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ABSTRACT
Multicore machines are becoming a standard way to speed
up the system performance. After having instantiated the
evolutionary metaheuristic DaEX with the forward search
YAHSP planner, we investigate on the global parallelism
approach, which exploits the intrinsic parallelism of the in-
dividual evaluation. This paper describes a parallel shared-
memory version of the DaEYAHSP planning system using the
OpenMP directive-based API. The parallelization scheme
applies at a high level of abstraction and thus can be used
by any evolutionary algorithm implemented with the Evolv-
ing Objects framework. The proof of concept is validated
on a 48-core machine with two planning tasks extracted
from the last international planning competition. Experi-
ments show significant speedups with an increasing number
of cores. This preliminary work opens an avenue for paral-
lelizing any evolutionary algorithm developed with EO that
would target multicore architectures.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; D.1.3 [Programming Techniques]:
Concurrent Programming—Parallel Programming

General Terms
Algorithms, Experimentation, Performance.

Keywords
Evolutionary Computation, Automated Planning, Parallel
Shared-Memory, Multicore.
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1. INTRODUCTION
The classical planning problem in Artificial Intelligence

[10] is to find a path in a transition system: a sequence of
actions which maps an initial state I into a state G satisfying
a set of desired goals. Usually, a metric is associated with the
solution plan such as length, cost or duration (where concur-
rent actions are allowed). In domain-independent planning,
problems are described with the Planning Domain Descrip-
tion Language (PDDL) [9]. In the simplest STRIPS model,
states of the world are defined by sets of atoms instantiated
from a set of predicates and a set of objects, and actions
are triples of sets of atoms: preconditions, add effects, del
effects. Instances of the planning problem, called planning
tasks, can model many kinds of abstract reasoning problems
and are known to be PSPACE-hard.

To solve such planning tasks, several heuristic search al-
gorithms have been proposed in the past but none of them
can be easily parallelized. They require a great amount of
work to provide efficiency while preserving correctness [5, 6].

Recently, the DaEX evolutionary metaheuristic has been
proposed to solve such planning tasks [3, 21]. As an evolu-
tionary algorithm, DaEX provides an intrinsic parallelism:
the individual evaluation stage, which is often the most time-
consuming stage during the evolutionary generation loop.
This nice property opens an avenue towards the design of a
parallel planning system without going deeply inside a whole
reconstruction of the sequential version.

Moreover, the implementation of DaEX has been made
with the STL-based Evolving Objects framework1 which
provides an abstract control structure to develop any kind
of evolutionary algorithm. Therefore, our parallelization
scheme is easily transposable to any evolutionary algorithm
developed within the EO framework.

As a proof of concept, we implemented a multi-threaded
version of DaEYAHSP, the instantiation of DaEX with the
heuristic forward search YAHSP planner [23], using the
OpenMP directive-based API2. The design of experiment
is built on problems extracted from the last international
planning competition3 with the multi-threaded DaEYAHSP

release mapped onto a 48-core parallel machine.
While clusters is the most common distributed memory

1http://eodev.sf.net
2http://www.openmp.org
3http://ipc.icaps-conference.org
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system for high performance computing, multicore architec-
tures are gaining popularity as they become the de facto
standard in computer mass market. The GPGPU-based ar-
chitectures share similar characteristics, but require a spe-
cific programming language. As a consequence we would
have to rewrite entirely the YAHSP solver called by our
evaluation function.

The paper is outlined as follows. We first review related
works in the fields of parallel evolutionary computation and
AI planning, before presenting in more details the main algo-
rithms on which our parallel system is based: the evolution-
ary metaheuristic DaEX and the forward-chaining heuris-
tic search planner YAHSP. The parallel implementation of
DaEYAHSP is then described, as well as the specific problems,
due to the shared-memory programming model, that arose
during this implementation. After having demonstrated the
effectiveness of our parallel implementation of DaEYAHSP

on two planning benchmark tasks, we conclude and provide
some insights of possible future works.

2. RELATED WORKS

2.1 Parallel Evolutionary Algorithms
A large literature deals with the parallelization techniques

of Evolutionary Algorithms (EAs). Depending on the tar-
geted architecture, the parallelization scheme may be cho-
sen accordingly. The main approaches may be classified
among: simple run level parallelism, EA with global paral-
lelism where the evaluation stage is parallelized but not the
other operators, and island-based in which the population is
partitioned into separate subpopulations. These structured
EAs further split into cellular EAs (cEA) where the selec-
tion and reproduction steps are parallelized, and distributed
EAs dEA with a controlled migration between islands [2].

The run level parallelism being trivially achieved by run-
ning several runs concurrently, the first step when paral-
lelizing a new algorithm is often to try the global paral-
lelization approach, because the evaluation step is often the
most costly part of EAs and because individual evaluations
are generally intrinsically independent.

A parallel extension of EO, ParadisEO, has been pro-
posed by Cahon et al. [7]. It is based on the Message
Passing Interface (MPI) and proposes several parallelization
schemes, available by calling wrappers around common func-
tions of EO. ParadisEO targets multiprocessor machines,
especially clusters and grids, for running large-scale, gen-
eral purpose EAs. As we are targeting a multicore architec-
ture, and since our evaluation function has a large memory
footprint, message passing may introduce a time consum-
ing memory copy overhead. This reason discards the Par-
adisEO framework.

Another attractive parallel architecture is the GPGPU
card with a very good processor-price ratio. The work de-
scribed in [16] shows how a simple general scheme can be de-
signed for EAs, by parallelizing the evaluation step. But the
limitations that are pointed out can hardly be avoided in our
case. Firstly, without stack, functional calls are forbidden on
a GPGPU card: the whole code must be inlined; this would
entail to inline the YAHSP solver entirely, which would over-
come the available length limit. Secondly, it necessitates flat
genome representations, which in our case would imply a lot
of copies of the atoms objects instances, which can be numer-
ous on large problems. Moreover, YAHSP uses a memoiza-

tion mechanism which is a global shared-memory that save
previous computations. It greatly speeds up the search but
cannot be used on a GPGPU because it may need up to sev-
eral gigabytes of memory on hard problems, where GPGPU
cards have heavy limitations on memory space. And finally
speedups may be obtained for very large sizes of population
(e.g. 5000, 20000) which is not the average case here. For
these reasons we also discarded this type of architecture.

2.2 Parallel Planning
Several approaches to parallel planning have been pro-

posed in recent years. Parallel Retracting A* [8], was im-
plemented on a Connection Machine and had to deal with
very severe memory limitations. In that algorithm, a dis-
tributed hash function is used to allocate generated states
to a unique processing unit and avoid unnecessary state du-
plications. PRA* deals with the memory limitation through
a retraction mechanism which allows a processor to free its
memory by dropping states. In order to confirm the trans-
fer of a state, synchronous communication channels must
be used, which seriously slows down the search process.
Transposition-table driven work scheduling [20], similarly to
PRA*, uses a hash function to avoid duplication. It is based
on IDA* and, running on a standard architecture, does not
necessitate any retraction mechanism and can efficiently ex-
ploit asynchronous communication channels. Parallel Fron-
tier A* with Delayed Duplicate Detection [17] uses a strategy
based on intervals computed by sampling to distribute the
workload among several workstations, targeting distributed-
memory systems as opposed to previous approaches. In [15],
the authors introduce Hash Distributed A* (HDA*) which
combines successful ideas from previous parallel algorithms.
HDA* uses a hash function which assigns each generated
state to a unique processing unit in order to avoid the dupli-
cation of the search efforts. This mechanism was introduced
in PRA*, which unfortunately combined it with synchronous
communication channels which cause a lot of waiting. This
problem was addressed in HDA* by the use of non-blocking
communication (as in [20]). In [6, 5] the authors present
Parallel Best-NBlock-First (PBNF). It uses an abstraction
to partition the state space. PBNF allows each thread to
expand the most promising nodes while detecting duplicate
states. Rather than sleeping if a lock cannot be acquired, a
thread can perform “speculative” expansions by continuing
the expansion of its current part of the space. This tech-
nique keeps cores busy at the expense of duplicate work.
[22] adapts for planning a technique called dovetailing, in
which several instances of a search algorithm with different
parameter settings are run in parallel. Finally, [24] pro-
posed a multicore version of the planner [23] where many
concurrent threads expand nodes from a common open list,
yielding to early exploration of branches of the search tree
that would have been delayed by a classical search, which
can speedup search by several orders of magnitude.

3. METHODS

3.1 Algorithms

Divide and Evolve.
DaEX, the concrete implementation of the Divide-and-

Evolve paradigm, is a domain-independent satisficing plan-
ning system based on Evolutionary Computation [21]. The
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basic principle is to carry out a Divide-and-Conquer strat-
egy driven by an evolutionary algorithm. The algorithm is
detailed in [3] and compared with state-of-the-art planners.
In order to solve a planning task PD(I, G), the basic idea
of DaEX is to find a sequence of states S1, . . . , Sn, and to
rely on an embedded planner X to solve the series of plan-
ning tasks PD(Sk, Sk+1), for k ∈ [0, n] (with S0 = I and
Sn+1 = G). A DaEX individual is a sequence of goals which
define a sequence of subproblems to be solved (a decompo-
sition). These subproblems are submitted successively to
an embedded planner X and the global solution is obtained
after the compression of these intermediate solutions. The
overall optimization process is controlled by an evolutionary
algorithm.

The fitness implements a gradient towards feasibility for
unfeasible individuals and a gradient towards optimality for
feasible individuals. Feasible individuals are always pre-
ferred to unfeasible ones. Population initialization as well as
variation operators are driven by the critical path h1 heuris-
tic [11] in order to discard inconsistent state orderings, and
atom mutual exclusivity inference in order to discard in-
consistent states. Beside a standard one-point crossover for
variable length representations, four mutations have been
defined: addition (resp. removal) of a goal in a sequence,
addition (resp. removal) of an atom in a goal. The selection
is a comparison-based deterministic tournament of size 5.

For the sequential release, Darwinian-related parameters
of DaEX have been fixed after some early experiments [21]
whereas parameters related to the variation operators have
been tuned using the Racing method [4].

All experiments were done with DaEYAHSP: the instan-
tiation of DaEX with the YAHSP heuristic forward search
solver [23]. We added two novelties to the version described
in [3]. One important parameter is the maximum number
of expanded nodes allowed to the YAHSP sub-solver which
defines empirically what is considered as an easy problem
for YAHSP. As a matter of fact, the minimum number of
required nodes varies from few nodes to thousands depend-
ing of the planning task. In the current release this num-
ber is estimated during the population initialization stage.
An incremental loop is performed until the ratio of feasible
individuals is over when a given threshold or a maximum
boundary has been reached. By default this number is dou-
bled at each iteration until at least one feasible individual is
produced or 100000 has been reached.

Furthermore we add the capability to perform restarts
within a time contract in order to increase solution quality.

Yet Another Heuristic Search Planner.
The YAHSP planning system [23] extends a technique

introduced in the FF planner [13] for calculating the heuris-
tic, based on the extraction of a solution from a planning
graph computed for the relaxed problem obtained by ignor-
ing deletes of actions. It can be performed in polynomial
time and space, and the length in number of actions of the
relaxed plan extracted from the planning graph represents
the heuristic value of the evaluated state. This heuristic is
used in a forward-chaining search algorithm to evaluate each
encountered state.

A novel way has been introduced in YAHSP for extract-
ing information from the computation of the heuristic, by
considering the high quality of the relaxed plans extracted
by the heuristic function in numerous domains. Indeed, the

beginning of these plans can often be extended to solution
plans of the initial problem, and there are often a lot of
other actions from these plans that can effectively be used
in a solution plan. YAHSP uses an algorithm for combining
some actions from each relaxed plan, in order to find the
beginning of a valid plan that can lead to a reachable state.
Thanks to the quality of the extracted relaxed plans, these
states frequently guide search closer to a solution state. The
lookahead states thus calculated are then added to the list
of nodes that can be chosen to be expanded by increasing
order of the numerical value of the heuristic.

This lookahead strategy can be used in different search al-
gorithms. In YAHSP, a classical best-first search algorithm
has been modified in such a way that completeness is pre-
served. It simply consists in augmenting the list of nodes
to be expanded (the open list) with some new nodes com-
puted by the lookahead algorithm. The branching factor is
slightly increased, but the performances are generally better
and completeness is not affected.

A first motivation in the use of YAHSP in DaEX is that
experiments about the use of this lookahead strategy in a
complete best-first search algorithm have demonstrated that
in numerous planning benchmark domains, the improvement
of the performance in terms of running time and size of prob-
lems that can be handled are been drastically improved (cf.
[23]). The YAHSP planner has been awarded a second place
in the 4th International Planning Competition [12] and some
recent results [19] demonstrate that it is still extremely com-
petitive with more recent planners. A second motivation in
the use of YAHSP in DaEX is its ability to answer very
fast to the considerable number of planning requests ema-
nating from DaEX, as opposed to modern techniques such as
the landmark heuristics implemented in the LAMA planner
[18] (winner of the 6th International Planning Competition)
which require a costly analysis for each new initial state.

In order to speed up the search process, a memoization
mechanism has been introduced in YAHSP and carefully
controlled to leave memory space for DaE. Indeed, most of
the time during a run of YAHSP, and as a consequence
during a run of DaEYAHSP, is spent in computing the hadd

heuristic for each encountered state. During a single run
of YAHSP, duplicate states are discarded; but during a run
of DaEYAHSP, the same state can be encountered multiple
times. Therefore, we keep track of the hadd costs of all atoms
in the problem for each state, in order to avoid recomputing
these values each time a duplicate state is reached. This gen-
erally leads to a speedup comprised between 2 and 4. When
DaEYAHSP runs out of memory, which obviously happens
much faster with the memoization strategy, all stored states
and associated costs are flushed. For the parallel scheme, we
experimented two strategies: a global memoization shared
by all individual evaluations against a memoization local to
each individual evaluation. Results are presented in section
4.3.

Parts that can theoretically be parallelized.
As shown in section 2.2, heuristic search algorithms used

in automated AI planners can be parallelized in many ways,
although there is no obvious and natural way to do so. How-
ever, our goal in this work is not to parallelize the underlying
planner, but the evolutionary algorithm which controls the
planner, which can be made in a very efficient way. Indeed,
in typical population-based algorithms such as evolutionary
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algorithms, the evaluation of individuals can be made inde-
pendently of each other, a fortiori in a parallel way since
there is no data-dependencies. Applying variation opera-
tors can also be performed in parallel; and depending on the
application, parallelism on variation operators or individual
evaluation will have a different impact on the running time
and utilization of the computational resources. In DaEX,
the running time of applying the variation operators is neg-
ligible w.r.t. the running time required by the individual
evaluations by an embedded planner, which is the reason
why we only parallelized the latter.

3.2 Implementation

Locks, thread-Safe & reentrant subroutines.
Even if being very natural in the context of evolution-

ary algorithms, parallelizing individual evaluations in DaEX

requires to be carefully made in order to avoid some typi-
cal problems that can happen with shared-memory parallel
implementations. Indeed, even if individual evaluations are
made independently of each other, some concurrent accesses
to shared memory are still required (for example, a basic one
is incrementing some global counter), especially in YAHSP
(detailed below). Furthermore, the original implementations
of DaEX and YAHSP were not designed with parallelism
in mind, which implied some modifications to render them
thread-safe.

One problem that can happen in a shared-memory parallel
implementation is deadlocks, which are situations where at
least two concurrent threads are each waiting for the other
one to finish, and thus neither ever does. This can happen
for example when a thread t1 acquires a lock on a shared
variable x, and then tries to acquire a lock on another shared
variable y; while in the same time a thread t2 acquired a
lock on y and then tries to acquire a lock on x. Each thread
waiting for the other one to release the lock on the next
variable locked by the other thread, nothing happens. A
variation of deadlocks is livelocks, where the threads are still
able to continue doing some work but cannot go through
some portion of the code due to a similar phenomenon.

Another problem that can arise is the concurrent use of a
given subroutine by several threads, when such a subroutine
or some subroutines called, it modifies some global data.
This is a typical problem of reentrancy, which must be care-
fully analyzed in order to render thread-safe a parallel im-
plementation. Two cases can then occur: either the global
data must be shared by some threads, which requires to pro-
tect its access, or it can be made private to each thread, thus
necessitating to change the scope of this data.

EO & OpenMP.
In order to guarantee a non-blocking algorithm, we apply

the Concurrent Read Exclusive Write (CREW) strategy4 of
the Parallel Random Access Machine (PRAM). In this work,
we used OpenMP which defines a set of compiler directives
to tell which part of a program should be parallelized and
which part of memory can be shared out. The main advan-
tage of OpenMP is that it is designed to make easy to paral-
lelize an existing program [1]. The parallel shared-memory
scheme may also be used as a simple approach to program

4Multiple processors can read a memory cell but only one
can write at a time.

clusters, either with a dedicated method, or through a vir-
tual symmetric multiprocessing machine [14].

Considering that the evaluation of the population is the
most costly part of the algorithm, this step is our first target
to parallelize. Moreover, in most cases the evaluation done
on individuals can be made in parallel without data depen-
dencies. There are several classes in EO implementing eval-
uation operators but all of them call a common function to
apply the evaluation on a population. The apply function
takes a functor as argument. The advantages of the Func-

tor pattern is to meet the genericity and the modularity
offered by object-oriented programming while keeping the
simplicity of a single call to a function. EO functors gener-
ally take a population (a vector of individuals) as argument.
In order to enable OpenMP to build a multi-threaded algo-
rithm without memory bounds, the evaluation functor (proc
in the apply function) must fulfill certain requirements. In
EO, the evaluation functors are supposed to be instantiated
only once. In a sequential mode, the same instance is used
to evaluate every individuals in a population. In a paral-
lelized mode, one must ensure that the evaluation functor
have thread-local data structures.

EO::apply.
The apply function takes as parameters a population and

a function to be applied to each individual. The paralleliza-
tion of this region of code is done thanks to the pragma omp

for.

Algorithm 1 apply(proc, pop)

template < typename EOT >

void apply< EOT >(eoUF< EOT, void >& proc,

std::vector< EOT >& pop)

{

for (size_t i = 0; i < pop.size(); ++i)

proc(pop[i]);

}

Algorithm 2 apply(proc, pop) parallelized using OpenMP

template < typename EOT >

void apply< EOT >(eoUF< EOT, void >& proc,

std::vector< EOT >& pop)

{

#pragma omp for

for (size_t i = 0; i < pop.size(); ++i)

proc( pop[i] );

}

When parallelizing the evaluation loop in an evolutionary
algorithm, there exists a synchronization step at each gen-
eration, this ensure that no race-condition may occurs. In-
deed, individuals being evaluated are all independent, which
is the case in the majority of evolutionary algorithms, and
also in DaEX.

YAHSP & OpenMP.
The design of YAHSP has been made in C with efficiency

in mind, and kept as light as possible. This is typically the
kind of implementation, making heavy use of global vari-
ables, not designed for a concurrent use by several paral-
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lel threads, and where thread-safety is clearly not ensured.
However, OpenMP offers a facility to deal with global vari-
ables, in order to change their scope: the omp threadprivate

pragma. It takes as parameter a list of global variables whose
scope must be changed from shared by all threads to private
(local) to each thread. And finally, specifying which global
variable should be rendered private to each thread was the
only thing we had to do to ensure thread-safety in YAHSP.
For example, the global arrays used to compute the heuris-
tic, the relaxed plans and the lookahead plans are made pri-
vate to each thread, ensuring that concurrent executions of
YAHSP do not use the same portions of the global memory.

Specific parallelization issues.
DaEYAHSP evaluation step calls the YAHSP solver several

times on the same decomposition and thus uses several vari-
ables to keep the state of the evaluation over the searches
between intermediate goals (namely k, B and U in the origi-
nal article). As the evaluation functor is a single instance, it
must be guaranteed reentrant by not using static variables
nor attributes. A way to achieve the re-entrancy is to define
those variables as attributes of the decomposition itself, and
not as attributes of the evaluation functor.

Static and dynamic scheduling.
OpenMP lets the choice between static (the default) and

dynamic task scheduling. In the static scheduling, a loop it-
erating through a set of tasks will be divided in several tasks
relative to the number of available processors. In dynamic
scheduling, if one thread has finished its tasks it gets the
next available one, using a queue structure.

4. EXPERIMENTAL STUDY

4.1 Setup

Platform.
The algorithm is programmed in C++ using GCC and

the GNU OpenMP threading library (GOMP), both release
4.4.4. It is run on a 48-core DELL PowerEdge R815 Rack
Server set up with four 12-core AMD Opteron(tm) 6174,
2.2GHz (12x512 KB cache) processors with 192GB of RAM,
under Linux x86 64 2.6.32.

The speedup and the efficiency are measured with the op-
erating system time command which gives the percentage
of the CPU that the process being timed got5. For instance
3182% means a speedup of 31.82. The efficiency, or pro-
cessor use rate, equals the speedup divided by the number
of processors available. For instance 31.82/48 = 0.66 is the
efficiency for a speedup of 31.82% on 48 processors.

Benchmarks.
Although there are several families of problems, we con-

centrate here on cost planning and temporal planning. In
cost planning a cost is attached to each action and the objec-
tive is to minimize the sum of all costs for a sequential plan
whereas in temporal planning actions have a duration and
can be run in parallel. In temporal planning the objective
is to minimize the total makespan of the parallel plan.

5computed as (Total number of CPU-seconds that the pro-
cess spent in user mode + Total number of CPU-seconds
that the process spent in kernel mode) / Wall clock time.

We have tested the above implementation on two bench-
marks from the satisficing track of the 6th International
Planning Competition: Elevators-12 for cost planning and
Openstacks-17 for temporal planning.

The Elevators domain is stated as follows: there is a
building with N + 1 floors, numbered from 0 to N . The
building can be separated in blocks of size M + 1, where
M divides N . Adjacent blocks have a common floor. The
building has K fast (accelerating) elevators that stop only
in floors that are multiple of M/2. Each fast elevator has
a capacity of X persons. Furthermore, within each block,
there are L slow elevators, that stop at every floor of the
block. Each slow elevator has a capacity of Y persons (usu-
ally Y < X). There are costs associated with each elevator
starting/stopping and moving. There are several passen-
gers, for which their current location and their destination
are given. The objective function is to minimize the total
cost of moving the passengers to their destinations. The to-
tal cost is increased each time an elevator starts/stops or
moves.

The Openstacks domain is based on the“minimum maxi-
mum simultaneous open stacks” combinatorial optimization
problem, which can be stated as follows: a manufacturer
has a number of orders, each for a combination of different
products, and can only make one product at a time. The
problem is to order the making of the different products
so that the maximum number of stacks that are in use si-
multaneously, or equivalently the number of orders that are
in simultaneous production, is minimized. The problem is
NP-hard and known to be equivalent to several other prob-
lems. In the temporal case a maximum number of stacks
is given and the goal is to find the plan with the minimum
makespan, without violating the maximum number of stacks
constraints.

Algorithm parameters.
All the experiments were done with the parameter set de-

scribed in [3] except for the population size which varies de-
pending on the experiment. The fixed evolution engine is a
(popsize + 7× popsize)-ES: n individuals generate 7×n off-
spring without selection. For all runs, the following steady-
state stopping condition has been applied: after at least 10
generations, evolution is stopped if no improvement of the
best fitness in the population is made during 50 generations,
with a maximum of 1000 generations.

The DaEX algorithm being stochastic, each run is re-
peated 11 times and the resulting distributions are presented
as standard boxplots.

4.2 Experiments
Two types of experiments were conducted to analyze the

algorithm behavior when increasing the number of cores on
one hand and when increasing the size of the population on
the other hand.

Competition settings, varying the number of cores.
This experiment tests four versions of the algorithm, com-

bining the memoization scheme (local or shared) and the
parallelization scheme (static or dynamic), with a popula-
tion of 48 and 96 individuals. Number of cores used range
from 6 to 48, testing each 6 cores. 21 runs are performed for
each setting which are stopped when the algorithm reached
50 generations without improvement.
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Alternative version, varying the population size.
This experiment uses the same version of DaEYAHSP as

the one used for the International Planning Competition, in
a similar experimental environment. The algorithm uses the
shared memoization and a static parallelization scheme. It
has 30 minutes to achieve its search, and performs a com-
plete restart each time it is stuck after 50 generations with-
out improvement, 11 runs being performed on the 48 avail-
able cores, for the following population sizes: 48, 1152, 2304,
3456, 4608, 5760.

4.3 Results

Speedup against the number of processors.
Results show that the speedup raises linearly with the

number of processors, for every parallel/memoization com-
bination and every problem tested (see Figure 1 for an ex-
ample on two combinations).
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Figure 1: Speedup of DaEYAHSP relative to the num-
ber of processors, on Openstacks-17. On the left:
with local memoization and the static paralleliza-
tion scheme, on the right: with shared memoization
and the dynamic parallelization scheme.

This observation meets the expected behavior and is clas-
sical when considering the parallelization of the evaluation
step of an evolutionary algorithm. Nevertheless, the differ-
ence among combinations and problems can be seen when
considering efficiency.

Figures 2 and 3 shows that for the benchmark Elevators-
12, shared memoization may perform better for larger popu-
lation sizes but that there is no difference between static an
dynamic parallelization schemes. On Openstacks-17, the
dynamic scheme performs slightly better when used along
with the shared memoization.

Since the evaluation times are varying (given the fact that
decompositions have different lengths and that each sub-
problem may be more or less difficult), by construction a
queue-based scheduling should be more efficient in average.
But the behavior is dependent of the algorithm instance and
ability to avoid premature convergence that would produce
an homogeneous population. Hence the difference between
the two schemes may not be immediately notable.

An explanation for the poor performance gain of using
shared memoization might be that the benefit obtained when
memoization is shared among individuals is lost with the
bottleneck due to multiple access locking.
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Figure 2: Efficiency of DaEYAHSP relative to the num-
ber of processors, on Elevators-12.
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Figure 3: Efficiency of DaEYAHSP relative to the num-
ber of processors, on Openstacks-17.
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Figures 4 and 5 show that the solution quality remains
unaffected by the number of cores used.
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Figure 4: Total costs of the 4 parallel/memoization
combinations of DaEYAHSP on Elevators-12.

6 12 18 24 30 36 42 48
# cores

100

150

200

250

300

M
ak

es
pa

n

dae_STATIC

6 12 18 24 30 36 42 48
# cores

100

150

200

250

300

M
ak

es
pa

n

dae_DYNAMIC

6 12 18 24 30 36 42 48
# cores

100

150

200

250

300

M
ak

es
pa

n

dae-sm_STATIC

6 12 18 24 30 36 42 48
# cores

100

150

200

250

300

M
ak

es
pa

n

dae-sm_DYNAMIC

Figure 5: Makespans of the 4 parallel/memoization
combinations of DaEYAHSP on Openstacks-17.

It was expected that the shorter time needed to perform a
run would lead to more restarts within the 30 minutes time
contract and thus to an increasing probability to reach better
solutions. Results show that this is not the case. Again, an
explanation for those results is that the algorithm converge
prematurely and cannot find solutions with a sufficiently
high variance to ensure that the probability to find better
solutions will increase with restarts.

Speedup against the population size.
Figure 6 shows that the efficiency decreases with the size

of the population: while being close to the optimum for a
size equal to the available number of processors, it rapidly
decreases and reaches a plateau for big populations.
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Figure 6: Efficiency of DaEYAHSP relative to the pop-
ulation size.

Using a static parallelization scheme, the decrease in speed-
up is due to the synchronization step at each generation,
when cores have finished the evaluation of easier decompo-
sitions and are waiting for the next generation to occur.

Figure 7 shows that no significant difference in solution
qualities can be observed when the population size increases.
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Figure 7: Solution plans qualities for increasing pop-
ulation sizes.

The hypothesis that a larger population would lead to
a greater exploration and thus to a better solution quality
is thus not confirmed by experimentation. The algorithm
converges too rapidly, independently of the population size.

5. DISCUSSION AND CONCLUSION
We made a proof-of-concept for a shared-memory par-

allelization of the evaluation step of the DaEX algorithm,
based on the OpenMP directive-based API on a common
48-core machine. Thanks to the abstraction level provided
by the EO framework, this scheme is immediately available
for any evolutionary algorithm as far as the context of the
evaluation functor is thread-local and reentrant.

We obtained on our 48-core Dell Machine, a roughly ×45
speedup for the two benchmarks tested, this speedup being
the same for all instances.

The dispersion of the measured times is mainly due to
the combination of the steady-state stopping criterion with
the stochastic nature of the search, which may or may not
reach a fitness plateau early. The relationship between this
dispersion and the difficulty of the problem solved remains
to be explored.

Our results show that the stopping criterion should be
chosen carefully, along with the population size, as it has
an impact on the dispersion of the computation time distri-
bution. Moreover, the population size may indifferently be
chosen small, in order to decrease the computation time.
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The dynamic queue mapping management of threads onto
cores provides a significant improvement on a single problem
instance, when combined with shared memoization. Since
it has no special impact on the other problem, it may be
preferred, but more tests on other domains are necessary.

The implementation scheme presented here is very simple
but works extremely well. A further development will con-
sist in parallelizing other steps of the evolutionary loop in
particular the offspring generation (which is also intrinsically
parallel) and the selection/replacement operators.

A further research axis deals with the impact on solution
quality and in particular how to take advantage of the par-
allelization scheme to escape from premature convergence.
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