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ABSTRACT
The present paper analyzes the mutual relationships be-
tween generative and developmental systems (GDS) and sy-
naptic plasticity when evolving plastic artificial neural net-
works (ANNs) in reward-based scenarios. We first intro-
duce the concept of synaptic Transitive Learning Abilities
(sTLA), which reflects how well an evolved plastic ANN can
cope with learning scenarios not encountered during the evo-
lution process. We subsequently report results of a set of ex-
periments designed to check that (1) synaptic plasticity can
help a GDS to fine-tune synaptic weights and (2) that with
the investigated generative encoding (EvoNeuro), only a few
learning scenarios are necessary to evolve a general learning
system, which can adapt itself to reward-based scenarios not
tested during the fitness evaluation.

Categories and Subject Descriptors
I.2.6 [Artificial intelligence]: Learning—Connectionism
and neural nets

General Terms
Algorithms

Keywords
evolutionary algorithms; neural networks; synaptic plastic-
ity ; generative and developmental systems; neuro-evolution.

1. INTRODUCTION
A major goal of bio-inspired artificial intelligence is to

design artificial neural networks (ANNs) with features and
abilities similar to those of animal nervous systems. Accord-
ing to the current scientific consensus, the primary process
responsible for shaping these complex networks is Darwinian
evolution; this suggests that evolution-inspired algorithms
are a sensible method to design “artificial nervous systems”.
Despite the large amount of work in this direction, three
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striking differences still separate biological nervous systems
from most artificially-evolved ones: biological nervous sys-
tems are much larger, much more organized (they are mod-
ular, regular and hierarchical [8]) and much more plastic [1],
that is, they can adapt themselves online. Structural chal-
lenges (modularity, regularity and scalability) are one of the
main focus of current researches with generative and devel-
opmental systems (GDS) [7–9,12,14,22]; plastic ANNs were
also evolved in several studies, in which Hebbian learning
was added to evolved neural networks [7, 15–20, 27]. Yet
only a few researchers analyzed the combination of synaptic
plasticity and GDS [7,16,19], whereas, as the present paper
will show, plasticity and GDS are deeply connected.

Indeed, most GDS aim at evolving short descriptions of
complex structures by taking advantage of regularities ob-
served in Nature, such as repetition of useful sub-parts, sym-
metries, symmetries with variation, ... [8,22]. However, these
regularities come with a cost: the more an ANN is regular,
the more difficult it is to tune a particular connection [4]. To
reconcile regularity and fine-tuning, animal brains strongly
relies on synaptic plasticity during their lifetime, in particu-
lar during their development. It follows that ANNs evolved
via a GDS should similarly benefit from a fine-tuning by
synaptic plasticity mechanisms.

Perhaps less intuitively, evolving plastic ANNs may also
need a GDS to scale up to real-world problems without pro-
hibitively long evaluation times. Evolving plastic ANNs cur-
rently requires long fitness evaluations because (1) one must
must allow enough time for the agent to learn and (2) one
must ensure that each possible learning scenario (e.g. differ-
ent positions of reward) can be learned. This second point
is very important because the number of scenarios tends to
grow exponentially with the number of alternatives; testing
most of them when evaluating the fitness arguably prevents
the evolution of plastic ANNs for anything else than toy
problems. Besides this computational issue, one of the goal
of designing plastic ANNs is to make agents able to react
to unknown situations which will obviously not be known
during the evolutionary process. Put differently, a lot of
computation time is employed to encourage the evolutionary
process to find a general learning system and not specialized
adaptation rules. For instance, if an agent must associate
stimuli (e.g. lights) with actions (e.g. pushing a lever), the
same evolved agent should be able to use a reward to as-
sociate a given stimulus (e.g. light 1) with a given action
(e.g. lever 1) as easily as any other association (e.g. light 2
with lever 1), by tuning online a few plastic synapses elicited
through evolution.
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This requirement raises a new question for the evolution of
plastic ANNs: how to evolve plastic ANNs which can adapt
themselves to situations that have not been tested during the
evolution? Such a skill will be called Transitive Learning
Ability (TLA) in the remainder of this paper. At first sight,
Nature relies on the long lifetime of animals (compared to
the “lifetime” of artificial agents) and on the large size of
the populations to obtain a stochastic evaluation of virtu-
ally every possible scenarios; however, the encoding and the
development process may also play a key role in adapting to
situations which have never been encountered before. The
present paper investigates this second idea—the importance
of the link between sTLA and GDS. Intuitively, a very regu-
lar network may repeat the same adaptation structure many
times whereas it was only required once by the fitness; it
could therefore “propagate” the adaptation structure. Using
a carefully designed GDS, one should consequently be able
to substantially reduce the number of evaluations required
to obtain a general learning system, thus improving the abil-
ities of ANNs to adapt themselves to unforeseen situations.

Following this line of thought, synaptic plasticity and GDS
should benefit from each other to evolve ANNs. The present
paper looks into this deep relationship which was almost
never investigated in the literature. After a short review
of related work, we introduce an property that a plastic
ANN must possess to ensure it can adapt itself to unfore-
seen situations. We then propose that ANNs evolved with a
map-based encoding (EvoNeuro encoding [14]) possess this
property. We subsequently report results of a set of experi-
ments designed to check that (1) synaptic plasticity can help
a GDS to fine-tune synaptic weights and (2) with the inves-
tigated generative encoding, only a few learning scenarios
are necessary to evolve a general learning system, which can
adapt itself to reward-based scenarios not tested during the
fitness evaluation.

2. RELATED WORK

2.1 Evolving Adaptive Neural Networks
Synaptic plasticity underlies most models of learning, mem-

ory and development in animals [1]; this ubiquity makes it
one of the most studied topic in neuroscience. It has been
described at many levels of detail, but studies on the evo-
lution of plastic ANNs are mainly focused on Hebbian-like
adaptation rules, according to which the strength of con-
nection is modified with regard to pre- and post-synaptic
activity [2, 26, 27]. A synapse can also be strengthened or
weakened as a result of the firing of a third, modulatory
inter-neuron (e.g. dopaminergic neurons). To reflect this
phenomenon, a modulation factor m can be included in a
classic Hebbian rule [17,19]:

Δwij = m · (A · ai · aj +B · ai + C · aj +D) (1)

where i and j are neurons, Δwij is the modification of synap-
tic weight wij , ai is the activation of neuron i, m is the sum
of the modulating signals received by the post-synaptic neu-
ron and (A,B,C,D) ∈ R

4 are four parameters of the rule.
Soltoggio et al. [18] successfully used this heterosynaptic

rule to evolve plastic ANNs in a simple dynamic, reward-
based scenario: a robot is put in a T-maze in which it has
to find a reward, whereas this reward is regularly swapped
from one end of the T-maze to the other. These authors de-
signed a fitness such that the best individuals are those that

manage to switch their behavior as fast as possible when
the position of the reward is changed. Enabling heterosy-
naptic plasticity substantially improved the performance of
evolved controllers, thus showing the potential of plastic
ANNs. Nevertheless, this setup does not allow to test con-
trollers in unknown situations, because successful controllers
necessarily have encountered the two positions of the reward;
one may therefore ask whether the evolutionary algorithm
designed “controllers that can learn” or, instead, exploited
the rich dynamic provided by plasticity to design a network
that can select one behavior among two pre-evolved ones. A
similar analysis can be drawn for several other papers based
on T-maze experiments [16,17,20].

Urzelai and Floreano [27] then Blynel and Floreano [2]
approached synaptic plasticity from the point of view of
behavioral robustness. They first evolved neuro-controllers
with plastic synapses to solve a light-switching task in which
there was no reward ; they then investigated whether these
controllers were able to cope with four types of environmen-
tal changes: new sensory appearances, transfer from simu-
lations to physical robots, transfer across different robotic
platforms and re-arrangement of environmental layout. The
plastic ANNs were able to overcome these four kind of changes,
contrary to a classic ANN with fixed weights. However,
as highlighted by the authors, “these behaviors were not
learned in the classic meaning of the term because they
were not necessarily retained forever”. Actually, synaptic
weights were continuously changing such that the robot per-
formed several sub-behaviors in sequence; the evolutionary
algorithm therefore opportunistically used plasticity to en-
hance the dynamic power of the ANN and not to change the
behavior with regard to a new situation.

In supervised learning, Chalmers [3] assessed how well an
evolved plastic ANN can cope with situations never encoun-
tered during the evolution. In his experiments, he evolved
the learning rule for a small single-layer ANN (5 inputs,
1 output) and his analysis showed that at least 10 sets of
input/output patterns (among 30 possible sets) were re-
quired to evolve an algorithm that correctly learns on 10
unknown sets. In reinforcement learning, Niv et al. [15]
evolved plastic ANNs to solve a bumblebee-inspired foraging
task in which simulated bees must select flowers by recog-
nizing their color. To promote general learning abilities,
they randomly assigned rewards to colors at each genera-
tion and they showed that the resulting ANNs successfully
learned unknown color/reward associations. Chalmers and
Niv et al. both had to use a large number of the possible
scenarios to lead to general learning abilities, but this ap-
proach is only possible for very simple domains. Stanley et
al. [21] similarly randomized the fitness parameters to avoid
overspecialized behaviors, but they show that, surprisingly,
plasticity did not help in the task they studied. At any rate,
these authors did not discuss about how the encoding and
the chosen topology affected their results.

2.2 Generative and Developmental Systems
Inspired by the regularities of natural organisms and hu-

man-made designs, many researchers study how these regu-
larities can emerge in both natural and artificial evolution.
In the latter, their effort is focused on “generative and de-
velopmental systems” (GDS), in which structures are ge-
netically encoded by a compact representation that is then
developed. In particular, these researches have led to many
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indirect encoding for ANNs, inspired by L-systems [9], gene
regulatory networks [12], chemical gradients [4, 22], ...

Despite promising results with GDS, fostering regular net-
works is necessarily to the detriment of fine-tuning individ-
ual connections: the more the representation of a network
is compact, the more it is difficult to add exceptions to the
general pattern. This trade-off was recently investigated by
Clune et al. [4] who have shown that the performance of
HyperNEAT [22] decreased as problem regularity decreased.
To solve this issue, Clune et al. proposed a two-stage algo-
rithm, called HybrID, to combine the benefits of both ap-
proaches: in the first stage, the ANN is evolved with Hyper-
NEAT to discover the general patterns; in the second stage,
the encoding is switched to a direct encoding to account for
irregularities. In their experiments, this hybrid algorithm
outperformed both HyperNEAT and the tested direct encod-
ing. Although this procedure seems efficient, tuning individ-
ual connections by evolution is unrealistic from a biological
point of view and no method are known to compute the
ideal switch generation. Instead, the direct encoding phase
can be assimilated to a learning procedure, which could be
performed on-line with synaptic plasticity.

Surprisingly, despite the large amount of work about GDS
for neural networks, only a few authors have included synap-
tic plasticity into their system. Gruau andWhitley [7] evolved
neural networks with the cellular encoding and Hebbian
synapses on the connections that feed into output units; they
were mostly interested in how adding learning can change
the fitness landscape. Soltoggio et al. [19] used the a gener-
ative encoding inspired by gene regulatory networks (AGE,
[12]) to design neural networks with heterosynaptic plas-
ticity. However, they focused on the benefits brought by
heterosynaptic plasticity and, consequently, the generative
encoding was only used “as a tool” to evolve a topology.
Last, Risi and Stanley [16] extended the HyperNEAT en-
coding to evolve both synaptic weights and parameters of
learning rules. They tested their method on the T-maze ex-
periments (see section 2.1) and thus were not able to test
the general learning abilities of evolved ANNs.

2.3 Novelty search
Evolving plastic ANNs raises a technical challenge for any

evolutionary algorithm: in most situations, there exists a
non-plastic (or non-adaptive) ANN that, despite being non-
optimal, solves a significant part of the task [17, 21]. Un-
fortunately, it is often impossible for the algorithm to add
plastic synapses a posteriori without significantly degrading
the fitness. From the optimization point of view, this makes
most fitness functions that reward learning behaviors very
deceptive [16,20]. A direct consequence is that most fitness
functions employed to evolve plastic ANNs have to be pre-
cisely crafted to make the adaptive behaviors very attractive,
whereas an ideal fitness function should be straightforwardly
deduced from the task.

To avoid such a deceptiveness, several recent papers pro-
posed to explicitly reward the novelty or the diversity of be-
haviors [11,13,17]. Once a behavioral distance has been de-
signed, it is indeed possible to compute how much each indi-
vidual differs from those of the previous generations. A new
objective can thereafter be defined: maximizing the novelty
(or the diversity) of behaviors. Several experiments [11, 17]
have shown that this new objective can efficiently replace
the fitness to overcome its deceptiveness, leading to an ap-

proach called “novelty search”. In particular, Risi et al. [17]
applied this algorithm to successfully evolve plastic ANNs
to solve the T-maze problem. This novelty/diversity ob-
jective can also be combined with the fitness function in a
Pareto-based multi-objective optimization, so as fitness and
novelty/diversity can complete each other [13].

3. TRANSITIVE LEARNING ABILITIES

3.1 Definitions
In the present paper, we are interested in evolving ANNs

that learn to select the most rewarding action given some
stimuli. For the sake of simplicity, we assume that the re-
ward is never delayed and that there is always a reward,
may it be positive or negative. This framework corresponds
to many setups from operant conditioning. An ANN with
synaptic General Learning Abilities (sGLA) must be capa-
ble to learn each possible association of stimulus/action with
the same topology, the same learning function but a dif-
ferent reward scheme. More formally, the neural network
N(I, λ) must adapt several synaptic weights λ ∈ R

z such
that each input pattern I ∈ [0, 1]n is associated to the best
rewarded output vector K ∈ [0, 1]m, that is λ is optimal
when N(I, λ) = K; the adaptation is performed by a learn-
ing function such that λ = g(λr, I, RI,K), where λr is a
random vector in R

z and RI,K the reward function. These
notations lead to the following definitions:

Definition 1 (Association). An association is a pair
(I,K) of input/output that leads to the maximum positive
reward.

Definition 2 (Association set). An association set
A =

{
(I1,K1), · · · , (In,Kn)

}
is a list of associations that

covers all the possible input patterns. The set of all associ-
ation sets is denoted A.

Definition 3 (Learnable set). Given a suitable re-
ward function RI,K , an association set A ∈ A is said to be
learnable by the neural network N , if and only if ∀λr ∈ R

z

and ∀(I,K) ∈ A, ∃λ = g(λr, I, RI,K) such that N(I, λ) =
K. The set of all learnable sets for N is denoted LN .

Definition 4 (sGLA). A plastic ANN is said to pos-
sess synaptic General Learning Abilities (sGLA) if and only
if ∀A ∈ A, A = LN .

To evolve a plastic ANN with sGLA, the typical method
is to check the learnability of each association set during
the fitness evaluation, as it is often done in the T-maze ex-
periments. However, to cope with unknown situations, a
plastic ANN must have sGLA while only a subset of the
possible association sets (i.e. a subset of problems from the
same problem class) has been used during the evolution-
ary process. Put differently, it is desirable to work with
plastic ANNs for which knowing that a few association sets
are learnable is sufficient to know that the ANN possesses
sGLA. We call this property “synaptic Transitive Learning
Abilities” (sTLA), defined as follows:

Definition 5 (sTLA). A plastic ANN is said to pos-
sess synaptic Transitive Learning Abilities (sTLA) if and
only if ∃TN ⊂ A such that the following implication is true:
TN ⊂ LN ⇒ LN = A. p = card(TN ) will be called the
“sTLA-level”.
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output; as a consequence, if one of this output is the right
one, then there is a significant probability to obtain the right
output for each test performed during the fitness evaluation,
whereas the network is actually not reliably solving the task.
Since this issue is related to the softmax and not to the en-
coding, a similar problem arose when the direct encoding
was used. We are still investigating why the variability of
the sGLA scores is higher when a single set is used.

6. CONCLUSION
These experiments empirically show that (1) the difficul-

ties of a generative encoding (in this case, EvoNeuro [14])
with irregular domains can be overcome with synaptic plas-
ticity, and (2) using a generative encoding makes it easier
to obtain plastic artificial neural networks that can cope
with situations not encountered during the evolution. We
employed the EvoNeuro encoding in these particular ex-
periments, but similar properties should be observed with
other generative encodings. The newly introduced concept
of synaptic Transitive Learning Abilities (sTLA) should help
to perform such an analysis.
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