
GPU-based Asynchronous Particle Swarm Optimization

Luca Mussi
Henesis s.r.l. & Dept. of
Information Engineering

University of Parma - Italy
luca.mussi@henesis.eu

Youssef S. G. Nashed
Dept. of Information

Engineering
University of Parma - Italy
nashed@ce.unipr.it

Stefano Cagnoni
Dept. of Information

Engineering
University of Parma - Italy
cagnoni@ce.unipr.it

ABSTRACT
This paper describes our latest implementation of Particle
Swarm Optimization (PSO) with simple ring topology for
modern Graphic Processing Units (GPUs). To achieve both
the fastest execution time and the best performance, we de-
signed a parallel version of the algorithm, as fine-grained as
possible, without introducing explicit synchronization mech-
anisms among the particles’ evolution processes. The results
we obtained show a significant speed-up with respect to both
the sequential version of the algorithm run on an up-to-date
CPU and our previously developed parallel implementation

within the nVIDIA
TM

CUDA
TM

architecture.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—Heuristic methods

General Terms
Algorithms, Performance

Keywords
Parallelization, Speed-up technique, Particle Swarm Opti-
mization, Implementation

1. INTRODUCTION
Particle Swarm Optimization (PSO) is a simple but pow-

erful optimization algorithm, introduced by Kennedy and
Eberhart in 1995 [8]. PSO searches the optimum of a func-
tion, termed fitness function, following rules inspired by the
behavior of flocks of birds looking for food. As a popu-
lation based meta-heuristic, PSO has recently gained more
and more popularity due to its robustness, effectiveness, and
simplicity. Whatever the choices of the algorithm structure,
parameters, etc., and despite good convergence properties,
PSO is still an iterative stochastic search process, which, de-
pending on problem hardness, may require a large number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

of particle updates and fitness evaluations. Therefore, de-
signing efficient PSO implementations is a problem of great
practical relevance. It is even more critical if one considers
real-time applications to dynamic environments in which,
for example, the fast-convergence properties of PSO may be
used to track moving points of interest (maxima or minima
of a specific dynamically-changing fitness function). Among
these, we have previously presented a number of computer
vision applications in which PSO has been used to track
moving objects [13] or to determine location and orienta-
tion of objects or posture of people [6, 14, 16]. Some of
these applications rely on the use of GPU multi-core archi-
tectures for general-purpose high-performance parallel com-
puting, which have recently attracted researchers’ interest
more and more, especially after handy programming envi-

ronments, such as nVIDIA
TM

CUDA
TM

[18], have been in-
troduced. Such environments or APIs take advantage of
the computing capabilities of GPUs using parallel versions
of high-level languages which require that only the highest-
level details of parallel process management be explicitly
encoded in the programs. The evolution both of GPUs and
of the corresponding programming environments has been
extremely fast and, up to now, far from any standardiza-
tion. Recently, the first implementations of OpenCL [10],
an environment which will allow the development of paral-
lel programs for most commercial GPUs using a common
coding language, have been released. However, at present,
not only performance of implementations based on differ-
ent architectures or compilers, but even the same programs
run on different releases of software-compatible hardware,
are very hard to compare. Execution time is therefore often
the only direct objective quantitative parameter on which
comparisons can be based.

In this paper we discuss our design of a parallel asyn-
chronous PSO algorithm, and we compare it to the previous
implementations in terms of execution time and numerical
efficiency. The next section provides a brief overview of the
standard PSO algorithm and of the problems related with its
parallelization. Section 3 reviews the latest research devel-
opments in PSO parallelization. A description of our previ-
ous synchronous and proposed asynchronous versions of the
algorithm, alongside advantages and disadvantages of each
implementation, is provided in Section 4. Finally, the results
obtained on classical benchmark functions are summarized
and compared in Section 5, with the concluding remarks
presented in Section 6.

1555

2. PSO BASICS
The core of PSO is represented by the two functions which

update a particle’s position and velocity within the domain
of the fitness function at time t, which can be computed
using the following equations:

V (t) = w V (t− 1) +

C1 R1 [Xbest (t− 1)−X(t− 1)] + (1)

C2 R2 [Xgbest(t− 1)−X(t− 1)]

X(t) = X(t− 1) + V (t) (2)

where V is the velocity of the particle, C1, C2 are two pos-
itive constants, R1, R2 are two random numbers uniformly
drawn between 0 and 1, w is the so-called ‘inertia weight’,
X(t) is the position of the particle at time t, Xbest(t − 1)
is the best-fitness position reached by the particle up to
time t − 1 (also termed personal attractor), Xgbest(t − 1)
is the best-fitness point ever found by the whole swarm (so-
cial attractor). Despite its simplicity, PSO is known to be
quite sensitive to the choice of its parameters. Under cer-
tain conditions, though, it can be proved that the swarm
reaches a state of equilibrium, where particles converge onto
a weighted average of their personal best and global best
positions.

A study of particles’ trajectory and guidelines for the
choice of inertia and acceleration coefficients, in order to
obtain convergence, can be found in [23] and work cited
therein. Such work has been deepened and extended by
Poli in [19]. Many variants of the basic algorithm have
been developed [20], some of which have focused on the al-
gorithm behavior when different topologies are defined for
particles’ neighborhoods [9]. A usual variant of PSO sub-
stitutes Xgbest(t − 1) with X lbest(t − 1), which represents
the ‘local’ best position ever found by all particles within
a pre-set neighborhood of the particle under consideration.
This formulation admits, in turn, several variants, depend-
ing on the topology of the neighborhoods. Among others,
Kennedy and coworkers evaluated different kinds of topolo-
gies, finding that good performance is achieved using ran-
dom and Von Neumann neighborhoods [9]. Nevertheless,
the authors also indicated that selecting the most efficient
neighborhood structure is, in general, a problem-dependent
task. In the first implementations of PSO, particles were or-
ganized as a fully connected social network, best known as
global-best topology. The PSO sequential implementation
presently considered as Standard PSO [7] actually employs
a stochastic star topology in which each particle informs a
constant number K of random neighbors. The suggested
default K value of 3 results in an algorithm which is not
so different from the ones that rely on a classical and easily
implementable ring topology, which is the topology we have
chosen for our parallel implementation.

2.1 PSO parallelization
A main feature that affects the search performance of PSO

is the strategy according to which the social attractor is up-
dated. In ‘synchronous’ PSO, positions and velocities of all
particles are updated one after another in turn during what,
using evolutionary jargon somehow improperly, is usually
called a ‘generation’; this is actually a full algorithm itera-
tion, which corresponds to one discrete time unit. Within
the same generation, after velocity and position have been

updated, each particle’s fitness, corresponding to its new
position, is evaluated. The value of the social attractor is
only updated at the end of each generation, when the fitness
values of all particles in the swarm are known.

The ‘asynchronous’ version of PSO, instead, allows the so-
cial attractors to be updated immediately after evaluating
each particle’s fitness, which causes the swarm to move more
promptly towards newly-found optima. In asynchronous
PSO, the velocity and position update equations can be
applied to any particle at any time, in no specific order.
Regarding the effect of changing the update order or al-
lowing some particles to be updated more often than oth-
ers, Oltean and coworkers [2] have published results of an
approach by which they evolved the structure of an asyn-
chronous PSO algorithm, designing an update strategy for
the particles of the whole swarm using a genetic algorithm
(GA) and showing empirically that the GA-evolved PSO al-
gorithm performs similarly, and sometimes even better, than
standard approaches for several benchmark problems. Re-
garding the structure of the algorithm, they also indicate
that several features, such as particle quality, update fre-
quency, and swarm size, affect the overall performance of
PSO [3].

3. RELATED WORK
Recently, researchers have been extending the study of

PSO in terms of new applications, new variants of the al-
gorithm, and improvement of the overall performance and
efficiency of the method.

PSO, like most population based optimization techniques,
is inherently parallel. Parallel PSO seems to be the way to
make practical use of this powerful search and optimiza-
tion algorithm viable, in spite of its high computation cost.
During the last decade, a considerable amount of literature
about parallel PSO has been published. The first parallel
PSO implementations relied on multiprocessor parallel ma-
chines or cluster computing systems [21, 24]. With the intro-
duction of the GPUs, research shifted towards parallel PSO
on the GPUs to alleviate multi-processor and cluster systems
inefficiencies, such as network overhead, shared memory ac-
cess, etc. Li et al. took advantage of GPU acceleration for
developing parallel versions of PSO and GA through tex-
ture manipulation using shaders which are mainly used for
graphics rendering purposes [12]. In 2009 de Veronese and
Krohling developed the first implementation of PSO using

nVIDIA
TM

CUDA
TM

[1].
Now that PSO can run efficiently on consumer-level graph-

ics cards, researchers have experimented with new variants
of the algorithm. Zhou and Tan extended the standard PSO
to include the notion of ‘unhealthiness’ to describe swarms
or sub-swarms stuck at local optima, then applying random
mutations to the unhealthy particles’ positions [26]. Also,
Zhou and Curry created a hybrid between GPU PSO and
pattern search to enhance the convergence of PSO [25].

Almost all recent GPU implementations assign one thread
to each particle [1, 22, 25, 26] which, in turn, means that fit-
ness evaluations have to be computed sequentially in a loop
within each particle’s thread. Since fitness calculation is of-
ten the most computation-intensive part of the algorithm,
the execution time of such implementations is affected by
the complexity of the fitness function and the dimension-
ality of the search domain. The speedup achieved by these

1556

Listing 1: Sequential synchronous PSO

<Initialize positions/velocities of all particles>
<Set initial personal/global bests>
for(int i = 0; i < generationsNumber; i++)
{

for(int j = 0; j < particlesNumber; j++)
{

<Evaluate the fitness particle j>
}
<Update the position of all particles>
<Update all personal/global bests>

}

<Retrieve global best information to be returned as final result>

implementations is evaluated with respect to their sequential
counterparts executing on the CPU.

In addition, state of the art research in GPU-based par-
allelization of PSO focuses on the synchronous version of
the algorithm, while it was shown, on distributed or cluster
systems, that asynchronous versions can achieve faster exe-
cution time without sacrificing numerical accuracy [11, 24].
The asynchronous GPU PSO we present in the following
sections overcomes the shortcomings of asynchronous PSO
enforced by the master-slave approach used in distributed
systems implementations, while gaining good speedup when
compared to our synchronous GPU implementation [15] as
well as, obviously, to the standard sequential PSO imple-
mentation.

4. PARALLEL PSO FOR GPUS
As reported in Section 3, GPU implementations of PSO

which assign one thread per particle, despite being the most
natural way of parallelizing the algorithm, do not take full
advantage of the GPU power in evaluating the fitness func-
tion in parallel. The parallelization only occurs on the num-
ber of particles of a swarm and ignores the dimensions of
the function.

In our parallel implementations we designed the thread
parallelization to be as fine-grained as possible; in other
words, all independent sequential parts of the code are al-
lowed to run simultaneously in separate threads. However,
the performance of an implementation does not only depend
on the design choices, but also on the GPU architecture,
data access scheme and layout, and the programming model,

which in this case is CUDA
TM

. Therefore, it seems appro-

priate to outline the CUDA
TM

architecture and introduce
some of its terminology.

CUDA
TM

is a programming model and instruction set ar-
chitecture leveraging the parallel computing capabilities of

nVIDIA
TM

GPUs to solve complex problems more efficiently
than a CPU. At the abstract level, the programming model
requires that the developer divide the problem into coarse
sub-problems, namely thread blocks, that can be solved inde-
pendently in parallel, and each sub-problem into finer pieces
that can be solved cooperatively by all threads within the
block [18]. From the software point of view, a kernel is
equivalent to a high-level programming language function or
method containing all the instructions to be executed by all
threads of each thread block. Finally, at the hardware level,

nVIDIA
TM

GPUs consist of a number of identical multi-

Listing 2: Sequential asynchronous PSO

<Initialize positions/velocities of all particles>
<Set initial personal bests>
for(int i = 0; i < generationsNumber; i++)
{

for(int j = 0; j < particlesNumber; j++)
{

<Evaluate the fitness of particle j>
<Update the position of particle j>
<Update personal bests of particle j>

}

}
<Calculate global best information to be returned as final result>

threaded Streaming Multiprocessors (SM), each of which is
made up of several cores that are able to run one thread
block at a time. As the program invokes a kernel, a sched-
uler assigns thread blocks to SMs according to the number of
available cores on each SM; the scheduler also ensures that
delayed blocks are executed in an orderly fashion when more

resources or cores are free. This makes a CUDA
TM

program
automatically scalable on any number of SMs and cores.

The last thing to highlight is the memory hierarchy avail-
able to threads, and the performance associated with the
read/write operations from/to each of the memory levels.
Each thread has its own local registers and all threads be-
longing to the same thread-blocks can cooperate through
shared memory. Registers and shared memory are physi-
cally embedded inside SMs and provide threads with the
fastest possible memory access. Their lifetime is the same
as the thread-block’s. All the threads of a kernel can also
access global memory whose content persists over all kernel
launches [18]; however, read and write operations to global
memory are orders of magnitude slower than those to shared
memory and registers, therefore access to global memory
should be minimized within a kernel.

The design and implementation issues of our algorithms
are presented in the following sections.

4.1 Synchronous parallel PSO
The synchronous implementation [15] comprises three sta-

ges (kernels), namely: positions update, fitness evaluation,
and bests update. Each kernel is parallelized to run a thread
for each problem dimension. The function under consider-
ation is optimized by iterating those kernels needed to per-
form one PSO generation. The three kernels must be ex-
ecuted sequentially and synchronization must occur at the
end of each kernel run. Figure 1 better clarifies this struc-
ture. Since the algorithm is divided into three independent
sequential kernels, each kernel must load all the data it needs
initially and store the data back into global memory at the

end of its execution. CUDA
TM

rules dictates that infor-
mation sharing between different kernels is achievable only
through the global memory.

To better understand the difference between synchronous
and asynchronous PSO the pseudo-code of the sequential
versions of the algorithms is presented in Listing 1 and List-
ing 2. Our synchronous 3-kernel implementation of CUDA-
PSO, while allowing for virtually any swarm size, required
synchronization points where all the particles data had to be
saved to global memory to be read by the next kernel. This

1557

frequent access to global memory limited the performance
of synchronous CUDA-PSO and was the main justification
behind the asynchronous implementation.

4.2 Asynchronous parallel PSO
The design of the parallelization process for the asyn-

chronous version is the same as for the synchronous one,
that is: we allocate a thread block per particle, each of which
executes a thread per problem dimension. This way every
particle evaluates its fitness function and updates position,
velocity, and personal best for each dimension in parallel.

The main effect of the removal of the synchronization con-
straint is to let each particle evolve independently of the
others, which allows it to keep all its data in fast-access
local and shared memory, effectively removing the need to
store and maintain the global best in global memory. In
practice, every particle checks its neighbours’ personal best
fitnesses, then updates its own personal best in global mem-
ory only if it is better than the previously found personal
best fitness. This can speed up execution time dramatically,
particularly when the fitness function itself is highly paral-
lelizable. This is a feature which often characterizes fitness
functions which are commonly used in several applications,
such as the squared sum of errors over a data set in classifica-
tion tasks, or other fitness functions which can be expressed
as a vector dot product or matrix multiplication.

In contrast to the synchronous version, all particle thread
blocks must be executing simultaneously, i.e., no sequential
scheduling of thread blocks to processing cores is employed,
as there is no explicit point of synchronization of all parti-
cles. Two diagrams representing the parallel execution for
both versions are shown in Figure 1. Having the swarm par-
ticles evolve independently not only makes the algorithm
more biologically plausible, as it better simulates a set of
very loosely coordinated swarm agents, but it also does make
the swarm more ‘reactive’ to newly discovered minima/max-
ima. The price to be paid is a limitation in the number of
particles in a swarm which must match the maximum num-
ber of thread blocks that a certain GPU can maintain exe-
cuting in parallel. This is not such a relevant shortcoming,
as one of PSO’s nicest features is its good search effective-
ness; because of this, only a small number of particles (a
few dozens) is usually enough for a swarm search to work,
which compares very favorably to the number of individuals
usually required by evolutionary algorithms to achieve good
performance when high-dimensional problems are tackled.
This consideration makes the availability of swarms of vir-
tually unlimited size and the deriving potential in terms of
search capabilities less appealing than it could seem at first
sight, while increasing the relevance of the burden imposed,
in terms of execution time, by the sequential execution of
fitness evaluation. Also, currently, parallel system process-
ing chips are scaling according to Moore’s law, and GPUs
are being equipped with more processing cores with the in-
troduction of every new model.

5. RESULTS
We compared the performance of the different versions of

our parallel PSO implementation and the sequential SPSO
one on a ‘classical’ benchmark which comprised a set of func-
tions which are often used to evaluate stochastic optimiza-
tion algorithms. Our goal was to compare different parallel
PSO implementations with one another and with a sequen-

tial implementation, in terms of speed, while checking that
the quality of results was not badly affected by the sequen-
tial implementation. So we kept all algorithm parameters
equal in all tests, setting them to the ‘standard’ values sug-
gested in [7]: w = 0.729844 and C1 = C2 = 1.49618. Also,
for the comparison to be as fair as possible, we adapted the
SPSO by substituting its original stochastic-star topology
with the same ring topology adopted in the parallel GPU-
based versions and we downgraded it to ‘float’ precision to
match the GPU-based algorithms’ precision.

Our parallel algorithms were developed using CUDA
TM

version 3.2. Tests were performed on two different graphic
cards (see Table 1 for detailed specifications). For the fol-
lowing experiments the sequential SPSO was run on a PC
powered by a 64-bits Intel(R) Core(TM) i7 CPU running at
2.67GHz. For the GTS450, a swarm of 32 particles was run
for 10000 generations. On the GTX260 GPU we ran the
same experiments on a swarm of 27 particles, as that is the
maximum number of particles running simultaneously such
a card can support.

As for random number generation, the CURAND library

available from CUDA
TM

provides fast uniform random num-
ber generation on the GPU [17]. This library is available

since the introduction of CUDA
TM

version 3.2. In [15], in de-
veloping and testing the synchronous 3-kernel version we had
to use an external kernel which implemented the Mersenne-
Twister random number generator. Switching to the new

generator presently provided by nVIDIA
TM

does not seem
to affect the search performance at all, while it allowed us
to reduce slow accesses to global memory, in which the ran-
dom number sequences generated by the Mersenne-Twister
kernel had to be stored for use by the other kernels.

The following implementations of PSO have been com-
pared: (1) the sequential SPSO version modified to imple-
ment a two nearest-neighbors ring topology; (2) the syn-
chronous three-kernel version of CUDA-PSO; (3) CUDA-
PSO implemented asynchronously with only 1 kernel. Val-
ues were averaged over the 98 best results out of 100 runs.

Figures 2 compares average execution times and average
final fitness values obtained for problem dimension D rang-
ing from 2 to 128 in optimizing fitness functions from typ-
ical test-beds for function optimization [5]. They can be
found in the SPSO package [7] and in the Black Box Opti-
mization Benchmark suite [4]. We tested our code on the
following functions: (a) the simple Sphere function within
the domain [−100, 100]D , (b) the High Conditioned Ellip-
tic function within the domain [−100, 100]D , (c) Rastrigin
function, on which PSO is known to perform well, within the
domain [−5.12, 5.12]D , (d) the Rosenbrock function, which
is non-separable and thus hard to solve by PSO, within the
domain [−30, 30]D , and (e) the Griewank function within
the domain [−600, 600]D .

In general, the asynchronous version was much faster than
the synchronous version, at the price of being able to run
swarms up to 27 or 32 depending on the graphics card. As
can be observed in the figures which report average best
fitness values, the two GPU-based versions produced very
similar results. The sequential implementation appears to
yield better results on the sphere function, as fitness val-
ues approach the precision limit of the floating-point repre-
sentation and problem dimensions grow. However, this is
probably an artefact caused by the limited precision of the

1558

Figure 1: Asynchronous CUDA-PSO: particles run in parallel independently (left). Synchronous CUDA-PSO:
particles evaluate fitness in parallel but have to wait the end of the generation before updating positions,
velocities, and personal/global bests (right). Blocks represent particles and white arrows represent threads
for each dimension of the search space.

floating-point representation; this may cause the ‘accumu-
lated’ sequential sum of squares to start neglecting small
terms as soon as it grows above a certain threshold, which is
obviously more likely with high-dimensional problems. On
the contrary, the parallel implementation, using a reduc-
tion to compute the sum of squares, is less affected by this
problem, which causes the sequentially-computed fitness to
be underestimated, since it gradually adds up terms pair-
wise: additions are therefore most often performed between
terms of comparable magnitude. The same reason may also
stand behind the unexpected behavior of the sequential al-
gorithm regarding execution time, which appears to be non-
monotonic with problem dimension, showing a surprising
decrease as problem dimension becomes larger. In fact, code
optimization (or the hardware itself) might lead several mul-
tiplications to be directly equaled to zero without even per-
forming them, as soon as the sum of the exponents of the two
factors is below the precision threshold; a similar though op-
posite consideration can be made for additions and the sum
of the exponents. We actually verified that adding up terms
all of comparable magnitude is much slower than adding
the same number of terms on very different scales; what is
more important, execution time linearly increases with the
number of terms.

It is also worth noticing that the execution time graphs are
virtually identical for the functions taken into consideration,
which shows that GPUs are extremely effective at computing
arithmetic-intensive functions, mostly independently of the
set of operators used, and that memory allocation issues are
prevalent in determining performance.

Taking speed-up values into consideration, one can also
notice that the best performances were obtained on the Ras-
trigin and Griewank functions. This is probably due to the
presence of complex math functions in their definition. In
fact, GPUs have internal fast math functions which can pro-

Table 1: Major technical features of the GPUs used
for the experiments.

Model name GeForce GeForce
GTX260AMP2 GTS450

GPU clock (MHz) 650 783
Stream Multi Processors 27 4
CUDA cores 216 192
Bus width (bit) 448 128
Memory (MB) 896 1024
Memory clock (MHz) 2100 1804
Memory type GDDR3 GDDR5
Memory bandwidth (GB/s) 117.6 57.7
CUDA compute capability 1.3 2.1

vide good computation speed at the cost of slightly lower
accuracy, which causes no problems in this case.

6. CONCLUSION
The new GPU-based version of our algorithm was able

to significantly reduce execution time with respect to our
previously-developed one, imposing limitations on the num-
ber of particles which seemed not to affect performances
significantly, at least on the benchmark we used for tests.
These, in any case, included high-dimensional versions of
traditional benchmarks.

Depending on the degree of parallelization allowed by the
fitness functions we considered, the asynchronous version of
CUDA-PSO could reach speed-ups of up to about 300 (in
the tests with the highest-dimensional Rastrigin functions)
with respect to the sequential implementation, and often of
more than one order of magnitude with respect to the cor-
responding GPU-based 3-kernel synchronous version, some-
times showing a limited, possibly only apparent, decrease of
search performances.

Based on our previous experience, for example in the real-

1559

Sphere Function

 1e-50

 1e-45

 1e-40

 1e-35

 1e-30

 1e-25

 1e-20

 20 40 60 80 100 120

m
ea

n
fin

al
 fi

tn
es

s
va

lu
e

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 10

 100

 1000

 10000

 20 40 60 80 100 120

m
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120

ac
hi

ev
ed

 s
pe

ed
 u

p

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

Elliptic Function

 1e-50

 1e-45

 1e-40

 1e-35

 1e-30

 1e-25

 1e-20

 20 40 60 80 100 120

m
ea

n
fin

al
 fi

tn
es

s
va

lu
e

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 10

 100

 1000

 10000

 20 40 60 80 100 120

m
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120

ac
hi

ev
ed

 s
pe

ed
 u

p

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

Rastrigin Function

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 20 40 60 80 100 120

m
ea

n
fin

al
 fi

tn
es

s
va

lu
e

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 10

 100

 1000

 10000

 20 40 60 80 100 120

m
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100 120

ac
hi

ev
ed

 s
pe

ed
 u

p

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

Rosenbrock Function

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 20 40 60 80 100 120

m
ea

n
fin

al
 fi

tn
es

s
va

lu
e

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 10

 100

 1000

 10000

 20 40 60 80 100 120

m
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100 120

ac
hi

ev
ed

 s
pe

ed
 u

p

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

Griewank Function

 0.0001

 0.001

 0.01

 0.1

 20 40 60 80 100 120

m
ea

n
fin

al
 fi

tn
es

s
va

lu
e

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 10

 100

 1000

 10000

 100000

 20 40 60 80 100 120

m
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

 0

 50

 100

 150

 200

 250

 20 40 60 80 100 120

ac
hi

ev
ed

 s
pe

ed
 u

p

problem dimension

SPSO-Ring
1K-GTS450
1K-GTX260
3K-GTS450
3K-GTX260

Figure 2: Average final fitness values (left column), average execution times (center) and speed-ups (right col-
umn) vs. problem dimension for the Sphere, High Conditioned Elliptic, Rastrigin, Rosenbrock and Griewank
functions (top to bottom). Experiments were performed running one swarm of 32 particles (GTS-450) or 27
(GTX-260) for 10000 generations. Plotted values were averaged over the best 98 results out of 100 runs.

1560

time computer vision application described in [14], the lim-
itations that this asynchronous version imposes on swarm
size do not prevent our GPU-based algorithms from being
used to solve complex real-time problems. Real-time object
detection applications usually require high detection accu-
racy, while often allowing for coarser localization. In Auto-
matic Driving Assistance Systems, for instance, it is very im-
portant that most road signs be detected (especially, danger
or obligation signs) rather than they be precisely localized
in space. Therefore execution speed, which allows search
to be repeated within the same frame, becomes more crit-
ical than accuracy in finding the optima. Algorithms like
PSO, which exhibit good convergence properties while hav-
ing more problems with search refinement, once the basin of
attraction of an optimum is reached, are very well suited for
these applications. In fact, the number of particles allowed
by our most recent implementation is equal or larger than
the swarm size which is normally used to perform such tasks.
Future work will therefore include updating and extending
the applications we have already developed using the syn-
chronous version of CUDA-PSO, as well as developing new
ones.

Other interesting developments may be offered by the
availability of OpenCL, which will allow owners of differ-
ent GPUs (as well as multi-core CPUs, which are also sup-
ported) than nVIDIA’s to implement parallel algorithms
on their own computing architectures. The availability of
shared code which allows for optimized code paralleliza-
tion even on more traditional multi-core CPUs will make
the comparison between GPU-based and multi-core CPUs
easier (and, possibly, fairer) besides allowing for a possi-
ble optimized hybrid use of computing resources in modern
computers.

7. ACKNOWLEDGMENTS
Youssef S. G. Nashed is supported by the European Com-

mission MIBISOC grant (Marie Curie Initial Training Net-
work, FP7 PEOPLE-ITN-2008, GA n. 238819).

8. REFERENCES
[1] L. de P. Veronese and R. Krohling. Swarm’s flight:

Accelerating the particles using C-CUDA. In IEEE
Congress on Evolutionary Computation (CEC), 2009,
pages 3264–3270, May 2009.

[2] L. Dioşan and M. Oltean. Evolving the structure of
the particle swarm optimization algorithms. In
European Conference on Evolutionary Computation in
Combinatorial Optimization, EvoCOP’06, pages
25–36. Springer Verlag, 2006.

[3] L. Dioşan and M. Oltean. What else is evolution of
PSO telling us? Journal of Artificial Evolution and
Applications, 1:1–12, 2008.

[4] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Poš́ık.
Comparing results of 31 algorithms from the
Black-Box Optimization Benchmarking BBOB-2009.
In Proceedings of the 12th annual conference
companion on Genetic and evolutionary computation,
pages 1689–1696, New York, NY, USA, 2010. ACM.

[5] N. Hansen, R. Ros, N. Mauny, M. Schoenauer, and
A. Auger. PSO facing non-separable and
ill-conditioned problems. Research Report RR-6447,
INRIA, 2008.

[6] Š. Ivekovic, E. Trucco, and Y. Petillot. Human body
pose estimation with particle swarm optimisation.
Evolutionary Computation, 16(4):509–528, 2008.

[7] J. Kennedy and M. Clerc, 2 2006.
http://www.particleswarm.info/Standard PSO 2006.c.

[8] J. Kennedy and R. Eberhart. Particle swarm
optimization. In Proc. IEEE Int. conf. on Neural
Networks, volume IV, pages 1942–1948, Washington,
DC, USA, 1995. IEEE CS Press.

[9] J. Kennedy and R. Mendes. Population structure and
particle swarm performance. In Proc. of the Congress
on Evolutionary Computation - CEC, pages
1671–1676, Washington, DC, USA, 2002. IEEE CS
Press.

[10] Khronos Group. The OpenCL Specification, 1.0
edition, October 2009.

[11] B.-I. Koh, A. D. George, R. T. Haftka, and B. J.
Fregly. Parallel asynchronous particle swarm
optimization. International Journal for Numerical
Methods in Engineering, 67:578–595, 2006.

[12] J. Li, D. Wan, Z. Chi, and X. Hu. An efficient
fine-grained parallel particle swarm optimization
method based on GPU-acceleration. International
Journal of Innovative Computing, Information and
Control, 3(6 B):1707–1714, 2007.

[13] L. Mussi and S. Cagnoni. Particle swarm for pattern
matching in image analysis. In I. Serra, R.and Poli
and M. Villani, editors, Artificial life and evolutionary
computation, pages 89–98. World Scientific, Singapore,
2010.

[14] L. Mussi, S. Cagnoni, E. Cardarelli, F. Daolio,
P. Medici, and P. Porta. GPU implementation of a
road sign detector based on particle swarm
optimization. Evolutionary Intelligence,
3(3-4):155–169, 2010.

[15] L. Mussi, F. Daolio, and S. Cagnoni. Evaluation of
parallel particle swarm optimization algorithms within
the CUDA architecture. Information Sciences, 2010.
In press.

[16] L. Mussi, S. Ivekovic, and S. Cagnoni. Markerless
articulated human body tracking from multi-view
video with GPU-PSO. In 9th International Conference
on Evolvable Systems: From Biology to Hardware
(ICES), 2010, volume 6274 LNCS, pages 97–108, 2010.

[17] nVIDIA. CUDA CURAND Library. nVIDIA
Corporation, August 2010.

[18] nVIDIA Corporation. nVIDIA CUDA programming
guide v. 3.2, October 2010.

[19] R. Poli. Mean and variance of the sampling
distribution of particle swarm optimizers during
stagnation. IEEE Trans. Evolutionary Computation,
13(4):712–721, 2009.

[20] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm
optimization: an overview. Swarm Intelligence,
1(1):33–57, 2007.

[21] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T.
Haftka, and A. D. George. Parallel global optimization
with the particle swarm algorithm. International
Journal for Numerical Methods in Engineering,
61:2296–2315, 2004.

[22] J. St.Charles, T. Potok, R. Patton, and X. Cui.

1561

Flocking-based document clustering on the graphics
processing unit. Studies in Computational Intelligence,
129:27–37, 2008.

[23] F. Van den Bergh and A. Engelbrecht. A study of
particle swarm optimization particle trajectories.
Information Sciences, 176(8):937–971, 2006.

[24] G. Venter and J. Sobieszczanski-Sobieski. A parallel
particle swarm optimization algorithm accelerated by
asynchronous evaluations. In 6th World Congresses of
Structural and Multidisciplinary Optimization, 2005.

[25] Y. Zhou and Y. Tan. GPU-based parallel particle
swarm optimization. In IEEE Congress on
Evolutionary Computation (CEC), 2009, pages
1493–1500, May 2009.

[26] Y. Zhou and Y. Tan. Particle swarm optimization
with triggered mutation and its implementation based
on GPU. In Proceedings of the 12th Annual Genetic
and Evolutionary Computation Conference (GECCO),
2010, pages 1007–1014, 2010.

1562

