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ABSTRACT
We investigate the performance of a highly parallel Particle
Swarm Optimization (PSO) algorithm implemented on the
GPU. In order to achieve this high degree of parallelism we
implement a collaborative multi-swarm PSO algorithm on
the GPU which relies on the use of many swarms rather than
just one. We choose to apply our PSO algorithm against a
real-world application: the task matching problem in a het-
erogeneous distributed computing environment. Due to the
potential for large problem sizes with high dimensionality,
the task matching problem proves to be very thorough in
testing the GPUs capabilities for handling PSO. Our results
show that the GPU offers a high degree of performance and
achieves a maximum of 37 times speedup over a sequential
implementation when the problem size in terms of tasks is
large and many swarms are used.

Track: Parallel Evolutionary Systems

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Performance
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1. INTRODUCTION
A significant problem in a heterogeneous distributed com-

puting environment, such as grid computing, is the optimal
matching of tasks to machines such that the overall execu-
tion time is minimized. That is, given a set of heterogeneous
resources (machines) and tasks we want to find the optimal
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assignment of tasks to machines such that the makespan, or
time until all machines have completed their assigned tasks,
is minimized.

Task matching, when treated as an optimization problem,
quickly becomes computationally difficult as the number of
tasks and machines increase. In response to this problem,
researchers and developers have made use of many heuristic
algorithms for the task mapping problem. Such algorithms
include first-come-first-serve, min-max and min-min [1], and
suffrage [2]. More recently, bio-inspired heuristic algorithms
such as Particle Swarm Optimization [3] (PSO) have been
used and studied for this problem [4, 5]. The nature of
algorithms such as PSO potentially allows for the generation
of improved solutions without significantly increasing the
costs associated with the matching process.

The basic PSO algorithm, as described by Kennedy and
Eberhart [3], works by introducing a number of particles
into the solution space (a continuous space where each point
represents one possible solution) and moving these parti-
cles throughout the space, searching for an optimal solu-
tion. While single swarm PSO has already been applied
to the task matching problem, there does not exist, to the
best of our knowledge, an implementation that makes use of
multiple swarms collaborating with one another.

We target the Graphics Processing Unit (GPU) for our
implementation. In recent years, GPUs have provided sig-
nificant performance improvements for many parallel algo-
rithms. One example comes from Mussi et al. [6]’s work on
PSO, which shows a high degree of speedup over a sequen-
tial CPU implementation. As the GPU offers a tremendous
level of parallelism, we believe that multi-swarm PSO pro-
vides a good fit for the architecture. With a greater number
of swarms, and, thus, a greater number of particles, we can
make better use of the threading capabilities of the GPU.

The rest of this paper is organized as follows. The next
section discusses the CUDA programming model and GPU
architecture, followed by a brief discussion on both single
and multi-swarm PSO. Section 4 discusses the related work
in PSO for task matching, parallel PSO on GPUs, and multi-
swarm PSO. Section 5 provides a description of our PSO im-
plementation on the GPU, and Section 6 shows both perfor-
mance and solution quality results. Finally, we provide our
conclusions and a discussion on future work in Section 7.

2. CUDA PROGRAMMING MODEL
In this section we provide a brief overview of CUDA pro-

gramming, the CUDA threading model, and the GPU ar-
chitecture. Nvidia [7] provides further information in their
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CUDA C Programming Guide. As we currently work with
the GTX 260 GPU (based on the GT200 architecture), all
information in this section pertains to that model of GPU.

From a high level perspective, the GPU is composed of
two separate units: the core and the off-chip memory. The
core of the GPU is composed of an array of Streaming Mul-
tiprocessors, or SMs. Each SM contains eight CUDA cores.
The CUDA cores are the computational cores of the GPU,
and handle the execution of threads. The execution model,
which Nvidia [7] refers to as SIMT, or Single Instruction
Multiple Threads, follows a strategy similar to that of Sin-
gle Instruction Multiple Data (SIMD).

Each of the SMs on the GPU contains a small amount
of high performance shared memory, 16KB in total for the
GTX 260 GPU. Nvidia [7] claims that accesses to shared
memory are as fast as accessing a register if no bank con-
flicts exist. As shared memory is split in to 16 32-bit wide
banks (16 threads at a time perform a memory transaction
in parallel), bank conflicts occur when multiple threads re-
quest data from the same bank. These conflicting requests
are serviced in serial, rather than in parallel. However, in
the case where all threads access the same location, the value
is broadcast to all threads at once.

In contrast to shared memory, the global memory is the
largest memory space available on the GPU and is read/write
accessible to all threads. Unfortunately global memory ac-
cess carries a significant latency penalty on the order of 400
to 800 cycles [7]. As an added downside, global memory
accesses are not cached. There are, however, structured ac-
cess patterns which allow threads to collaborate on their
accesses, resulting in global memory coalescing [7]. This
coalescing effect reduces the total number of memory trans-
actions required to service groups of threads.

Stemming from global memory we have the texture and
constant memories. These are read-only memories that exist
within global memory, and thus still have the high latency
costs. The difference with these memories, however, is that
the hardware provides small caches at the SM level for data
accesses from these memories.

With CUDA, threads are grouped into a few organiza-
tions. At the lowest level, sets of 32 threads are organized
into a warp. Each thread within a warp is given the same
instruction to execute and they all execute on the same SM.
The previously mentioned memory coalescing technique be-
comes important when discussing threads at the warp level.
In the best case, this technique reduces the 32 individual
memory requests (one from each thread in the warp) to
only 2 memory requests (recall that memory requests are
handled 16 threads at a time). In the GT200 architecture,
coalescing occurs when at least two threads in the half-warp
are accessing data from the same segment in global mem-
ory. Hence, every thread in the half-warp that accesses data
from the same segment in global memory can (and will) have
their requests combined (or coalesced) into a single request.
Clearly, the most beneficial effect occurs if one can struc-
ture the data accesses such that all 16 threads access from
the same segment. Proper exploitation of coalescing leads
to tremendous improvements in the performance of global
memory and, correspondingly, large improvements in the
overall execution time of a GPU algorithm.

Sets of warps that are executing on the same SM (but not
necessarily all warps executing on an SM) are organized into
thread blocks. A thread block is given its own exclusive ac-

cess to a piece of the shared memory for the SM it is execut-
ing on. Finally, thread blocks are then further organized into
the thread grid. The thread grid encapsulates all threads in-
volved in the execution of a GPU kernel/application.

3. PARTICLE SWARM OPTIMIZATION
The Particle Swarm Optimization (PSO) algorithm, first

described by Kennedy and Eberhart [3] is a bio-inspired
or meta-heuristic algorithm that uses a swarm of particles
which move throughout the solution space, searching for an
optimal solution. A point in the solution space (defined by
a real number for each dimension) represents a solution to
the optimization problem. As the particles move, they de-
termine the optimality (fitness) of these positions.

The PSO algorithm uses a fitness function in order to de-
termine the optimality of a position in the solution space.
Each particle stores the location of the best (most optimal)
position it has found thus far in the solution space (local
best). Particles collaborate with one another by maintain-
ing a global, or swarm, best position representing the best
position in the solution space found by all particles thus far.

In order to have these particles move throughout the solu-
tion space they must be provided with some velocity value.
In this paper, we follow the modified PSO algorithm as es-
tablished by Shi and Eberhart [8]. These authors update
the velocity of a particle, i, with the following equation:

Vi+1 = w∗Vi+c1∗rnd()∗(XPbest−Xi)+c2∗rnd()∗(XGbest−Xi)
(1)

where Xi is the particle’s current location, XPbest is the par-
ticle’s local best position, XGbest is the global best position
(for one swarm), and rnd() generates a uniformly distributed
random number between 0 and 1. w, the inertial weight fac-
tor along with c1 and c2 provide some tuning of the impact
Vi, XPbest, and XGbest will have on the particle’s updated
velocity. Once the velocity has been updated, the particle
changes its position and we begin the next iteration.

Algorithm 1 provides the basic high-level form of PSO.

Algorithm 1 Basic PSO Algorithm

Randomly disperse particles into solution space
for i = 0 → numIterations do

for all particles in swarm do
Compute fitness of current location
Update XPbest if necessary
Update XGbest if necessary
Update velocity
Update position

end for
end for

We note that the PSO algorithm is an iterative, syn-
chronous algorithm: each iteration has the particles moving
to a new location and testing the suitability of this new posi-
tion, and each phase (or line in Algorithm 1) carries implicit
synchronization.

As we wanted to investigate the suitability of the GPU
for PSO we needed to think in terms of high degrees of
parallelism. We consider a PSO variant that collaborates
amongst multiple swarms in order to increase the overall
parallelism. Furthermore, we hypothesized that such a vari-
ant of PSO may provide higher quality solutions than we
would otherwise generate with a single swarm.

1564



The method we choose, described by Vanneschi et al. [9],
collaborates amongst swarms by swapping some of a swarm’s
“worst” particles with its neighboring swarm’s “best” parti-
cles. In this case, best and worst refer to the fitness of the
particle relative to all other particles in the same swarm.
This swap occurs every given number of iterations, and forces
communication among the swarms, ensuring that particles
are mixed around between swarms. Further, Vanneschi et
al. [9] use a repulsion factor for every second swarm. This re-
pulsive factor repulses particles away from another swarm’s
global best position (XFGBest) by further augmenting the
velocity using the equation:

Vi+1 = Vi+1 + c3 ∗ rnd() ∗ f(XFGbest, XGbest, Xi) (2)

Where function f , as described by Vanneschi et al. [9], pro-
vides the actual repulsion force. We believe that this algo-
rithm represents a good fit for the GPU, as it combines the
potential for high degrees of parallelism with the iterative,
synchronous nature of the PSO algorithm.

4. RELATED WORK

4.1 Multi-Swarm PSO
There exists a wide variety of multi-swarm PSO imple-

mentations in the literature. One such work by van den
Bergh and Engelbrecht [10] considers tasking each swarm
with the optimization of one of the problem’s dimensions.
The authors showed that their solution provides better so-
lutions as the number of dimensions increases. Another ex-
ample by Liang and Suganthan [11] modify the dynamic
multi-swarm algorithm which works by initializing a small
number of particles in each swarm and randomly moving
particles between each swarm after a given number of it-
erations have passed. The authors augment this algorithm
by including a local refining step that occurs every given
number of iterations on the top solutions found thus far.

As was previously mentioned, we follow the work described
by Vanneschi et al. [9] for our implementation on the GPU.
Their “MPSO” algorithm solves an optimization problem
via multiple swarms that communicate by moving particles
amongst the swarms. They describe a modification of this
algorithm, “MRPSO”, that further uses a repulsive factor
on each particle. Their results show that both MPSO and
MRPSO typically outperform the standard PSO algorithm,
with MRPSO performing even better than MPSO.

4.2 PSO on the GPU
To the best of our knowledge, there does not exist any col-

laborative, multi-swarm PSO implementations on the GPU
in the literature. Veronese and Krohling [12] and Zhou and
Tan [13] both describe a simple implementation of PSO on
the GPU. Their implementations use a single swarm and
splits the major portions of PSO into separate kernels, with
one thread managing each particle. In order to generate
random numbers Veronese and Krohling [12] use a GPU im-
plementation of the Mersenne Twister pseudo-random num-
ber generator, whereas Zhou and Tan [13] use the CPU to
generate pseudo-random numbers and transfer these to the
GPU. When applied to benchmarking problems, the authors
of both works show that their GPU algorithms outperforms
sequential CPU implementations.

Mussi et al. [6] provide another, more recent GPU imple-
mentation of PSO. In this case, the authors assign a single

thread to a single dimension for each particle. Mussi et al. [6]
test their algorithm against benchmarking problems with up
to 120 dimensions, and show that the parallel GPU algo-
rithm vastly outperforms a sequential application. Finally,
the authors mention in passing the ability to run multiple
swarms, but do not elaborate or test such situations.

In all of these cases, the theme has been parallelizing single
swarm PSO (or multiple swarms with no described strategy
for collaboration or even testing). In the most recent case,
Mussi et al. [6] have provided an extremely fine-grained im-
plementation of PSO that takes advantage of the threading
capabilities of the GPU. The authors only test with cases up
to 120 dimensions and 32 particles, however. In our work,
we wished to test not only with many more dimensions, but
also with many more particles. As a result, we use a mixed
strategy that does not lock a static responsibility to a thread,
and, further, provides support for multiple swarms that col-
laborate with one another.

4.3 PSO for Task Matching
Applying PSO to the task matching/mapping problem has

been studied in the past by various groups. In essence, there
are two styles of PSO applied to this problem: 1. the origi-
nal, continuous algorithm, and, 2. discrete PSO which locks
the particles to integer values along the solution space. In all
of the works discussed, the authors define the solution space
as an n dimensional space, one dimension per task. The lo-
cation within a dimension defines the machine that a given
task is matched to. Zhang et al. [5], for example, apply
the continuous PSO algorithm to the task mapping prob-
lem. The authors further make use of the Smallest Position
Value (SPV) technique (described by Tasgetiren et al. [14])
to generate a position permutation from the location of the
particles. They compare their PSO algorithm to a genetic al-
gorithm and show that PSO provides improved performance.
A recent work by Sadasivam and Rajendran [15] also con-
sider the continuous PSO algorithm coupled with the SPV
technique. The authors focus their efforts on providing load
balancing between grid resources. Unfortunately, they com-
pare their PSO algorithm only to that of a random algorithm
(with promising results, however).

Opposite to continuous PSO, Kang et al. [16] propose an
implementation of discrete PSO for task mapping on the
grid. They compare the results of their discrete PSO im-
plementation to continuous PSO, the min-min algorithm, as
well as a genetic algorithm. The authors show that discrete
PSO outperforms all of the alternatives in all test cases.
Shortly thereafter, Yan-Ping et al. [4] described a similar
discrete PSO solution with favourable results compared to
the max-min algorithm. Both of these works test only small
problem sizes (< 100 tasks).

5. COLLABORATIVE MULTI-SWARM PSO
ON THE GPU

To lead into our description of the GPU implementation,
we will first discuss the main concepts of multi-swarm PSO
for task matching without consideration of the GPU archi-
tecture. From this groundwork we can then move on to
discuss the specifics of the GPU version itself.

To start, we define an instance of the task mapping prob-
lem as being composed of two distinct components: 1. The
set of tasks, T , to be mapped, and, 2. The set of machines,
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M , which tasks can be mapped to. A task is defined simply
by its length, or number of instructions. A machine is sim-
ilarly defined by nothing more than its MIPS (Millions of
Instructions Per Second) rating. The problem size is there-
fore defined across these same two components: 1. The total
number of tasks, |T |, and, 2. The total number of machines,
|M |. A solution for the task matching problem consists of
a vector, V = (t1, t2, ..., t|T |) where the value of ti defines
the machine that task i is assigned to. From V , we compute
the makespan of this solution. The makespan represents
the maximum Machine Available Time (MAT) of the so-
lution. The MAT of a machine is nothing more than the
total amount of time required by the machine to complete
all tasks assigned to it. Ideally, we want to find some V that
minimizes the makespan of the mapping.

We use an Estimated Time to Complete (ETC) matrix to
store lookup data on the execution time of tasks for each
machine. An entry in the ETC matrix at row i, column
j defines the amount of time machine i requires to execute
task j, given no load on the machine. While the ETC matrix
is not a necessity, the reduction in redundant computations
during the execution of the PSO algorithm makes up for the
(relatively small) additional memory footprint.

Similar to the work described in Section 4.3, each task in
the problem instance represents a dimension in the solution
space. As a result, the solution space for a given instance
contains exactly |T | dimensions. As any task may be as-
signed to any machine in a given solution, each dimension
must have coordinates from 0 to |M | − 1.

At this point, we deviate from the standard PSO repre-
sentation of the solution space. Typically, a particle moving
along dimension x moves along a continuous domain: any
possible point along that dimension represents a solution
along that dimension. Clearly, this is not the case for task
mapping as a task cannot be mapped to machine 4.32427,
but, rather, must be mapped to machine 4 or 5. Unlike
Kang et al. [16] or Yan-Ping et al. [4], we do not move to
a modified discrete PSO algorithm, but maintain the use of
the continuous domain in the solution space. We compared
simple, single-swarm implementations of continuous versus
discrete PSO and found that continuous provides improved
results, as shown in Figure 1. However, unlike Zhang et
al. [5] or Sadasivam and Rajendran [15] we do not introduce
an added layer of permutation to the position value by using
the SPV technique. Rather, we use the much simpler tech-
nique of rounding the continuous value to a discrete integer.

5.1 Organization of Data on the GPU
We begin the description of our GPU implementation with

a discussion on data organization. For our GPU PSO algo-
rithm, we store all persistent data in global memory. This
includes the position, velocity, fitness, and current local best
value/position for each particle, as well as the global best
value/position for each swarm. Finally, we store a set of
pre-generated random numbers in global memory as well.
Each of these distinct sets of data are stored in their own
one-dimensional array in global memory.

For position, velocity, and particle/swarm-best positions,
we store the dimensional values for the particles of a given
swarm in a special ordering. Rather than group each dimen-
sion up for one particle and then moving on to the next, we
group the values up by dimension. Figure 2 provides an ex-
ample of how this data is stored (swarm-best positions are

Figure 1: Global best results for continuous and dis-
crete PSO by iteration.

stored per swarm, rather than per particle, however). In a
given swarm, we store all of dimension 0’s values for each
particle, followed by all of dimension 1’s values, and so on.
We will explain this choice further in Section 5.2, however
it is suffice to say that this ensures all kernels data accesses
to these memory locations will be coalesced. Per-particle
fitness values as well as particle-best and swarm-best values
are stored in a much simpler, linear manner with only one
value per particle (or swarm, in the case of the swarm-best
values). Figure 3 shows this organization.

Figure 2: Global memory layout of position, veloc-
ity, and particle best positions (Pxy refers to particle
x’s value along dimension y).

Figure 3: Global memory layout of fitness and par-
ticle best values.

The aforementioned ETC matrix represents a data struc-
ture that all threads require access to during the calcula-
tion of a particle’s fitness (makespan). To compute the
makespan, each particle must first add to the execution time
of tasks assigned to each machine. This is, of course, han-
dled by observing the particle’s position along each dimen-
sion. As dimensions map to tasks, we are looping through
each of the tasks and determining which machine this par-
ticular solution is matching them to. As there are likely to
be many more tasks than machines in the problem instance,
there will likely be many duplicate reads to the ETC matrix
by various threads. As a result, we place the ETC matrix
into texture memory. As discussed in Section 2, texture
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memory provides a hardware cache at the SM level. As it
is extremely likely that there will be multiple reads to the
same location in the ETC matrix by different threads, using
a cached memory provides latency benefits as threads may
not have to go all the way to global memory to retrieve the
data they are requesting.

5.2 GPU Algorithm
We lead into our description of the GPU implementation

by first discussing the issue of random number generation.
As we know from equation 1, PSO requires random numbers
for each iteration. In order to generate the large quantity
of random numbers required, we make use of the CURAND
library included in the CUDA Toolkit 3.2 [7] to generate high
quality, pseudo-random numbers on the GPU. We generate a
large amount of random numbers at a time ( 250MB worth)
and then generate more numbers in chunks of 250MB or less
when these have been used up.

Our implementation of multi-swarm PSO is split up into
a series of kernels that map to the various phases of the
algorithm. These phases and kernels are as follows:

5.2.1 Particle Initialization
This phase initializes all of the particles by randomly as-

signing them a position and a velocity in the solution space.
As each dimension of each particle can be initialized inde-
pendently of one another, we assign multiple threads to each
particle: one per dimension. All of the memory writes are
performed in a coalesced fashion, as all threads write to
memory locations in an ordered fashion.

5.2.2 Update Position and Velocity
This phase updates the velocity of all particles using equa-

tion 1 and then moves the particles based on this velocity.
As was the case with particle initialization, each dimension
can be handled independently. As a result, we again assign
a single thread to handle each dimension of every particle.
In the kernel, each thread updates the velocity of the par-
ticle’s dimension it is responsible for, and then immediately
updates the position as well. When updating the veloc-
ity using equations 1 and 2 one may note that all threads
covering particles in the same swarm will each access the
same element from the swarm-best position in global mem-
ory. While this may seemingly result in uncoalesced reads,
global memory provides broadcast functionality in this situ-
ation, allowing this read value to be broadcast to all threads
in the half-warp using only a single transaction.

5.2.3 Update Fitness
In this phase, we update the fitness values for all particles

after they have moved to their new positions. This phase is
more complex than the previous two phases and, unfortu-
nately, does not exploit parallelism to the same degree. For
this phase, we map a single thread to each particle, rather
than to each dimension of each particle. The reason for this
choice of thread-particle mapping is due to how makespan
is computed. This computation involves first determining
the MAT for each machine, and then taking the maximum
value as the makespan.

One option for parallelization involves having a thread
compute the makespan for a single machine and then per-
forming a parallel reduction to find the makespan for each
particle. The issue with this approach, however, is that a

particle’s position vector stores the machine each task is
matched to. As a result, various tasks are assigned to var-
ious machines, we don’t know which ahead of time. If we
parallelized this phase at the machine MAT computation
level then all threads would have to iterate through all of
the dimensions of a particle’s position anyways. As a result,
we choose to take the coarser-grained approach and have
each particle compute the makespan for a given particle.

We implement two different kernels in order to accom-
plish this coarser-grained approach. The first uses shared
memory as a scratch space for computing the MAT for each
machine. Each thread therefore requires |M | floating-point
elements of shared memory. There may be cases, however,
where the number of threads per block combined with |M |
requires an amount of shared memory exceeding the capa-
bilities of the GPU. In these cases we use the second kernel,
where the scratch space is stored in global memory. Given
only one thread block executing per SM, the first kernel can
support 128 threads (particles) with a machine count of ap-
proximately 30, whereas the second kernel is not bounded
by the very small amount of shared memory available.

This kernel showcases our reasoning for choosing the or-
dering of position elements in global memory. While com-
puting the makespan, each thread reads the position from
the current dimension in order to discover the task match-
ing corresponding to this dimension. With our ordering,
coalescing is guaranteed as each thread within a block reads
an element in global memory next to those read by other
threads. This coalescing results in an approximate 200%
performance improvement over an uncoalesced version.

5.2.4 Update Best Values
This phase updates both the particle best and global best

values. We use a single kernel on the GPU and assign a single
thread to each particle, as we did with the fitness updating.
Furthermore, we assign all threads composing each swarm to
the same thread block. The first step of this kernel involves
each thread determining if it must replace its particle’s local
best position, and if so, the replacement occurs.

In the second step, the threads in a block find the minimal
local best value out of all particles in the swarm using a par-
allel reduction. If the minimal value is better than the global
best, the threads replace the global best position. Threads
work together and update as close to an equal number of di-
mensions as possible. This allows us to have multiple threads
updating the global best position, rather than rely on only
a single thread to accomplish this task.

5.2.5 Swap Particles
Finally, the swap particles phase replaces the n worst par-

ticles in a swarm with the n best particles of its neighboring
swarm (using a ring topology to determine neighbors). This
phase is composed of two separate kernels. The first kernel
determines the n best and worst particles in each swarm.
For this kernel, we again launch one thread per particle, with
thread blocks composed only of threads covering particles in
the same swarm. In order to determine the n best and worst
particles, we run n parallel reductions, with each reduction
finding the nth best/worst particle. We improve the perfor-
mance of this lengthy kernel by reading from global memory
only once: at the beginning of a kernel each thread reads in
the fitness value of its particle into a shared memory buffer.
This buffer is then copied into two secondary buffers which
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are used in the parallel reduction (one for managing best
values, one for worst).

Once a reduction has been completed, we record the lo-
cated particles into another shared memory buffer. We then
restart the reduction for finding the n + 1th particle by in-
validating the best/worst particle from the original shared
memory buffer, and recopying this slightly modified data
into the two reduction shared memory buffers. This process
continues until all best/worst particles have been found. At
this point, n threads per block write out the best/worst par-
ticle indices to global memory in a coalesced fashion.

The second kernel handles the actual movement of parti-
cles between swarms. This step involves replacing the posi-
tion, velocity, and local best values/position of any particle
identified for swapping by the first kernel. For this kernel we
launch one thread per dimension per particle to be swapped.

5.2.6 CPU Control Loop
In our algorithm, the CPU only manages the main loop

of PSO and the invocation of the various GPU kernels.

6. RESULTS
To test the performance of our GPU algorithm we com-

pare it against a sequential collaborative multi-swarm PSO
algorithm. This sequential algorithm has not been optimized
for a specific CPU architecture, but it has been tuned specif-
ically for sequential execution. We execute the GPU algo-
rithm on an Nvidia GTX 260 GPU with 27 SMs, and the
sequential CPU algorithm on an Intel Core 2 Duo running at
3.0Ghz. Both algorithms have been compiled with the -O3
optimization flag, and the GPU implementation also uses
the -use fast math flag. Finally, we compare the solution
quality against a single-swarm PSO implementation and a
First-Come-First-Serve (FCFS) algorithm that sequentially
assigns tasks to the machine with the lowest MAT value at
the time (in this case, the MAT value includes the time to
complete the task in question).

6.1 Algorithm Performance
In order to examine the performance of the algorithm, we

first tested how the algorithm scales with swarm count. For
these tests, we use 128 particles per swarm, 1,000 iterations,
and swap 25 particles every 10 iterations. We further run
these tests on data consisting of 80 tasks and 8 machines.
As a result, the shared memory version of the fitness kernel
is used throughout. Figure 4 shows the results for swarm
counts from 1 to 60. As expected, the GPU implementation
outperforms the sequential CPU implementation by a very
high degree. With the swarm count set at 60 the GPU
algorithm achieves an approximate 32 times speedup over
the sequential algorithm.

We further measured the total time taken for each of the
GPU kernels as the swarm count increases. The results are
shown in Figure 5. The update position and velocity kernel
forms the greatest contributor to the increase in the GPU’s
execution time as the swarm count increases. We explain
this by revisiting the overall responsibilities of this kernel.
That is, the update position and velocity kernel requires a
large number of global memory reads and writes (to read in
the many-dimensioned position, velocity, and current bests
position data), and is relatively computationally intensive
when determining the new velocity. When combined with

Figure 4: Comparison between sequential CPU and
GPU algorithm as swarm count increases.

Figure 5: Total execution time for the various GPU
kernels as the swarm count increases.

the fact that we are launching a thread per dimension per
particle the GPU’s resources quickly become saturated.

We explain the “jump” in the fitness kernel’s execution
time at the last three data points as due to thread blocks
waiting for execution. The GTX 260 GPU has 27 SMs avail-
able. With, for example, 56 swarms, we have 56 thread
blocks assigned to the fitness kernel. With the configuration
tested, each SM can support only 2 thread blocks simultane-
ously. Hence, the GPU executes 54 thread blocks simulta-
neously, leaving 2 thread blocks waiting for execution. This
serialization causes the performance loss observed.

In order to test our use of texture memory, we profiled a
few runs of the algorithm using the CUDA Visual Profiler
tool. The results from this tool showed that we were correct
in our hypothesis that texture memory would help the fit-
ness kernel’s performance as the profiler reported anywhere
from 88% to 97% of ETC Matrix requests were cache hits,
significantly reducing the overall number of global memory
reads required to compute the makespan.

Next, we examine the algorithm’s performance and scal-
ing for increasing machine counts as well as increasing task
counts. For the machine count scaling we keep the task
count and the number of swarms static at 80 and 10 re-
spectively. Similarly, for the task count scaling we keep the
machine count and number of swarms static at 8 and 10 re-
spectively. Figure 6 shows the results for task count scaling.
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Figure 6: Comparison between sequential CPU and
GPU algorithm as task count increases.

Figure 7: Comparison between sequential CPU and
GPU algorithm as machine count increases.

The results are very similar to those of the swarm count tests
in that the GPU algorithm significantly outperforms the se-
quential CPU algorithm. Overall, however, the GPU cannot
provide the same level of speedup while the swarm count re-
mains low. We expect this, as increasing the number of
swarms increases the exploitable parallelism at a faster rate
than the task count. While the individual kernel execution
times are not shown, the update position and velocity kernel
dominates the run time again as the shared memory fitness
kernel is used throughout.

With the machine count scaling test we finally observe
the effect that switching to the global memory fitness ker-
nel has on the runtime. Figure 7 shows the results with
machine counts from 2 to 100. Unlike the previous perfor-
mance tests, we see that the execution time does not change
dramatically as the machine count increases. However, the
GPU execution time increases by 14% when the machine
count increases from 30 to 35. This occurs due to the shift
from shared memory to global memory use for the fitness
kernel, which, in turn, results in a 50% increase in the total
execution time for this kernel.

Finally, we ran two tests using a large number of tasks and
swarms, with one using the shared memory kernel (10 ma-
chines) and the other using the global memory kernel (100
machines) in order to gauge the overall performance of the
algorithm as well as come up with the overall percentage of

Figure 8: Percentage of execution time taken by
most significant kernels.

execution time each kernel uses. Figure 8 shows the results
(the percentages for the initialization and swapping kernels
are not included in the figure as, combined, they contribute
less than 1% to the overall execution time). Clearly, the
shared memory instance is dominated by the update posi-
tion and velocity kernel, whereas the global memory instance
sees the fitness kernel moving to become the top contribu-
tor to the overall execution time. As expected, the shared
memory instance sees an improved speedup (compared to
the sequential CPU algorithm) of 37 compared to the global
memory instance’s speedup of 23.5.

6.2 Solution Quality
For the solution quality tests we compare the results of the

GPU multi-swarm PSO (MSPSO) algorithm with PSO and
FCFS (which attempts to assign tasks to machines based on
the current MAT values for each machine before and after
the task is added). We use 10 swarms with 128 particles
per swarm. c1 is set to 2.0, c2 to 1.4, and w to 1.0. We
also introduce a wDecay parameter which reduces w each
iteration, we set this value to 0.995, and run 1, 000 iterations
of PSO for each problem. Finally, we randomly generate
10 task and machine configurations for each problem size
considered, and run PSO against each of these data sets.
Each data set is run 100 times, and the averaged results are
taken over each of the 100 runs.

Table 1: Solution quality of MSPSO and PSO nor-
malized to FCFS solution (< 1 is desired).

Num Tasks Num Machines MSPSO PSO

60 10 0.906 0.925
60 15 0.935 0.921
70 10 0.939 0.923
70 15 0.941 0.933
80 10 0.964 0.934
200 40 1.322 1.312
1000 100 3.106 3.109

Table 1 provides the averaged results of the solution qual-
ity experiments, normalized to the FCFS solution. We first
tested small data sets of sizes similar to those from Sadasi-
vam and Rajendran [15] as well as Yan-Ping et al. [4]. We
can see from these that, unfortunately, PSO outperforms
MSPSO in many of the tests. We do not conclusively know
what the cause of this is, however, it is clear that, on occa-
sion, a large number of particles within a single swarm can
more readily search for an optimal solution. Furthermore,
as the problem size increases, both variants of PSO fail to
generate improved solutions when compared to FCFS.
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7. CONCLUSIONS AND FUTURE WORK
At the start of this work we proposed that collaborative,

multi-swarm PSO represented an ideal variant of PSO for
parallel execution on the GPU. We described how the syn-
chronous nature of PSO combined with the significant de-
gree of parallelism offered by multi-swarm PSO provided a
good complement to the capabilities of the GPU. By im-
plementing the various phases as individual (or, in the case
of swapping, multiple) kernels, we have achieved two goals:
1. We have captured the original synchronous nature of the
phases within the PSO algorithm via the natural synchro-
nization between GPU kernels, and, 2. We have allowed for
the fine-tuning of parallelism for each phase of PSO. As our
performance analysis and results showed, multi-swarm PSO
performs exceptionally well on the GPU.

While the quality of solution for multi-swarm PSO left
much to be desired for larger problem sizes, we believe the
majority of the contributions made in this paper are easily
transferrable to PSO algorithms focusing on solving other
problems. In these cases, only the fitness kernel itself re-
quires a significant level of modification — the knowledge
gained through the design, implementation, and analysis of
all the remaining kernels retain a high level of generality.

For future work we can immediately identify the potential
for further analysis to see if this multi-swarm PSO algorithm
can be tuned in order to improve the solution quality further.
With large problem sizes we saw the solution quality suffer
when compared against a deterministic algorithm and the
results were, overall, quite close to a single swarm PSO al-
gorithm. We believe that a future investigation into whether
or not MSPSO can be tuned further to more readily support
these types of problems is worthwhile. Furthermore, we be-
lieve it may be interesting to see if the onboard cache in
Fermi-based GPUs can provide a performance boost for the
global memory-based fitness kernel. We leave these perfor-
mance tests and modifications as future work.
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