
Using Feedback in a Regulatory Network Computational
Device

Generative and Developmental Systems

Rui L. Lopes
Centro de Informática e Sistemas da

Universidade de Coimbra
Polo II - Pinhal de Marrocos
3030-290 Coimbra, Portugal

rmlopes@dei.uc.pt

Ernesto Costa
Centro de Informática e Sistemas da

Universidade de Coimbra
Polo II - Pinhal de Marrocos
3030-290 Coimbra, Portugal

ernesto@dei.uc.pt

ABSTRACT
The relationship between the genotype and the phenotype
in Evolutionary Algorithms (EA) is a recurrent issue among
researchers. Based on our current understanding of the mul-
titude of the regulatory mechanisms that are fundamental in
both processes of inheritance and of development in natural
systems, some researchers start exploring computationally
this new insight, including those mechanism in the EA. The
Artificial Gene Regulatory (ARN) model, proposed by Wolf-
gang Banzhaf was one of the first tentatives. Following his
seminal work some variants were proposed with increased
capabilities. In this paper, we present another modification
of this model, consisting in the use the regulatory network
as a computational device where feedback edges are used.
Using two classical benchmarks, the n-bit parity and the
Fibonacci sequence problems, we show experimentally the
effectiveness of the proposal.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic Methods

General Terms
Algorithms

Keywords
regulation, network, development, parity, Fibonacci

1. INTRODUCTION
Nature-inspired algorithms are used today regularly to

solve learning, design and optimization problems, giving rise
to a new research area called Evolutionary Computation
(EC) ([6]). There are many variants of a basic algorithm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

that we can describe in simple terms: (1) randomly define
an initial population of solution candidates; (2) select, ac-
cording to fitness, some individuals for reproduction with
variation; (3) define the survivors for the next generation;
(4) repeat steps (2) and (3) until some condition is fulfilled.
Typically, the objects manipulated by the algorithms are
represented at two different levels. At a low level, the geno-
type, the representations are manipulated by the variation
operators; at a high level, the phenotype, the objects are
evaluated to determine their fitness and are selected accord-
ingly. Because of that, we need a mapping between these
two levels. The issue of the relationship between the geno-
type and the phenotype is as old as the area of itself, many
claiming that the standard approach is too simplistic.

Today we are aware of the crucial role of regulation in
the evolution and development of complex and well adapted
creatures ([3]). Regulation is a consequence of external (i.e.,
epigenetic) or internal (i.e., genetic) influences. Some com-
putational explorations have been proposed to deal with the
inclusion of regulatory mechanisms into the standard evo-
lutionary algorithm ([5, 2, 17]). Wolfgang Banzhaf ([1])
proposed an artificial gene regulatory (ARN) model and
showed how it could be used computationally in different
settings ([4, 16]). More recently [14] a variant of the ARN
was proposed that solved some weaknesses of that model, by
transforming the regulatory gene network into a computable
tree-like expression as we do in standard GP. In this paper,
we complement and enhance this latter proposal by making
possible the use of feedback edges (equivalent to delays in
an iterative process). The effectiveness of this proposal was
experimentally tested and statistical validated with two clas-
sical benchmarks, namely the N-bit parity and the Fibonacci
sequence problems. We clearly establish the generalization
capabilities of the solutions produced.

The paper is organized as follows. Section 2 describes the
ARN model as proposed by W. Banzhaf. Then, Section 3
describes our contributions, elucidating how we extract a
program from a network and the extension to the previous
model. In Section 4 we briefly refer to the problems used
followed by the experimental setup in Section 5. The results
are presented and analyzed in Section 6. Finally, in Section 7
we draw some conclusions and present some ideas for future
work.

1499

2. BANZHAF’S ARN

Genome
The Artificial Regulatory Network (ARN) ([1]) is composed
of a binary genome and proteins. The genome can be gener-
ated randomly or by a process of duplication with mutation,
also called DM, that is considered the driving force for cre-
ating new genes in biological genomes and as an important
role in the growth of gene regulatory networks [18]. In the
latter case we start with a random 32-bit binary sequence,
that is followed by several duplication episodes. As we will
see later the number of duplications is an important param-
eter. The mutation rate is typically of 1%. So, if we have
10 duplication events then the final length of the genome
is 25 × 210 = 32768. The genome is divided in several re-
gions, namely a regulatory site, the promoter and the gene
itself. The first 32 bits of the regulation zone are the en-
hancer site, while the following 32 bits are the inhibitory
site. The promoter is located downstream and has the form
XY Z01010101. This means that only the last 8 bits are
fixed. A gene is a five 32-bit long sequence, i.e., a 160-bit
string.

Gene expression
The genotype - phenotype mapping is defined by expressing
each 160-bit long gene, resulting in a 32-bit protein. This
correspondence is based on using a majority rule: if we con-
sider the gene divided into 5 parts of size 32 each, at position
i, say, the protein’s bit will have a value corresponding to
the most frequent value in each of these 5 parts, at the same
position. Figure 1 gives an idea of the representation.

H PE G1 G2 G3 G4 G5

Prt

GeneRegulation

Protein

Promoter

Figure 1: Artificial Regulatory Network, after W.

Banzhaf

Regulation
The proteins can bind to the regulatory region. The strength
of the binding is computed by calculating the degree of com-
plementarity between the protein and each of the regulatory
regions (enhancer, ei, or inhibitory,hi), according to formula
1:

xi =
1

N

N∑

j=1

cje
β(μj−μmax) (1)

where xi can the the enhancer or the inhibitory region, N
is the number of proteins, cj the concentration of protein j,
μj is the number of bits that are different in each position of
the protein and of the regulation site, μmax is the maximum
match achievable, and β is a scaling factor. The production
of a protein along time depends on its concentration, which
in turn is a function of the way it binds to the regulatory
regions. It is defined by the differential equation

dci
dt

= δ(ei − hi)ci

.
Genes interact mediated by proteins. If, say, gene A ex-

presses protein pA and that protein contributes to the acti-
vation of gene B, we say that gene A regulates B (see figures
2 and 3).

Prm Gene BRegulation Gene A

Prt

Figure 2: Gene - Protein - Gene interaction

Gene A

Gene B

Figure 3: Gene - Protein - Gene interaction

Notice that in order for a link to exist between any two
genes, the concentration of the corresponding protein must
attain a certain level, and that depends on the strength of
the binding.

Computational Device
Using this process we can build for each genome the corre-
sponding gene regulatory network. These networks can be
studied in different ways. We can be concerned by topo-
logical aspects (i.e., to study the degrees distribution, the
clustering coefficient, small world or scale free, and the like)
or the dynamics of the ARNs (i.e., attractors, influence of
the protein-gene binding threshold) ([15], [4]). This is in-
teresting, but from a problem-solving perspective what we
want is to see how the model can be used as a computational
device. In order to transform an ARN into a computational
problem-solver we need to clarify what we put in the sys-
tem (including the establishment of what is the relationship
with the environment) and what we extract from the system.
At the same time we need to define the semantics, that is,
the meaning of the computation in which the network is
engaged. Finally, and as a consequence of the points just
identified, it is also fundamental to determine if we are in-
terested in the input/output relationship or if what we want
is the output. A solution for the latter situation was pro-
posed in [12] in the context of optimization problems. The
idea is to define (randomly) two new contiguous 32-bit se-
quences in the genome. The first one being a new inhibitory
site, and the second one a new activation site. All generated
proteins can bind to these sites. The levels of activation and
of inhibition can be computed as before (see equation 1) ,
but there is no gene (thus no protein) attached (see figure
4).

The state of this site is just the sum of all bindings (see
equation 2) and is defined as the output. This additional

1500

Gene A Gene B Gene C Gene De h

Prt Prt Prt Prt

new

Figure 4: Fabricating an output

binding is thus a method to extract a meaning from the
variation of the proteins’ concentrations along time.

s(t) =
∑

i

(ei − hi) (2)

To use the model as a representation formalism for genetic
programming one needs to define what are the inputs and
what are the outputs. For that purpose the ARN model was
extended in two directions ([16]). First, some extra proteins,
not produced by genes but contributing to regulation, were
introduced and act as inputs. Second, the genes were di-
vided into two sets, one producing proteins that are used
in regulation (i.e., transcriptional factors), and a second one
with proteins without regulatory function which are used
as outputs. These two types of genes are distinguished by
having different promoters (see figure 5).

Prt

Gene A

Prt

Prm

Output

Prm Gene BRegulation Gene C

Prt
Input

Figure 5: The modified ARN

This model was tested with the classic control problem
known as the pole balancing problem.

3. REGULATORY NETWORK COMPUTA-
TIONAL DEVICE (RENCODE)

With the model just described we have to define, more
or less arbitrarily, what are the inputs and what are the
outputs. To overcome this limitation [14] used the ARN
architecture as genomic representation for a new computa-
tional model, described in the remaining of this section. The
main idea is to simplify the ARN to produce a computable
tree-like expression similar to a GP tree (although with the
introduction of feedback the result is a cyclic graph). Be-
sides that, in order to greatly increase the efficacy and the
performance of the system, special variation operators, be-
sides mutation, were also introduced.

This model was tested successfully with three benchmark
problems, different from the ones presented in this article.
In order to solve the problems presented in Section 4 some
modifications are necessary, namely the inclusion of feedback
connections, as will be clarified at the end of this section.

Extracting Circuits from ARNs.
The networks resultant from ARN genomes are very com-
plex, composed of multiple links (inhibition and excitation)
between different nodes (genes). In order to extract a circuit
from these networks they must first be reduced, input and

Listing 1: The reduction algorithm.
1 def reduce (network) :
2 f o r each gene in network :
3 r ep l a c e b ind ings by edge (e−h)
4 i f (e − h) <= 0 :
5 remove edge
6 f o r each edge (i , j) in new network :
7 i f edge (i , j) < edge (j , i) :
8 remove edge (i , j)
9 e l s e :

10 remove edge (j , i)

output nodes must de identified, and we must ascribe a se-
mantic to its nodes. The final product will be an executable
feed-forward circuit.

Listing 1 shows the pseudocode for the reduction algo-
rithm. We start by transforming every pair of connections,
excitation (e) and inhibition (h), into one single connection
with strength equal to the difference of the originals (e-h)
(step 3). Every connection with negative or null strength
will be discarded (steps 4-5). Then a directed graph is built
adding only the nodes with active edges and the strongest
edge between each pair of nodes (steps 6-10). This process
is illustrated in Figures 6 to 8.

Figure 6: ARN example. The dotted and full edges rep-

resent, respectively, inhibition and excitation relation-

ships. The numbers are just identifiers.

Next, the output node is chosen: the one with the highest
connectivity. After that the circuit is built backwards from
the output function until the terminals (nodes without input
edges) are reached. If, at any point of this process, there is
a deadlock (every function is input to some other), again
the gene with highest connectivity is chosen, discarding its
role as input to others, and thus resulting in a feed-forward
circuit of influences between genes.

To complete the process, a mapping is needed linking
nodes (i.e., genes) to functions and terminals. To that end

1501

Figure 7: The network from Fig. 6 after application of

the algorithm in List. 1.

OR

NOR NOR

NOR

IN

OR

Figure 8: The resulting circuit from the reduced net-

work depicted in Fig. 7. The nodes represent gates or

the input stream (IN). The output of the circuit is taken

from the top OR. The binary string is streamed through

the IN node. Functions take their inputs from the nodes

where their out-edges point to. The dotted edges repre-

sent feedback connections.

we use the gene-protein correspondence using the protein’s
signature to obtain the function/terminal by a majority vote
process. As an example, to code the function set { +, -,

*, / } only two bits are needed. These are obtained by
splitting the 32-bit protein into sixteen 2-bit chunks and ap-
plying the majority rule in each position of the chunks. This
will provide us with an index to the function set. If some
determined problem has more than one input, for instance
four, then the majority rule is applied again over the termi-
nal protein signature (its binary stream) to define to which
input it corresponds.

Finally, in order to improve the evolvability of the genomes,
the authors proposed also variation operators inspired by
the concepts of transposons and non-coding DNA, which
can delete/copy a part of the genome (transposon-like), or
introduce non-coding (junk) genetic material (streams with
0s) in the genome. The results reported show an efficiency
increase when using any of the operators with small lengths
(versus fixed size genomes with only the mutation operator),
although not statistically significant in every case. More-
over, in one of the problems, the junk operator did not im-
prove the results. The average results also show that the
transposon-like operator is more stable, since the standard
deviation values tend to be much lower in this case. Based
on these observations, the experiments described in this ar-
ticle will use only the transposon-like operator.

Feedback.
To solve problems like symbolic regression and the santa-
fe ant trail (see [14]), where there is no need for feedback,
each time a node is chosen and the corresponding function
is added to the circuit, the inputs from functions already
added are simply discarded. This results in state-less feed-
forward circuits, which are not adequate for problems where
some kind of memory is needed.

On the other side, when a node takes input from a node
(function) already in the circuit, it is possible to use it as
feedback (instead of discarding it), resulting in a state-full
feed-forward circuit (please refer to Fig. 10 for an example),
similarly to a cyclic graph. This one-level of indirection al-
lows to save information from the previous state(s) when the
circuit is iterated, as will be demonstrated by its application
to two different problems, described in the next section.

4. PROBLEMS
Two problems were tackled taking advantage of feedback

connections in the regulatory network computational device:
the n-bit parity and the Fibonacci sequence. The next sub-
sections describe both problems and the experimental setup
is presented at the end.

4.1 N-bit Parity
The N-bit parity problem is a typical benchmark in Evo-

lutionary Computation (EC). The goal of this problem is to
evolve a boolean function (or circuit) that takes a binary
string as input and returns a single output which indicates
wether the number of 1s in the string is even (0) or odd (1).
The typical function set is {AND, OR, NAND, NOR}, using the
input bits {x1, x2, ..., xn} as terminal set.

It has been recognized as a difficult problem for evolution-
ary systems by different authors [10, 7]. The traditional GP
method is to directly evolve circuits (represented by trees).
This approach does not scale well though, 5-bit parity so-

1502

lutions are usually very difficult to evolve, and many times
unsuccessful [10]. There have been improvements to this
representation, amongst others the use of automatically de-
fined functions [11], but still were not tackling n-bit parity.

Modern developmental systems have been proposed that
solve the n-bit parity problem. In Self-Modifying Cartesian
Genetic Programming [9], the solutions are programs that
construct circuits. In [13] an artificial development system is
evolved that also is capable of growth to generate a circuit
that outputs the parity bit of any binary string. In the
latter case however, the function set used was composed of
multiplexers, making the task easier.

When the aim is to find a general solution it is a com-
mon approach to use recursion or to iterate over the bits of
the binary input string, producing solutions suitable for any
input size [19, 20]. As described in Sect. 3 it is possible
to use feedback connections in ReNCoDe, creating state-full
circuits. Making use of this feature, the current work will
evolve circuits which iterate over the input string bits, sim-
ilarly to recursive approaches, generating the parity bit as
output.

The 3-bit parity problem is used as the fitness function.
That is, the evolutionary process halts when a solution that
generates the correct parity bit for the eight (23) input com-
binations is found (if unsuccessful it terminates when the
maximum number of evaluations is reached). After the evo-
lutionary process finds a solution for the 3-bit parity this
is tested for generalization, to a maximum of 24-bit input
streams (see Section 6.1).

4.2 Fibonacci Sequence
The Fibonacci sequence is a recursive sequence that obeys

the rules defined in Eq. 3 to 5:

F (0) = 0 (3)

F (1) = 1 (4)

F (n) = F (n− 1) + F (n− 2) (5)

This sequence has many real-world applications, for in-
stance, in financial markets’s analysis and computer algo-
rithms. Moreover in can be found in nature in diverse forms,
such as branching in trees or the arrangement of a pine cone.

This problem was first solved in genetic programming us-
ing recursive tree structures [10]. The results found in lit-
erature for this problem show that obtaining general solu-
tions is not an easy task. Most of the approaches take a
very high number of evaluations to find a solution and are
not completely effective. Moreover the generalization is usu-
ally poor, although few approaches managed to obtain good
generalization results (for a good summary of these results
please refer to [8]).

The approach followed here is to evolve circuits using
the arithmetic operators as the function set {+,-,*,/} and
{0,1} as the terminal set. Protected division is used, return-
ing 0 whenever the denominator is 0. It was noticed that the
resulting programs do not have terminal nodes (see Section
6), but this is an evolutionary choice not a design one. The
circuits are then iterated to produce the sequence elements.
The fitness function is the amount of correct numbers for
the first ten elements of the Fibonacci sequence, in contrast
to other approaches where the first 12 and the first 50 el-
ements are used for training [8]. The evolutionary process

ends when the first ten elements are correctly generated or
when the maximum amount of evaluations is reached.

Finally, the circuits are tested for generalization over the
first 74 elements of the Fibonacci sequence, in order to com-
pare with the results reported in [8].

5. EXPERIMENTAL SETUP
A standard evolutionary strategy was used for the exper-

iments: (10+100)−ES. As in previous implementations of
ReNCoDe, there is no crossover but a transposon-like opera-
tor is used, which can copy or delete a portion of the genome,
therefore making the genome’s length variable. The muta-
tion operator is always applied. The number of runs and
their parameterizations are summarized in Table 1. The pa-
rameters were chosen by trial and error during testing. No
sensitivity tests nor parameter optimization were realized.

Parameter Value

Number of Runs 100
Initial Population 100

Max. Evaluations 105

Number of DMs 5
DM Mutation Rate 0.01

Mutation Operator Rate 0.01
Protein Bind Threshold 16

Genome Length Variable
Operator Type Transposon
Operator Length 80

Table 1: Evolutionary Parameters Values

6. RESULTS AND ANALYSIS
In this section the results obtained will be presented and

discussed. An argumentation on the proof of generality is
also presented for the n-bit parity problem.

6.1 N-bit Parity
The results for the parity problem are summarized in Ta-

ble 2. The algorithm efficiently solves the 3-bit parity prob-
lem in every run. The results are promising, as few as 900
evaluations are required to find a solution. However, the
distribution is quite large as the standard deviation is close
to the average and as we can see from the box-plot of the
runs (Fig. 9). After terminating evolution the circuits were
tested with bit-streams with maximum size 24 bits, achiev-
ing a very high success rate.

From the values on the number of functions and connec-
tions we can see that there is not much bloat in the solutions.
As an example the smallest circuit found in the 100 runs is
shown in Fig. 10. Each node represents either a gate or the
binary string input. The functions get their input values
from the nodes pointed out by the out-edges. The dotted
edges represent the feedback connections (because it is a
feed-forward circuit, the value of the function was not up-
dated yet and keeps the last result). Feedback connections
which have not been initialized hold 1.

Generality.
Testing a circuit for input strings bigger than 24 bits is com-
putationally very expensive. The generality of the circuits

1503

% of Successful Runs 100
% of General Solutions 98

Min. Numb. of Evaluations 900
Avg. Numb. of Evaluations (Std. Dev.) 16094 (12652)

Min. Numb. of Functions/Connections 5 / 7
Avg. Numb. of Functions/Connections 6 / 9

Table 2: Summary of the n-bit parity results for 100
runs.

Evaluations

60000

50000

40000

30000

20000

10000

0

Figure 9: Distribution of the number of evaluations
for each run of the n-bit parity problem.

Figure 10: Smallest circuit found that generates the
parity of any string. The nodes represent gates
or the input stream (IN). The output of the cir-
cuit is taken from the top OR. The binary string
is streamed through the IN node. Functions take
their inputs from the nodes where their out-edges
point to. The dotted edges represent feedback con-
nections.

was tested with maximum 24-bit streams, however it can
be proven analytically that it is correct for n-bit size. The
logic expression of the circuit can also be used to analyze
the solution. Taking as an example the circuit presented in
Fig. 10, it will be proven that the result is suitable for any
input size.

Let xi be the current input bit, xi−1 the output of the
previous iteration (initialized with 1), and oi the output that
will be generated. We can then write the logic expression
that translates the circuit (Eq. 6) and the corresponding
truth table (Table 3).

bi = ¬(xi ∨ ¬xi−1) ∨ (xi ∧ ¬xi−1) (6)

where x0 = 1 and i = 1, 2, ..., n.

xi−1 xi oi

1 1 0
1 0 1
0 1 1
0 0 0

Table 3: Truth table of the circuit.

The truth table of the circuit shows that it is equivalent to
the XOR of the current input bit with the previous output.
After iterating the complete input string, the result is the
EXOR of all the input bits, with the initialization making
the XOR with 1, which is the definition of parity (see Eq.
7).

F = 1⊕
n−1⊕

i=0

xi (7)

6.2 Fibonacci Sequence
The Fibonacci sequence problem is an interesting one.

From the results that can be found in the literature, it is
hard to evolve systems that generalize well.

In the case of the model presented here every run was
successful in finding a solution for the first ten elements, in
the given time. The average effort (number of evaluations)
results are show in Table 4. The amount of successful runs
corresponds to the percentage of runs that found a solution
for the first ten elements. The percentage of general solu-
tions indicates how many of these generalize correctly for
74 elements. In Table 5 we transcribe the results from Self-
Modifying Cartesian Genetic Programming (SM-CGP) [8],
as a reference for the performance. Only the results using
the first twelve elements as fitness function are presented,
since in the current article we use only the first ten. As a
note, the function set used here is a small subset of the one
described in [8]. Also in this case the distribution of the
effort taken in each run is quite large (Fig. 11).

Figure 12 shows the smallest circuit found that generates
the Fibonacci sequence. Each function takes its input values
from the nodes pointed to by its out-edges. Dotted edges
represent feedback connections. The circuit is then iterated
updating the functions in a bottom-up fashion. In each iter-
ation the result at the top node is retrieved as an element in
a sequence. It can be observed that the evolutionary process
does not need any terminal node. This may be consequence
of the functions being initialized with the value 1, but nev-
ertheless the sequence starts with 0.

1504

% of Successful Runs 100
% of General Solutions 96

Min. Numb. of Evaluations 8600
Avg. Numb. of Evaluations (Std. Dev.) 62504 (46157)

Min. Numb. of Functions/Connections 6/9
Avg. Numb. of Functions/Connections 7/13

Table 4: Summary of the Fibonacci sequence results
for 100 runs.

Evaluations

200000

150000

100000

50000

0

Figure 11: The distribution of the number of evalu-
ations values for each run of the Fibonacci problem.

% of Successful Runs 89.1
% of General Solutions 88.6

Avg. Numb. of Evaluations 1019981

Table 5: Summary of the Fibonacci sequence results
for SM-CGP[8], based on 287 runs. The first 12
elements of the sequence are used as fitness, and
{0,1} as the starting condition.

Figure 12: Smallest circuit found that generates the
Fibonacci sequence. The nodes represent arithmetic
operators. The output of the circuit is taken from
the top. Each iteration the nodes are updated from
bottom to top and the result is taken as an element
of the sequence. Functions take their inputs from
the nodes where their out-edges point to. The dot-
ted edges represent feedback connections.

7. CONCLUSIONS AND FUTURE WORK
In this article the Regulatory Network Computational De-

vice was extended to solve a different class of problems,
where state-full circuits are necessary. A method of using
the feedback connections in the artificial regulatory networks
was introduced and the efficacy of the approach was demon-
strated by solving two benchmark problems, the n-bit parity
and the the Fibonacci sequence (see Section 4).

The algorithm proved to be capable of evolving n-bit par-
ity generators as well as Fibonacci sequence generators, al-
ways finding a solution for the problems in a short amount
of time, and showing good generalization capabilities. For
the n-bit parity a circuit was taken as example and the gen-
erality of this was proven analytically. For the Fibonacci
sequence the achievements were compared with others in
the literature, showing some improvements.

Future work on this computational device should include
sensitivity tests of the evolutionary parameters, namely, the
number of initial DM events, the DM mutation rate and
the operator length which appear to be problem dependent
and influence both the performance (the amount of required
evaluations) and the success rates of the algorithm.

1505

8. REFERENCES
[1] W. Banzhaf. Artificial regulatory networks and genetic

programming. Genetic Programming Theory and
Practice, pages 43–62, 2003.

[2] J. Bongard. Evolving modular genetic regulatory
networks. In IEEE 2002 Congress on Evolutionary
Computation (CEC2002), pages 1872–1877. IEEE
Press, 2002.

[3] E. H. Davidson. The regulatory genome: gene
regulatory networks in development and evolution.
Academic Press, 2006.

[4] P. Dwight Kuo, W. Banzhaf, and A. Leier. Network
topology and the evolution of dynamics in an artificial
genetic regulatory network model created by whole
genome duplication and divergence. Bio Systems,
85(3):177–200, 2006.

[5] P. Eggenberger. Evolving morphologies of simulated
3D organisms based on differential gene expression. In
P. Husbands and I. Harvey, editors, Fourth European
Conference of Artificial Life. MIT Press, 1997.

[6] A. E. Eiben and J. E. Smith. Introduction to
Evolutionary Computing. Springer Verlag, 2003.

[7] C. Ferreira. Genetic representation and genetic
neutrality in gene expression programming. Advances
in Complex Systems, 5(4):389–408, 2002.

[8] S. Harding, J. Miller, and W. Banzhaf. Self modifying
cartesian genetic programming: Fibonacci, squares,
regression and summing. Genetic Programming, pages
133–144, 2009.

[9] S. Harding, J. F. Miller, and W. Banzhaf.
Developments in Cartesian Genetic Programming:
self-modifying CGP. Genetic Programming and
Evolvable Machines, 11(3-4):397–439, June 2010.

[10] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[11] J. R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs (Complex Adaptive
Systems). The MIT Press, 1994.

[12] P. Kuo, A. Leier, and W. Banzhaf. Evolving dynamics
in an artificial regulatory network model. Lecture
Notes in Computer Science, pages 571–580, 2004.

[13] T. Kuyucu, M. A. Trefzer, J. F. Miller, and A. M.
Tyrrell. A scalable solution to n-bit parity via artificial
development. Research in Microelectronics and
Electronics, pages 144–147, 2009.

[14] R. L. Lopes and E. Costa. ReNCoDe : A Regulatory
Network Computational Device. In S. Silva and
J. Foster, editors, EuroGP2011, Lecture Notes in
Computer Science, vol 6621, volume 6621, pages
142—-153, 2011.

[15] M. Nicolau and M. Schoenauer. Evolving specific
network statistical properties using a gene regulatory
network model. In G. and others Raidl, editor,
GECCO ’09: Proceedings of the 11th Annual
conference on Genetic and evolutionary computation,
pages 723–730, Montreal, 2009. ACM.

[16] M. Nicolau, M. Schoenauer, and W. Banzhaf. Evolving
genes to balance a pole. European Conference on
Genetic Programming, 6021:196–207, 2010.

[17] D. Roggen, D. Federici, and D. Floreano. Evolutionary
morphogenesis for multi-cellular systems. Genetic
Programming and Evolvable Machines, 8(1):61–96,
Dec. 2006.

[18] S. a. Teichmann and M. M. Babu. Gene regulatory
network growth by duplication. Nature genetics,
36(5):492–6, May 2004.

[19] M. L. Wong. Evolving recursive programs by using
adaptive grammar based genetic programming.
Genetic Programming and Evolvable Machines,
7(1):127, Mar. 2006.

[20] M. L. Wong and K. S. Leung. Evolving recursive
functions for the even-parity problem using genetic
programming, pages 221–240. MIT Press, Cambridge,
MA, USA, 1996.

1506

