in subpopulations or having partially overlapping neigh-
bourhoods. One of their advantages is the particular suit-
ability for parallel implementation [2, 8]. This decentraliza-
tion permits to tune the diffusion rapidity of good solutions
respect to panmictic algorithms (i.e. standard algorithms
where each individual interacts with all the other within the
population).

The first studies on cEAs focused on the effects of the
shape of the neighbourhood on selection pressure of the al-
gorithms [25], considering the relationship between it and
the shape of the topology, commonly a regular lattice. Cel-
lular EAs have been reported as being useful in maintaining
diversity with multimodal and epistatic problems [3], in fact
exploration/exploitation trade-off can be tuned with the ap-
propriate spatial structure. Theoretical investigations on se-
lection intensity and takeover time has been made on differ-
ent graph topologies [23, 11] and some on non-regular graphs
[26, 9] with particular focus on population update policies.
An investigation of selection pressure in scale-free networks
is provided in [10, 21] and relations between network char-
acteristics as scaling and assortativity with takeover time is
studied in [20]. More recently, some theoretical work about
parallel EAs has been presented in [15]. A complete survey
on cEAs research could be found in [1].

The purpose of our study is to investigate the relation-
ship between graph structure and diversity maintenance, in
particular we test our hypothesis with Small-World models,
proposed by Watts and Strogatz [27]. This model has been
chosen because of the possibility to tune an important graph
feature such as the average path length (APL) changing the
value of the rewiring factor r.

This paper proceeds as follows. In Section 2 we introduce
the application of spatially-structured EAs to multi-modal
optimization, describing in 2.1 the particular algorithm we

1579



used for the experimentations. In Section 3 a brief intro-
duction of complex networks theory is given. Specifically a
model that interpolates from a regular lattice to a fully ran-
dom graph, known as Small-World networks, is presented.
Section 4 is devoted to the experimentation of the ssEA on
a multimodal optimization problem and, in subsection 4.1
we study the problem on Small-World topologies. Finally,
in section 5 our conclusions are drawn and some questions
opened by this work are presented.

2. MULTI-MODAL FUNCTIONS OPTIMIZA-
TION WITH SSEAS

Multi-modal functions have multiple optimum solutions,
which may be local or global optima. In the case where
more than a single global optimum exists, it may be the ne-
cessity to find all the optima and not only a single one at the
end of the execution of an algorithm. Usually, EAs tends to
converge around one optimum, due to the genetic drift phe-
nomenon. Two types of diversity maintenance schemes may
be adopted in EAs: explicit and implicit. Explicit meth-
ods force the population to maintain the diversity, common
forms include fitness sharing, niching and crowding [24]. Im-
plicit measures try to avoid forcing methods designing algo-
rithms in the way to separate the whole population into
smaller subpopulations, giving them a spatial distribution,
e.g. Island Model EAs and cellular EAs.

A cellular EA (cEA) structures the population by the
means of “local” small neighbourhoods, maintaining a pop-
ulation whose individuals are spatially distributed in cells.
A cellular Genetic Algorithm (cGA) is a genetic algorithm
whose selection, recombination and mutation are performed
within the neighbourhood of each individual and finally with
a replacement strategy which decides whether the individual
is replaced by the offspring. The population may be updated
in two ways: with a synchronous strategy, where all the pop-
ulation is replaced at the same time, and an asynchronous
way where each individual is replaced before passing to the
next one.

This kind of EA tries to preserve the diversity by re-
stricting the mating (and the consequent exchange of genetic
material) on “physical” distance between individuals. Com-
monly cGAs are defined on a 1D lattice or square lattice
(see [1]) but, as stated before, cGAs based on other graphs
topologies can be defined, influencing the diffusion of solu-
tions in base of the characteristics of the underlying graph
(network). In this work we define Spatially-Structured EAs
(ssEAs) as generic EAs where individuals’ interactions are
bound to an undirected graph (interaction graph).

2.1 Case Study
We implemented an elitist ssEA where each individual is

associated to a node of the graph. The individual’s neigh-
bourhood is defined with the nodes connected to it with an
edge. Hence the size of the neighbourhood, and so the mat-
ing pool, is the same of the node degree where the individual
is located. In this case, the node degree is defined as the
number of edges incident to a specific node. Our proposed
algorithm is shown in Algorithm 1.

The selection mechanism is random within the neighbour-
hood of individual i, thus each individual connected with i
has the same uniform probability to be selected. The se-
lected individual is mutated with the following method: each

bit of the genotype of length N of the selected individual is
flipped with probability 1/N . Then a “replace if better”
strategy is applied: if the fitness of the mutated solution is
higher or equal than the one of individual i then this latter is
replaced by the new one (line 8–9 of algorithm 1). Thus, the
probability of a given node i to be replaced is the following:

P rep
i =

n

ki

(
1− 1

N

)N

+ ξ(fi) (1)

with n the number of individuals with a fitness higher or
equal in the neighborhood, ki the degree of node i (defined as
the number of edges connecting the node) and fi the fitness
value of individual i. The first part of Eq. 1 is the probabil-
ity to select an individual in the neighbourhood with higher
fitness without mutating any bits of its genotype, the sec-
ond part ξ(·) defines the probability, which is strictly related
to the fitness value of i, to mutate the selected individual
into an individual with higher fitness. The selection strategy
might be defined as ‘elitist’, because optimal solutions are
never replaced with non-optimal ones, but an optimal solu-
tion may be substituted by another optimal solution with a
different genotype.

The population updating is performed synchronously.
We also considered a panmictic version of this algorithm,

where each individual interacts with all the other within the
population, in this case the interaction graph is a complete
graph.

Algorithm 1 A simple ssEA with Random Selection Mu-
tation

1: P 0 ← InitializePopulation()
2: for each individual i in P 0 do
3: fiti ← evaluate(i0)
4: end for
5: t← 0
6: while not termination criteria do
7: for each individual i in P t do
8: sel← select(neighborhood(it))
9: sel← mutate(sel)
10: fitsel ← evaluate(sel)
11: if (fitsel >= fiti) then
12: it+1 ← sel
13: end if
14: end for
15: t← t+ 1
16: end while

3. COMPLEX TOPOLOGIES AND SSEAS
As the structure of the interactions (e.g. neighbourhood

shape) between individuals has showed to play a key role on
the spreading of solutions and selection pressure [11, 26], in
this work we study the effects of different complex topologies
on ssEAs solutions. To investigate the relationship between
network topology and dynamical processes that can run on
top of them in the last decade a new scientific paradigm has
been proposed. This new way of thinking about networks is
defined as Complex Networks [5] (CN) Theory. Part of the
aim of this new branch of science is the creation of networks
growth models able to reproduce real networks structure
and provide the tools to analyse them. Another aspect of
CN theory is the study of the effects of the structure of
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such networks over dynamical processes. Of special interest
and strictly related with ssEAs, is the study of spreading
processes as epidemics or rumors on complex topologies [18].

In this section we introduce some network models pro-
posed in CN literature as a substrate for ssEAs and some
topological features that are strictly related to the ability
of a network to spread information. The diffusion of infor-
mation on a network is a complex process and is influenced
by network structure itself. Many topological characteris-
tics are involved in such process but two of them showed to
play an important role. They are namely: the average path
length and the clustering coefficient [27].

The average path length (APL) represents the mean dis-
tance between nodes in a graph, expressed as the number
of links in the shortest path between two nodes i and j.
It has been shown that many real world networks although
composed by a huge number of nodes and connections are
characterized by a small APL. This feature has profound
implications on the spreading of information and diseases as
small distances sensibly reduce the number of steps needed
to cover the whole network.

The clustering coefficient (CC) represents a measure of
the transitivity of a graph and specifically is evaluated as
the probability that two nodes that share a neighbor have
also a link connecting them. This definition can be seen also
as the probability of finding triangles in the network. Such
structures have a profound impact on dynamical processes
because it creates clusters of highly connected nodes that
are loosely connected with the rest of the network.

To get a first insight on the effects of topology on algo-
rithms’ dynamics we start our analysis comparing standard
regular topologies such as 1D lattices and complex topolo-
gies as random graphs. The simplest example of random
network is represented by the so-called Erdös and Rényi
(ER) random graphs [7]. ER graphs are characterized by
random connections between nodes leading to a possonian
degree distribution. ER networks also present opposite fea-
tures with respect to regular graphs. In fact such kind of
networks are characterized by a low APL and a vanishing
CC for large graphs. To create an ER graph it is possible to
follow the original algorithm presented in [7]:

1. To create a graph with N nodes start with a set of N
disconnected nodes.

2. For each couple of nodes (i, j) connect them with prob-
ability p. The resulting graph will be composed by N
nodes and K = N(N − 1)p/2 links.

Once the two extreme cases of regular graphs and ran-
dom networks have been analysed, to complete our study
we use as a substrate a class of networks that can interpo-
late, via a tunable parameter r, from a fully regular lattice,
characterized by both a high CC and APL to a completely
random network with small distances between nodes and a
vanishing CC. These networks are defined as Small-World
networks [27]. To range between the two extreme cases of
networks, the following algorithm, proposed by Watts and
Strogatz is used [27]:

1. The process starts with a 1D lattice with N nodes (see
Figure 1)

2. For each link (i, j), with probability r one end of the
link is rewired to another node selected randomly avoid-
ing loops and duplications.

Figure 1: 1-D Lattice with two neighbours for each
node

With r = 0 no rewiring is performed and the 1D lattice is
preserved an it is characterized by CC = 0.5 andAPL = N/4.
With r = 1 all the links are rewired and a fully random
topology is achieved with CC → 0 for large N and APL ∼
log(N) [5].

4. EXPERIMENTATIONS
In this section we introduce a combinatorial optimisation

problem created by a composition of TwoMax functions
[14, 12], a bimodal equivalent of OneMax, where each sub-
string contributes to the total fitness value according to the
number of ones it has. This pseudo-Boolean function, called
NMAX, has been created by concatenating L TwoMax
strings of b bit each leading to a 2L global optima. In this
paper we put L = 10. The fitness function is defined as
follows:

fNMAX(S) =
L∑

i=1

fTwoMax(si) (2)

with si the i-th substring of length b inside the global prob-
lem string. The fitness of twomax problem is:

fTWOMAX(S) =
∣∣∣ b
2
−

i=b∑
i=1

xi

∣∣∣, x ∈ {0, 1}b (3)

Given that a twomax problem has two distinct optima
(the 0-string and the 1-string), with the concatenation of
L strings we obtain a problem with 2L distinct optima.

As in the previous section, we used the algorithm de-
scribed in Section 2.1 with the parameters in Table 1. With
the aim of finding a good trade-off between the computa-
tional time needed by our experimentations and the large
networks sizes able to mostly reproduce the topological fea-
tures of an infinite network we set the population size N =
104.
We measure the maximum number of distinct optima found

by the algorithm, the generation where the fitness converges
(FCT) and the first hitting time (FHT).

In our first experiment we simulate 50 runs of the al-
gorithm described in section 2.1 with three typologies of
graphs: random graph, lattice 1-D (see Figure 1) and com-
plete graph (i.e. panmictic EA). In Table 2 we show the
average results (we omitted the standard deviations for sake
of clarity, all the values were under 2%): the lattice topology
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(b) b = 64
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(c) b = 128

Figure 2: Average ratio of optimal individuals within the population on NMAX problem on 50 runs.
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Figure 3: Phenotypic entropy on NMAX problem

Table 1: Parameterization used in the algorithm

Name Value

Population Size 10000

Mutation Probability 1/n

Recombination none

Max number of generations 5000

leads to a different first hitting time and number of distinct
optima from the other two topologies.

In Figure 2 is shown the evolution of the ratio of optimal
individuals (i.e. the value of 1 means that all the individ-
uals have an optimal fitness) within the population. It is
evident how the random graph ssEA and the panmictic al-
gorithm behave similarly, differently the monodimensional
lattice ssEA shows a slower dynamic (as depicted in Ta-
ble 2). Because of the replacing strategy we can see that
when the algorithm found more than an optima (like for
lattice ssEA), during the generations this number tends to
decrease. In fact, as described in line 11 of Algorithm 1,
each time an optimal individual select another optimal solu-
tion in its neighbourhood there is a certain probability (see
first part of Eq. 1) to be replaced, with a decrease of overall
diversity.

As we studied the convergence speed to the global opti-
mum we measured the genotypic entropy [22] of the popu-
lation P as follows:

Hg(P ) = −
M∑
i=1

gdi log(g
d
i ) (4)

where gdi is the fraction of solutions with a given distance
(in this case Hamming distance) from the origin (the 0-bit
string). This metric, derived from statistical thermodynam-

ics, permits to measure the quantity of different solutions
(states) inside a population.

Similarly, the phenotypic diversity is defined as:

Hp(P ) = −
M∑
i=1

gpi log(g
p
i ) (5)

where gpi is the fraction of solutions with a given fitness
value.

As we can see in figure 4 and 3 in nmax problem genotypic
and phenotypic entropy highlight the multimodality of the
problem, in fact when the population becomes homogenous
the phenotypic entropy goes to zero (all the individuals have
the same fitness) but the genotypic entropy is greater than
zero when there are optima with different genotype.

4.1 Small-World topologies
We presented in Section 3 the Watts-Strogatz network

model with its critical rewiring parameter which, as de-
scribed in [27], permits the tuning of the average path length
and clustering coefficient. In this section we want to in-
vestigate the dynamics of the proposed algorithm with the
changing of rewiring factor r on the Watts-Strogatz model
which consists of a regular network with 4 neighbours and a
fraction r of ‘shortcut’ links1.

We considered 24 different values for r from 2 · 10−5 to 1,
numerical results on nmax problem with b ∈ {32, 64, 128}
are shown in Table 3. We can see that as the r grows the
algorithm tend to perform similarly to a random network
ssEA as expected (see Section 3). In Figure 6, FHT and
FCT of all the problems are shown. The distance between
the FHT and the FCT is the width of the ”S” shape shown
in Figure 2. In Figure 7 is shown the number of distinct op-
tima over 50 simulations on Small-World networks for each
1All the networks used in this work are available online at
http://www.matteodefelice.name/research/resources/.
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Table 2: Comparison of panmictic EA and ssEA on NMAX problem with different substring sizes (b)

Algorithm L = 10, b = 32 L = 10, b = 64 L = 10, b = 128

FHT FCT n. opt. FHT FCT n. opt. FHT FCT n. opt.

Panmictic 362 410 1.04 776 823 1 1610 1659 1

Random 380 433 1.02 810 863 1 1692 1746 1

Lattice 1D 594 911 137 1332 1769 71.63 2846 3452 54.96
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Figure 4: Genotypic entropy on NMAX problem
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Figure 5: Average Path Length (APL) of Small-
World networks considered

value of rewiring factor r. In Figure 8 we show the genotypic
entropy of four chosen rewiring factors, is evident how this
parameter drastically affects speed of convergence and the
diversity of the individuals inside the population. Compar-
ing this figure with the Figure 4 is evident how high values
of r lead to an entropy similar to the panmictic and random
graph cases.

Observing the Figure 5, where the average path length
(see Section 3) of selected networks is shown, we can see
a possible relation between this measure (which reflect the
efficiency of information ‘spread’ over the graph) and the
algorithm entropy and diversity variation.

5. CONCLUSIONS
In this work we presented an investigation of the effects of

network topology on the dynamics of a spatially-structured
evolutionary algorithm on a multi-modal combinatorial prob-
lem. In order to study the effects of the variations of network
features, Small-World network models have been chosen due
to the possibility of a simple and effective tuning offered by
the rewiring factor. The variation of this parameter leads
to the exploration of the trade-off of the algorithm between
speed of convergence (as shown by the First Hitting Time
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Figure 6: First Hitting Time (FHT) and Fitness
Convergence Time (FCT) of Small-World networks
considered

measure) and diversity of exploration (measured with the
number of different optima found during the evolution). Al-
though the selected problem can be considered simple, it
allows us to investigate both the diversity of the solutions
found (a very important feature in several application fields)
and the speed of convergence. The similarity of behaviour
of the panmictic EA and the random graph ssEA was not
surprising because of their APL value (three for the random
graph and obviously one for the complete graph).

The change of the rewiring factor r leads to a variation
of the FHT in the range 15 − 56% (considering all the val-
ues of b) with respect to the panmictic version of algorithm
(the range for the FCT is instead 17 − 89%), in the same
time the diversity of the solutions found (i.e. the number of
distinct optima) shows an interesting variety (see Figure 7)
with respect to the panmictic which rarely exceeds the single
optimum found during the evolution. Moreover, it is evident
how the FHT and FCT change slightly from r = 2 · 10−5 to
r = 0.1 while in the same interval the number of optima
shows a drastic variation (as also for the APL in Figure 5).
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Table 3: First Convergence Time and First Hitting Time of ssEA on Watts-Strogatz Small-World networks
Rewiring factor N = 10, b = 32 N = 10, b = 64 N = 10, b = 128

FHT FCT n.opts FHT FCT n.opts FHT FCT n.opts

r = 2 · 10−5 536 778 99.09 1193 1527 62.38 2536 2990 38.38
r = 9 · 10−5 538 783 98.98 1190 1519 61 2538 3005 37.97
r = 1 · 10−4 536 782 98.04 1191 1526 61.21 2538 2993 37.06
r = 5 · 10−4 535 782 93.92 1187 1524 56.38 2528 2983 31.44
r = 0.001 533 778 88.88 1183 1515 49.08 2516 2972 25.28
r = 0.01 521 732 31.2 1145 1401 8.58 2398 2713 1.84
r = 0.02 512 686 12.7 1108 1329 2.36 2323 2570 1.14
r = 0.03 503 679 9.46 1092 1294 2.1 2284 2506 1.02
r = 0.04 498 660 6.26 1073 1259 1.6 2244 2455 1.06
r = 0.05 490 631 4.38 1058 1212 1.48 2214 2380 1
r = 0.1 472 588 2.22 1012 1139 1.14 2111 2247 1
r = 0.2 454 545 1.78 969 1065 1.02 2019 2119 1
r = 0.5 426 498 1.16 913 989 1 1901 1980 1
r = 1.0 418 486 1.16 895 966 1 1870 1941 1
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Figure 7: Average of maximum number of optima
found using Small-World networks
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models with NMAX b = 32

5.1 Future Work
Although this work shed some light on the relationship

between network structure and ssEAs performances many
problems in this field still remain open. As the problem of
the diffusion and creation of the optima and the spreading
of a rumor or an infectious disease are strictly related [17],
it is possible to model the evolution of an ssEA as a spread-
ing phenomena on a network (as suggested in [19]) and get
some analytical insights on the diversity of the solutions or
the convergence time. Another important problem is repre-
sented by not only the effects of topology on ssEAs but also
how an algorithm can shape network structure to achieve de-

sired performances, i.e. how to design a network in order to
tune the exploitation/exploration trade-off of the algorithm.
As future steps, the first should be the study of the applica-
tion of epidemic models (especially compartmental models
as SIR models [4, 6]) to ssEAs, after that a comparison with
classical ssEAs (like CEAs) might be performed on several
benchmark optimization problems.
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